Chapter 6 : Role of Proteolysis and Chaperones in Stress Response and Regulation

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

Role of Proteolysis and Chaperones in Stress Response and Regulation, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555816841/9781555816216_Chap06-1.gif /docserver/preview/fulltext/10.1128/9781555816841/9781555816216_Chap06-2.gif


This chapter presents selected examples of general and regulatory proteolysis, which are important for bacterial stress response. Chaperones and proteases systems are intricately connected and embedded in the regulation of stress response, in sensing stress via unfolded protein species, and in controlling the activity of the respective transcription factors. The major proteins involved in general degradation are Hsp100/Clp proteins or AAA+ proteases. In the heat shock control a repressor is kept active, whereas in the system an activator is kept inactive by molecular chaperones, both resulting in the inhibition of stress response under normal growth conditions. Controlled proteolysis of regulatory proteins by the Hsp100/Clp AAA+ protease systems has also been adapted in evolution for regulation of developmental processes that can, but must not necessarily, be considered as stress response pathways. The periplasma is a special compartment in gram-negative bacteria, and the integrity and functioning of proteins localized or passing through that compartment are very important for the cell. Therefore, a protein quality control system and a stress response system with specialized chaperones and proteases, such as DegP, for this compartment is present in . The trans-membrane signaling RIP signaling pathway can also be used to sense and regulate stress response as introduced for the control of the activity of the ECF σ factors σ of and σ of .

Citation: Turgay K. 2011. Role of Proteolysis and Chaperones in Stress Response and Regulation, p 75-90. In Storz G, Hengge R (ed), Bacterial Stress Responses, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816841.ch6
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of Figure 1.
Figure 1.

Hsp100/Clp and AAA+ protease complexes. First row: a schematic diagram of the different bacterial Hsp100/Clp and AAA+ protease complexes. Second row: adaptor and associated proteins interacting with these protein complexes. Third row: protein domains and subdomains of these complexes.

Citation: Turgay K. 2011. Role of Proteolysis and Chaperones in Stress Response and Regulation, p 75-90. In Storz G, Hengge R (ed), Bacterial Stress Responses, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816841.ch6
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2.
Figure 2.

(a) General mechanism of protein degradation by Hsp100/Clp proteins. (b) Adaptor protein-mediated activation of ClpCP.

Citation: Turgay K. 2011. Role of Proteolysis and Chaperones in Stress Response and Regulation, p 75-90. In Storz G, Hengge R (ed), Bacterial Stress Responses, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816841.ch6
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3.
Figure 3.

Regulatory proteolysis. (a) Class III heat shock response in . (b) Regulation of competence development in . (c) Control of RpoS stability in .

Citation: Turgay K. 2011. Role of Proteolysis and Chaperones in Stress Response and Regulation, p 75-90. In Storz G, Hengge R (ed), Bacterial Stress Responses, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816841.ch6
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4.
Figure 4.

Schematic outline of regulated intramembrane proteolysis in bacteria. See text for details.

Citation: Turgay K. 2011. Role of Proteolysis and Chaperones in Stress Response and Regulation, p 75-90. In Storz G, Hengge R (ed), Bacterial Stress Responses, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816841.ch6
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Alba, B. M., and, C. A. Gross. 2004. Regulation of the Escherichia coli sigma-dependent envelope stress response. Mol. Microbiol. 52: 613619.
2. Alba,, B. M.,, J. A. Leeds,, C. Onufryk,, C. Z. Lu, and, C. A. Gross. 2002. DegS and YaeL participate sequentially in the cleavage of RseA to activate the sigma(E)-dependent extracytoplasmic stress response. Genes Dev. 16: 21562168.
3. Ansaldi, M.,, D. Marolt,, T. Stebe,, I. Mandic-Mulec, and, D. Dubnau. 2002. Specific activation of the Bacillus quorum-sensing systems by isoprenylated pheromone variants. Mol. Microbiol. 44: 15611573.
4. Baker, T. A., and, R. T. Sauer. 2006. ATP-dependent proteases of bacteria: recognition logic and operating principles. Trends Biochem. Sci. 31: 647653.
5. Balch,, W. E.,, R. I. Morimoto,, A. Dillin, and, J. W. Kelly. 2008. Adapting proteostasis for disease intervention. Science 319: 916919.
6. Becker, G.,, E. Klauck, and, R. Hengge-Aronis. 1999. Regulation of RpoS proteolysis in Escherichia coli: the response regulator RssB is a recognition factor that interacts with the turnover element in RpoS. Proc. Natl. Acad. Sci. USA 96: 64396444.
7. Becker, G.,, E. Klauck, and, R. Hengge-Aronis. 2000. The response regulator RssB, a recognition factor for sigmaS proteolysis in Escherichia coli, can act like an anti-sigmaS factor. Mol. Microbiol. 35: 657666.
8. Berka,, R. M.,, J. Hahn,, M. Albano,, I. Draskovic,, M. Persuh,, X. Cui,, A. Sloma,, W. Widner, and, D. Dubnau. 2002. Microarray analysis of the Bacillus subtilis K-state: genome-wide expression changes dependent on ComK. Mol. Microbiol. 43: 13311345.
9. Bernhardt, J.,, J. Weibezahn,, C. Scharf, and, M. Hecker. 2003. Bacillus subtilis during feast and famine: visualization of the overall regulation of protein synthesis during glucose starvation by proteome analysis. Genome Res. 13: 224237.
10. Bochtler,, M., C. Hartmann,, H. K. Song,, G. P. Bourenkov,, H. D. Bartunik, and, R. Huber. 2000. The structures of HsIU and the ATP-dependent protease HsIU-HsIV. Nature 403: 800805.
11. Bougdour,, A., C. Cunning,, P. J. Baptiste,, T. Elliott, and, S. Gottesman. 2008. Multiple pathways for regulation of sigmaS (RpoS) stability in Escherichia coli via the action of multiple anti-adaptors. Mol. Microbiol. 68: 298313.
12. Bougdour, A., and, S. Gottesman. 2007. ppGpp regulation of RpoS degradation via anti-adaptor protein IraP. Proc. Natl. Acad. Sci. USA 104: 1289612901.
13. Bougdour, A.,, S. Wickner, and, S. Gottesman. 2006. Modulating RssB activity: IraP, a novel regulator of sigma(S) stability in Escherichia coli. Genes Dev. 20: 884897.
14. Brotz-Oesterhelt,, H., D. Beyer,, H. P. Kroll,, R. Endermann,, C. Ladel,, W. Schroeder,, B. Hinzen,, S. Raddatz,, H. Paulsen,, K. Henninger,, J. E. Bandow,, H. G. Sahl, and, H. Labischinski. 2005. Dysregulation of bacterial proteolytic machinery by a new class of antibiotics. Nat. Med. 11: 10821087.
15. Brown, M. S.,, J. Ye,, R. B. Rawson, and, J. L. Goldstein. 2000. Regulated intramembrane proteolysis: a control mechanism conserved from bacteria to humans. Cell 100: 391398.
16. Bukau, B., and, A. L. Horwich. 1998. The Hsp70 and Hsp60 chaperone machines. Cell 92: 351366.
17. Bukau, B.,, J. Weissman, and, A. Horwich. 2006. Molecular chaperones and protein quality control. Cell 125: 443451.
18. Butcher, B. G., and, J. D. Helmann. 2006. Identification of Bacillus subtilis sigma-dependent genes that provide intrinsic resistance to antimicrobial compounds produced by Bacilli. Mol. Microbiol. 60: 765782.
19. Cao, M.,, T. Wang,, R. Ye, and, J. D. Helmann. 2002. Antibiotics that inhibit cell wall biosynthesis induce expression of the Bacillus subtilis sigma(W) and sigma(M) regulons. Mol. Microbiol. 45: 12671276.
20. Chen, I.,, P. J. Christie, and, D. Dubnau. 2005. The ins and outs of DNA transfer in bacteria. Science 310: 14561460.
21. Chen, I., and, D. Dubnau. 2004. DNA uptake during bacterial transformation. Nat. Rev. Microbiol. 2: 241249.
22. Ciechanover, A. 1998. The ubiquitin-proteasome pathway: on protein death and cell life. EMBO J. 17: 71517160.
23. Ciechanover, A. 2005. Proteolysis: from the lysosome to ubiquitin and the proteasome. Nat. Rev. Mol. Cell Biol. 6: 7987.
24. Clausen, T.,, C. Southan, and, M. Ehrmann. 2002. The HtrA family of proteases: implications for protein composition and cell fate. Mol. Cell 10: 443455.
25. Derre, I.,, G. Rapoport, and, T. Msadek. 1999. CtsR, a novel regulator of stress and heat shock response, controls clp and molecular chaperone gene expression in gram-positive bacteria. Mol. Microbiol. 31: 117131.
26. Derre, I.,, G. Rapoport, and, T. Msadek. 2000. The CtsR regulator of stress response is active as a dimer and specifically degraded in vivo at 37 degrees C. Mol. Microbiol. 38: 335347.
27. Dobson, C. M. 2003. Protein folding and misfolding. Nature 426: 884890.
28. Dougan,, D. A.,, A. Mogk,, K. Zeth,, K. Turgay, and, B. Bukau. 2002a. AAA+ proteins and substrate recognition, it all depends on their partner in crime. FEBS Lett. 529: 610.
29. Dougan,, D. A.,, B. G. Reid,, A. L. Horwich, and, B. Bukau. 2002b. ClpS, a substrate modulator of the ClpAP machine. Mol. Cell 9: 673683.
30. D’Souza, C.,, M. M. Nakano, and, P. Zuber. 1994. Identification of comS, a gene of the srfA operon that regulates the establishment of genetic competence in Bacillus subtilis. Proc. Natl. Acad. Sci. USA 91: 93979401.
31. Dubnau, D., and, R. Losick. 2006. Bistability in bacteria. Mol. Microbiol. 61: 564572.
32. Dubnau, D., and, M. Roggiani. 1990. Growth medium-independent genetic competence mutants of Bacillus subtilis. J. Bacteriol. 172: 40484055.
33. Dubnau, D., and, K. Turgay. 2000. The regulation of competence in Bacillus subtilis and its relation to stress response, P. 249–260. In G. Storz and, R. Hengge-Aronis (ed.), Bacterial Stress Responses. ASM Press, Washington, DC.
34. Duerig,, A., S. Abel,, M. Folcher,, M. Nicollier,, T. Schwede,, N. Amiot,, B. Giese, and, U. Jenal. 2009. Second messenger-mediated spatiotemporal control of protein degradation regulates bacterial cell cycle progression. Genes Dev. 23: 93104.
35. Ehrmann, M., and, T. Clausen. 2004. Proteolysis as a regulatory mechanism. Annu. Rev. Genet. 38: 709724.
36. Ellermeier,, C. D.,, E. C. Hobbs,, J. E. Gonzalez-Pastor, and, R. Losick. 2006. A three-protein signaling pathway governing immunity to a bacterial cannibalism toxin. Cell 124: 549559.
37. Ellermeier, C. D., and, R. Losick. 2006. Evidence for a novel protease governing regulated intramembrane proteolysis and resistance to antimicrobial peptides in Bacillus subtilis. Genes Dev. 20: 19111922.
38. Erbse,, A., R. Schmidt,, T. Bornemann,, J. Schneider-Mergener,, A. Mogk,, R. Zahn,, D. A. Dougan, and, B. Bukau. 2006. ClpS is an essential component of the N-end rule pathway in Escherichia coli. Nature 439: 753756.
39. Erzberger,, J. P., and, J. M. Berger. 2006. Evolutionary relationships and structural mechanisms of AAA+ proteins. Annu. Rev. Biophys. Biomol. Struct. 35: 93114.
40. Farrell, C. M.,, A. D. Grossman, and, R. T. Sauer. 2005. Cytoplasmic degradation of ssrA-tagged proteins. Mol. Microbiol. 57: 17501761.
41. Flannagan, R. S.,, G. Cosio, and, S. Grinstein. 2009. Antimicrobial mechanisms of phagocytes and bacterial evasion strategies. Nat. Rev. Microbiol. 7: 355366.
42. Flynn, J. M.,, I. Levchenko,, R. T. Sauer, and, T. A. Baker. 2004. Modulating substrate choice: the SspB adaptor delivers a regulator of the extracytoplasmic-stress response to the AAA+ protease ClpXP for degradation. Genes Dev. 18: 22922301.
43. Flynn,, J. M.,, S. B. Neher,, Y. I. Kim,, R. T. Sauer, and, T., A. Baker. 2003. Proteomic discovery of cellular substrates of the ClpXP protease reveals five classes of ClpX-recognition signals. Mol. Cell 11: 671683.
44. Fuhrmann,, J., A. Schmidt,, S. Spiess,, A. Lehner,, K. Turgay,, K. Mechtler,, E. Charpentier, and, T. Clausen. 2009. McsB is a protein arginine kinase that phosphorylates and inhibits the heat-shock regulator CtsR. Science 324: 13231327.
45. Gamer, J.,, H. Bujard, and, B. Bukau. 1992. Physical interaction between heat shock proteins DnaK, DnaJ, GrpE and the bacterial heat shock transcription factor s 32. Cell 69: 833842.
46. Gamer,, J., G. Multhaupt,, T. Tomoyasu,, J. S. McCarty,, S. Rüdiger,, H.-J. Schönfeld,, C. Schirra,, H. Bujard, and, H. Bukau. 1996. A cycle of binding and release of the DnaK, DnaJ and GrpE chaperones regulates activity of the Escherichia coli heat shock transcription factor s 32. EMBO J. 15: 607617.
47. Glover, J. R., and, S. Lindquist. 1998. Hsp104, Hsp70, and Hsp40: a novel chaperone system that rescues previously aggregated proteins. Cell 94: 7382.
48. Goh,, E. B.,, G. Yim,, W. Tsui,, J. McClure,, M. G. Surette, and, J. Davies. 2002. Transcriptional modulation of bacterial gene expression by subinhibitory concentrations of antibiotics. Proc. Natl. Acad. Sci. USA 99: 1702517030.
49. Goldberg, A. L. 1992. The mechanism and functions of ATP dependent proteases in bacterial and animal cells. Eur. J. Biochem. 203: 923.
50. Goloubinoff,, P., A. Mogk,, A. P. Zvi,, T. Tomoyasu, and, B. Bukau. 1999. Sequential mechanism of solubilization and refolding of stable protein aggregates by a bichaperone network. Proc. Natl. Acad. Sci. USA 96: 1373213737.
51. Gonzalez-Pastor, J. E.,, E. C. Hobbs, and, R. Losick. 2003. Cannibalism by sporulating bacteria. Science 301: 510513.
52. Gottesman, S. 1989. Genetics of proteolysis in Escherichia coli. Annu. Rev. Genet. 23: 163198.
53. Grossman, A. D.,, J. W. Erickson, and, C. A. Gross. 1984. The htpR gene product of E. coli is a sigma factor for heat-shock promoters. Cell 38: 383390.
54. Grossman, A. D.,, D. B. Straus,, W. A. Walter, and, C. A. Gross. 1987. Sigma 32 synthesis can regulate the synthesis of heat shock proteins in Escherichia coli. Genes Dev. 1: 179184.
55. Gruber, T. M., and, C., A. Gross. 2003. Multiple sigma subunits and the partitioning of bacterial transcription space. Annu. Rev. Microbiol. 57: 441466.
56. Grünenfelder,, B., G. Rummel,, J. Vohradsky,, D. Roder,, H. Langen, and, U. Jenal. 2001. Proteomic analysis of the bacterial cell cycle. Proc. Natl. Acad. Sci. USA 98: 46814686.
57. Guisbert,, E., C. Herman,, C. Z. Lu, and, C. A. Gross. 2004. A chaperone network controls the heat shock response in E. coli. Genes Dev. 18: 28122821.
58. Guo, F.,, M. R. Maurizi,, L. Esser, and, D. Xia. 2002. Crystal structure of ClpA, an Hsp100 chaperone and regulator of ClpAP protease. J. Biol. Chem. 277: 4674346752.
59. Gusarov, I.,, K. Shatalin,, M. Starodubtseva, and, E. Nudler. 2009. Endogenous nitric oxide protects bacteria against a wide spectrum of antibiotics. Science 325: 13801384.
60. Hahn, J.,, N. Kramer,, K. Briley, Jr., and, D. Dubnau. 2009. McsA and B mediate the delocalization of competence proteins from the cell poles of Bacillus subtilis. Mol. Microbiol. 72: 202215.
61. Haijema, B. J.,, J. Hahn,, J. Haynes, and, D. Dubnau. 2001. A Com-GA-dependent checkpoint limits growth during the escape from competence. Mol. Microbiol. 40: 5264.
62. Hamoen,, L. W.,, H. Eshuis,, J. Jongbloed,, G. Venema, and, D. van Sinderen. 1995. A small gene, designated comS, located within the coding region of the fourth amino acid-activation domain of srfA, is required for competence development in Bacillus subtilis. Mol. Microbiol. 15: 5563.
63. Hamoen, L. W., G. Venema, and, O. P. Kuipers. 2003. Controlling competence in Bacillus subtilis: shared use of regulators. Microbiology 149: 917.
64. Hartl, F. U., and, M. Hayer-Hartl. 2002. Molecular chaperones in the cytosol: from nascent chain to folded protein. Science 295: 18521858.
65. Hartl, F. U., and, M. Hayer-Hartl. 2009. Converging concepts of protein folding in vitro and in vivo. Nat. Struct. Mol. Biol. 16: 574581.
66. Haslberger,, T., J. Weibezahn,, R. Zahn,, S. Lee,, F. T. Tsai,, B. Bukau, and, A. Mogk. 2007. M domains couple the ClpB threading motor with the DnaK chaperone activity. Mol. Cell 25: 247260.
67. Heinrich, J., and, T. Wiegert. 2006. YpdC determines site-1 degradation in regulated intramembrane proteolysis of the RsiW antisigma factor of Bacillus subtilis. Mol. Microbiol. 62: 566579.
68. Hengge-Aronis, R. 2002. Signal transduction and regulatory mechanisms involved in control of the sigma(S) (RpoS) subunit of RNA polymerase. Microbiol. Mol. Biol. Rev. 66: 373395., table of contents.
69. Hinnerwisch,, J.,, W. A. Fenton,, K. J. Furtak,, G. W. Farr, and, A. L. Horwich. 2005. Loops in the central channel of ClpA chaperone mediate protein binding, unfolding, and translocation. Cell 121: 10291041.
70. Horwich, A. L.,, E. U. Weber-Ban, and, D. Finley. 1999. Chaperone rings in protein folding and degradation. Proc. Natl. Acad. Sci. USA 96: 1103311040.
71. Hoskins, J. R., and, S. Wickner. 2006. Two peptide sequences can function cooperatively to facilitate binding and unfolding by ClpA and degradation by ClpAP. Proc. Natl. Acad. Sci. USA 103: 909914.
72. Hou, J. Y.,, R. T. Sauer, and, T. A. Baker. 2008. Distinct structural elements of the adaptor ClpS are required for regulating degradation by ClpAP. Nat. Struct. Mol. Biol. 15: 288294.
73. Iniesta, A. A., and, L. Shapiro. 2008. A bacterial control circuit integrates polar localization and proteolysis of key regulatory proteins with a phospho-signaling cascade. Proc. Natl. Acad. Sci. USA 105: 1660216607.
74. Ito, K., and, Y. Akiyama. 2005. Cellular functions, mechanism of action, and regulation of FtsH protease. Annu. Rev. Microbiol. 59: 211231.
75. Jenal, U., and, T. Fuchs. 1998. An essential protease involved in bacterial cell-cycle control. EMBO J. 17: 56585669.
76. Jenal, U., and, R. Hengge-Aronis. 2003. Regulation by proteolysis in bacterial cells. Curr. Opin. Microbiol. 6: 163172.
77. Kain, J.,, G. G. He, and, R. Losick. 2008. Polar localization and compartmentalization of ClpP proteases during growth and sporulation in Bacillus subtilis. J. Bacteriol. 190: 67496757.
78. Kanehara,, K., K. Ito, and, Y. Akiyama. 2002. YaeL (EcfE) activates the sigma(E) pathway of stress response through a site-2 cleavage of anti-sigma(E), RseA. Genes Dev. 16: 21472155.
79. Keiler, K. C.,, P. R. Waller, and, R. T. Sauer. 1996. Role of a peptide tagging system in degradation of proteins synthesized from damaged messenger RNA. Science 271: 990993.
80. Kessel,, M.,, M. R. Maurizi,, B. Kim,, E. Kocsis,, B. L. Trus,, S. K. Singh, and, A. C. Steven. 1995. Homology in structural organization between E. coli ClpAP protease and the eukaryotic 26 S proteasome. J. Mol. Biol. 250: 587594.
81. Kim,, Y. I.,, I. Levchenko,, K. Fraczkowska,, R. V. Woodruff,, R. T. Sauer, and, T. A. Baker. 2001. Molecular determinants of complex formation between Clp/Hsp100 ATPases and the ClpP peptidase. Nat. Struct. Biol. 8: 230233.
82. Kirstein, J.,, D. A. Dougan,, U. Gerth,, M. Hecker, and, K. Turgay. 2007. The tyrosine kinase McsB is a regulated adaptor protein for ClpCP. EMBO J. 26: 20612070.
83. Kirstein,, J., A. Hoffmann,, H. Lilie,, R. Schmidt,, H. Rübsamen-Waigmann,, H. Brötz-Oesterhelt,, A. Mogk, and, K. Turgay. 2009a. The antibiotic ADEP reprogrammes ClpP, switching it from a regulated to an uncontrolled protease. EMBO Mol. Med. 1: 3749.
84. Kirstein, J.,, N. Moliere,, D. Dougan, and, K. Turgay. 2009b. Adapting the machine: adaptor proteins for Hsp100/Clp and AAA+ proteases. Nat. Rev. Microbiol. 7: 589599.
85. Kirstein,, J., T. Schlothauer,, D. A. Dougan,, H. Lilie,, G. Tischendorf,, A. Mogk,, B. Bukau, and, K. Turgay. 2006. Adaptor protein controlled oligomerization activates the AAA+ protein ClpC. EMBO J. 25: 14811491.
86. Kirstein, J.,, H. Strahl,, N. Moliere,, L. W. Hamoen, and, K. Turgay. 2008. Localization of general and regulatory proteolysis Bacillus subtilis in cells. Mol. Microbiol. 70: 682694.
87. Kirstein, J., and, K. Turgay. 2005. A new tyrosine phosphorylation mechanism involved in signal transduction in Bacillus subtilis. J Mol. Microbiol. Biotechnol 9: 182188.
88. Kirstein, J.,, D. Zuhlke,, U. Gerth,, K. Turgay, and, M. Hecker. 2005. A tyrosine kinase and its activator control the activity of the CtsR heat shock repressor in B. subtilis. EMBO J. 24: 34353445.
89. Kock,, H., U. Gerth, and, M. Hecker. 2004. The ClpP peptidase is the major determinant of bulk protein turnover in Bacillus subtilis. J. Bacteriol. 186: 58565864.
90. Kong, L., and, D. Dubnau. 1994. Regulation of competence-specific gene expression by Mec-mediated protein-protein interaction in Bacillus subtilis. Proc. Natl. Acad. Sci. USA 91: 57935797.
91. Kruger, E., and, M. Hecker. 1998. The first gene of the Bacillus subtilis clpC operon, ctsR, encodes a negative regulator of its own operon and other class III heat shock genes. J. Bacteriol. 180: 66816688.
92. Krüger,, E., U. Völker, and, M. Hecker. 1994. Stress induction of clpC in Bacillus subtilis and its involvement in stress tolerance. J. Bacteriol. 176: 33603367.
93. Kruger, E.,, E. Witt,, S. Ohlmeier,, R. Hanschke, and, M. Hecker. 2000. The clp proteases of Bacillus subtilis are directly involved in degradation of misfolded proteins. J. Bacteriol. 182: 32593265.
94. Kruger, E.,, D. Zuhlke,, E. Witt,, H. Ludwig, and, M. Hecker. 2001. Clp-mediated proteolysis in Gram-positive bacteria is autoregulated by the stability of a repressor. EMBO J. 20: 852863.
95. Laufen,, T.,, M. P. Mayer,, C. Beisel,, D. Klostermeier,, A. Mogk,, J. Reinstein, and, B. Bukau. 1999. Mechanism of regulation of hsp70 chaperones by DnaJ cochaperones. Proc. Natl. Acad. Sci. USA 96: 54525457.
96. Lazazzera,, B. A.,, I. G. Kurtser,, R. S. McQuade, and, A. D. Grossman. 1999. An autoregulatory circuit affecting peptide signaling in Bacillus subtilis. J. Bacteriol. 181: 51935200.
97. Lee,, S.,, M. E. Sowa,, Y. Watanabe,, P. B. Sigler,, W. Chiu,, M. Yoshida, and, F. T. F. Tsai. 2003. The structure of ClpB: a molecular chaperone that rescues proteins from an aggregated state. Cell 115: 229240.
98. Liberek, K.,, T. P. Galitski,, M. Zylicz, and, C. Georgopoulos. 1992. The DnaK chaperone modulates the heat shock response of Escherichia coli by binding to the sigma 32 transcription factor. Proc. Natl. Acad. Sci. USA 89: 35163520.
99. Liberek,, K., D. Wall, and, C. Georgopoulos. 1995. The DnaJ chaperone catalytically activates the DnaK chaperone to preferentially bind the sigma 32 heat shock transcriptional regulator. Proc. Natl. Acad. Sci. USA 92: 62246228.
100. Lopez, D.,, M. A. Fischbach,, F. Chu,, R. Losick, and, R. Kolter. 2009a. Structurally diverse natural products that cause potassium leakage trigger multicellularity in Bacillus subtilis. Proc. Natl. Acad. Sci. USA 106: 280285.
101. Lopez, D.,, H. Vlamakis,, R. Losick, and, R. Kolter. 2009b. Paracrine signaling in a bacterium. Genes Dev. 23: 16311638.
102. Lupas, A.,, J. M. Flanagan,, T. Tamura, and, W. Baumeister. 1997. Self-compartmentalizing proteases. Trends Biochem. Sci. 22: 399404.
103. Maamar, H., and, D. Dubnau. 2005. Bistability in the Bacillus subtilis K-state (competence) system requires a positive feedback loop. Mol. Microbiol. 56: 615624.
104. Maamar,, H., A. Raj, and, D. Dubnau. 2007. Noise in gene expression determines cell fate in Bacillus subtilis. Science 317: 526529.
105. Magnuson, R., J. Solomon, and, A. D. Grossman. 1994. Biochemical and genetic characterization of a competence pheromone from B. subtilis. Cell 77: 207216.
106. Martin,, A.,, T. A. Baker, and, R. T. Sauer. 2008a. Diverse pore loops of the AAA+ ClpX machine mediate unassisted and adaptordependent recognition of ssrA-tagged substrates. Mol. Cell 29: 441450.
107. Martin,, A.,, T. A. Baker, and, R. T. Sauer. 2008b. Pore loops of the AAA+ ClpX machine grip substrates to drive translocation and unfolding. Nat. Struct. Mol. Biol. 15: 11471151.
108. McAdams, H. H., and, L. Shapiro. 2003. A bacterial cell-cycle regulatory network operating in time and space. Science 301: 18741877.
109. Mcgrath,, P. T.,, A. A. Iniesta,, K. R. Ryan,, L. Shapiro, and, H. H. McAdams. 2006. A dynamically localized protease complex and a polar specificity factor control a cell cycle master regulator. Cell 124: 535547.
110. Merrikh,, H.,, A. E. Ferrazzoli,, A. Bougdour,, A. Olivier-Mason, and, S. T. Lovett. 2009. A DNA damage response in Escherichia coli involving the alternative sigma factor, RpoS. Proc. Natl. Acad. Sci. USA 106: 611616.
111. Miethke,, M., M. Hecker, and, U. Gerth. 2006. Involvement of Bacillus subtilis ClpE in CtsR degradation and protein quality control. J. Bacteriol. 188: 46104619.
112. Mika, F., and, R. Hengge. 2005. A two-component phosphotransfer network involving ArcB, ArcA, and RssB coordinates synthesis and proteolysis of sigmaS (RpoS) in E. coli. Genes Dev. 19: 27702781.
113. Mogk,, A., G. Homuth,, C. Scholz,, L. Kim,, F. X. Schmid, and, W. Schumann. 1997. The GroE chaperonin machine is a major modulator of the CIRCE heat shock regulon of Bacillus subtilis. EMBO J. 16: 45794590.
114. Mogk,, A., R. Schmidt, and, B. Bukau. 2007. The N-end rule pathway for regulated proteolysis: prokaryotic and eukaryotic strategies. Trends Cell. Biol. 17: 165172.
115. Mogk,, A., T. Tomoyasu,, P. Goloubinoff,, S. Rudiger,, D. Roder,, H. Langen, and, B. Bukau. 1999. Identification of thermolabile Escherichia coli proteins: prevention and reversion of aggregation by DnaK and ClpB. EMBO J. 18: 69346949.
116. Mougous,, J. D.,, M. E. Cuff,, S. Raunser,, A. Shen,, M. Zhou,, C. A. Gifford,, A. L. Goodman,, G. Joachimiak,, C. L. Ordonez,, S. Lory,, T. Walz,, A. Joachimiak, and, J. J. Mekalanos. 2006. A virulence locus of Pseudomonas aeruginosa encodes a protein secretion apparatus. Science 312: 15261530.
117. Msadek,, T., F. Kunst, and, G. Rapoport. 1994. MecB of Bacillus subtilis, a member of the ClpC ATPase family, is a pleiotropic regulator controlling competence gene expression and growth at high temperature. Proc. Natl. Acad. Sci. USA 91: 57885792.
118. Neher,, S. B.,, J. M. Flynn,, R. T. Sauer, and, T. A. Baker. 2003. Latent ClpX-recognition signals ensure LexA destruction after DNA damage. Genes Dev. 17: 10841089.
119. Neher,, S. B.,, J. Villen,, E. C. Oakes,, C. E. Bakalarski,, R. T. Sauer,, S. P. Gygi, and, T. A. Baker. 2006. Proteomic profiling of ClpXP substrates after DNA damage reveals extensive instability within SOS regulon. Mol. Cell 22: 193204.
120. Ninnis,, R. L.,, S. K. Spall,, G. H. Talbo,, K. N. Truscott, and, D. A. Dougan. 2009. Modification of PATase by L/F-transferase generates a ClpS-dependent N-end rule substrate in Escherichia coli. EMBO J. 28: 17321744.
121. Okada,, M., I. Sato,, S. J. Cho,, H. Iwata,, T. Nishio,, D. Dubnau, and, Y. Sakagami. 2005. Structure of the Bacillus subtilis quorum-sensing peptide pheromone ComX. Nat. Chem. Biol. 1: 2324.
122. Parsell,, D. A.,, A. S. Kowal,, M. A. Singer, and, S. Lindquist. 1994. Protein disaggregation mediated by heat-shock protein Hsp104. Nature 372: 475478.
123. Petersohn,, A., M. Brigulla,, S. Haas,, J. D. Hoheisel,, U. Volker, and, M. Hecker. 2001. Global analysis of the general stress response of Bacillus subtilis. J. Bacteriol. 183: 5615631.
124. Pickart, C. M., and, R. E. Cohen. 2004. Proteasomes and their kin: proteases in the machine age. Nat. Rev. Mol. Cell Biol. 5: 177187.
125. Pietiainen,, M., M. Gardemeister,, M. Mecklin,, S. Leskela,, M. Sarvas, and, V. P. Kontinen. 2005. Cationic antimicrobial peptides elicit a complex stress response in Bacillus subtilis that involves ECF-type sigma factors and two-component signal transduction systems. Microbiology 151: 15771592.
126. Prakash, S.,, T. Inobe,, A. J. Hatch, and, A. Matouschek. 2009. Substrate selection by the proteasome during degradation of protein complexes. Nat. Chem. Biol. 5: 2936.
127. Prakash,, S., L. Tian,, K. S. Ratliff,, R. E. Lehotzky, and, A. Matouschek. 2004. An unstructured initiation site is required for efficient proteasome-mediated degradation. Nat. Struct. Mol. Biol. 11: 830837.
128. Prepiak, P., and, D. Dubnau. 2007. A peptide signal for adapter protein-mediated degradation by the AAA+ protease ClpCP. Mol. Cell 26: 639647.
129. Ravid, T., and, M. Hochstrasser. 2008. Diversity of degradation signals in the ubiquitin-proteasome system. Nat. Rev. Mol. Cell Biol. 9: 679690.
130. Rodriguez,, F., F. Arsene-Ploetze,, W. Rist,, S. Rudiger,, J. Schneider-Mergener,, M. P. Mayer, and, B. Bukau. 2008. Molecular basis for regulation of the heat shock transcription factor sigma32 by the DnaK and DnaJ chaperones. Mol. Cell 32: 347358.
131. Rudiger,, S., A. Buchberger, and, B. Bukau. 1997a. Interaction of Hsp70 chaperones with substrates. Nat. Struct. Biol. 4: 342349.
132. Rudiger, S.,, L. Germeroth,, J. Schneider-Mergener, and, B. Bukau. 1997b. Substrate specificity of the DnaK chaperone determined by screening cellulose-bound peptide libraries. EMBO J. 16: 15011507.
133. Rudiger,, S., J. Schneider-Mergener, and, B. Bukau. 2001. Its substrate specificity characterizes the DnaJ co-chaperone as a scanning factor for the DnaK chaperone. EMBO J. 20: 10421050.
134. Rudner, D. Z.,, P. Fawcett, and, R. Losick. 1999. A family of membrane-embedded metalloproteases involved in regulated proteolysis of membrane-associated transcription factors. Proc. Natl. Acad. Sci. USA 96: 1476514770.
135. Rudner, D. Z., and, R. Losick. 2001. Morphological coupling in development: lessons from prokaryotes. Dev. Cell 1: 733742.
136. Ryan, K. R.,, S. Huntwork, and, L. Shapiro. 2004. Recruitment of a cytoplasmic response regulator to the cell pole is linked to its cell cycle-regulated proteolysis. Proc. Natl. Acad. Sci. USA 101: 74157420.
137. Sauer,, R. T.,, D. N. Bolon,, B. M. Burton,, R. E. Burton,, J. M. Flynn,, R. A. Grant,, G. L. Hersch,, S. A. Joshi,, J. A. Kenniston,, I. Levchenko,, S. B. Neher,, E. S. Oakes,, S. M. Siddiqui,, D. A. Wah, and, T. A. Baker. 2004. Sculpting the proteome with AAA(+) proteases and disassembly machines. Cell 119: 918.
138. Schlieker,, C., A. Mogk, and, B. Bukau. 2004a. A PDZ switch for a cellular stress response. Cell 117: 417419.
139. Schlieker,, C., J. Weibezahn,, H. Patzelt,, P. Tessarz,, C. Strub,, K. Zeth,, A. Erbse,, J. Schneider-Mergener,, J. W. Chin,, P. G. Schultz,, B. Bukau, and, A. Mogk. 2004b. Substrate recognition by the AAA+ chaperone ClpB. Nat. Struct. Mol. Biol. 11: 607615.
140. Schlieker, C.,, H. Zentgraf,, P. Dersch, and, A. Mogk. 2005. ClpV, a unique Hsp100/Clp member of pathogenic proteobacteria. Biol. Chem. 386: 11151127.
141. Schmidt, R.,, R. Zahn,, B. Bukau, and, A. Mogk. 2009. ClpS is the recognition component for Escherichia coli substrates of the N-end rule degradation pathway. Mol. Microbiol. 72: 506517.
142. Schobel, S.,, S. Zellmeier,, W. Schumann, and, T. Wiegert. 2004. The Bacillus subtilis sigmaW anti-sigma factor RsiW is degraded by intramembrane proteolysis through YluC. Mol. Microbiol. 52: 10911105.
143. Schuenemann,, V. J.,, S. M. Kralik,, R. Albrecht,, S. K. Spall,, K. N. Truscott,, D. A. Dougan, and, K. Zeth. 2009. Structural basis of N-end rule substrate recognition in Escherichia coli by the ClpAP adaptor protein ClpS. EMBO Rep. 10: 508514.
144. Shapiro, L., and, R. Losick. 1997. Protein localization and cell fate in bacteria. Science 276: 712718.
145. Simmons, L. A.,, A. D. Grossman, and, G. C. Walker. 2008. Clp and Lon proteases occupy distinct subcellular positions in Bacillus subtilis. J. Bacteriol. 190: 67586768.
146. Singh,, S. K.,, J. Rozycki,, J. Ortega,, T. Ishikawa,, J. Lo,, A. C. Steven, and, M. R. Maurizi. 2001. Functional domains of the ClpA and ClpX molecular chaperones identified by limited proteolysis and deletion analysis. J. Biol. Chem. 276: 2942029429.
147. Smits,, W. K.,, C. C. Eschevins,, K. A. Susanna,, S. Bron,, O. P. Kuipers, and, L. W. Hamoen. 2005. Stripping Bacillus: ComK auto-stimulation is responsible for the bistable response in competence development. Mol. Microbiol. 56: 604614.
148. Smits, W. K.,, O. P. Kuipers, and, J. W. Veening. 2006. Phenotypic variation in bacteria: the role of feedback regulation. Nat. Rev. Microbiol. 4: 259271.
149. Solomon, J. M.,, B. A. Lazazzera, and, A. D. Grossman. 1996. Purification and characterization of an extracellular peptide factor that affects two different developmental pathways in Bacillus subtilis. Genes Dev. 10: 20142024.
150. Solomon, J. M.,, R. Magnuson,, A. Srivastava, and, A. D. Grossman. 1995. Convergent sensing pathways mediate response to two extracellular competence factors in Bacillus subtilis. Genes Dev. 9: 547558.
151. Song,, H. K.,, C. Hartmann,, R. Ramachandran,, M. Bochtler,, R. Behrendt,, L. Moroder, and, R. Huber. 2000. Mutational studies on HslU and its docking mode with HslV. Proc. Natl. Acad. Sci. USA 97: 1410314108.
152. Sousa,, M. C.,, C. B. Trame,, H. Tsuruta,, S. M. Wilbanks,, V. S. Reddy, and, D. B. McKay. 2000. Crystal and solution structures of an HslUV protease-chaperone complex. Cell 103: 633643.
153. Stein, T. 2005. Bacillus subtilis antibiotics: structures, syntheses and specific functions. Mol. Microbiol. 56: 845857.
154. Straus, D., W. Walter, and, C. A. Gross. 1990. DnaK, DnaJ, and GrpE heat shock proteins negatively regulate heat shock gene expression by controlling the synthesis and stability of sigma 32. Genes Dev. 4: 22022209.
155. Straus, D. B.,, W. A. Walter, and, C. A. Gross. 1987. The heat shock response of E. coli is regulated by changes in the concentration of sigma 32. Nature 329: 348351.
156. Stüdemann,, A., M. Noirclerc-Savoye,, E. Klauck,, G. Becker,, D. Schneider, and, R. Hengge. 2003. Sequential recognition of two distinct sites in sigma(S) by the proteolytic targeting factor RssB and ClpX. EMBO J. 22: 41114120.
157. Tilly, K.,, N. McKittrick,, M. Zylicz, and, C. Georgopoulos. 1983. The dnaK protein modulates the heat-shock response of Escherichia coli. Cell 34: 641646.
158. Tortosa, P., and, D. Dubnau. 1999. Competence for transformation: a matter of taste. Curr. Opin. Microbiol. 2: 588592.
159. Tsilibaris,, V., G. Maenhaut-Michel, and, L. Van Melderen. 2006. Biological roles of the Lon ATP-dependent protease. Res. Microbiol 157: 701713.
160. Turgay, K.,, J. Hahn,, J. Burghoorn, and, D. Dubnau. 1998. Competence in Bacillus subtilis is controlled by regulated proteolysis of a transcription factor. EMBO J. 17: 67306738.
161. Turgay, K.,, L. W. Hamoen,, G. Venema, and, D. Dubnau. 1997. Biochemical characterization of a molecular switch involving the heat shock protein ClpC, which controls the activity of ComK, the competence transcription factor of Bacillus subtilis. Genes Dev. 11: 119128.
162. Urban, S. 2009. Making the cut: central roles of intramembrane proteolysis in pathogenic microorganisms. Nat. Rev. Microbiol. 7: 411423.
163. Varshavsky, A. 1991. Naming a targeting signal. Cell 64: 1315.
164. Walsh,, N. P.,, B. M. Alba,, B. Bose,, C. A. Gross, and, R. T. Sauer. 2003. OMP peptide signals initiate the envelope-stress response by activating DegS protease via relief of inhibition mediated by its PDZ domain. Cell 113: 6171.
165. Wang,, J. D.,, C. Herman,, K. A. Tipton,, C. A. Gross, and, J. S. Weissman. 2002. Directed evolution of substrate-optimized GroEL/S chaperonins. Cell 111: 10271039.
166. Wang,, K. H.,, G. Roman-Hernandez,, R. A. Grant,, R. T. Sauer, and, T. A. Baker. 2008. The molecular basis of N-end rule recognition. Mol. Cell 32: 406414.
167. Weber,, H., T. Polen,, J. Heuveling,, V. F. Wendisch, and, R. Hengge. 2005. Genome-wide analysis of the general stress response network in Escherichia coli: sigmaS-dependent genes, promoters, and sigma factor selectivity. J. Bacteriol. 187: 15911603.
168. Weber-Ban,, E. U.,, B. G. Reid,, A. D. Miranker, and, A. L. Horwich. 1999. Global unfolding of a substrate protein by the Hsp100 chaperone ClpA. Nature 401: 9093.
169. Weibezahn,, J., P. Tessarz,, C. Schlieker,, R. Zahn,, Z. Maglica,, S. Lee,, H. Zentgraf,, E. U. Weber-Ban,, D. A. Dougan,, F. T. Tsai,, A. Mogk, and, B. Bukau. 2004. Thermotolerance requires refolding of aggregated proteins by substrate translocation through the central pore of ClpB. Cell 119: 653665.
170. Wickner, S.,, M. R. Maurizi, and, S. Gottesman. 1999. Posttranslational quality control: folding, refolding, and degrading proteins. Science 286: 18881893.
171. Wiegert, T.,, G. Homuth,, S. Versteeg, and, W. Schumann. 2001. Alkaline shock induces the Bacillus subtilis sigma(W) regulon. Mol. Microbiol. 41: 5971.
172. Wilken, C.,, K. Kitzing,, R. Kurzbauer,, M. Ehrmann, and, T. Clausen. 2004. Crystal structure of the DegS stress sensor: how a PDZ domain recognizes misfolded protein and activates a protease. Cell 117: 483494.
173. Young, J. C., and, F. U. Hartl. 2003. A stress sensor for the bacterial periplasm. Cell 113: 12.
174. Zellmeier,, S., W. Schumann, and, T. Wiegert. 2006. Involvement of Clp protease activity in modulating the Bacillus subtilis sigma(W) stress response. Mol. Microbiol. 61: 15691582.
175. Zhou,, Y., S. Gottesman,, J. R. Hoskins,, M. R. Maurizi, and, S. Wickner. 2001. The RssB response regulator directly targets sigma(S) for degradation by ClpXP. Genes Dev. 15: 627637.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error