Chapter 10 : Sensing and Responding to Reactive Oxygen and Nitrogen Species

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

Sensing and Responding to Reactive Oxygen and Nitrogen Species, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555816841/9781555816216_Chap10-1.gif /docserver/preview/fulltext/10.1128/9781555816841/9781555816216_Chap10-2.gif


This chapter provides an overview of what is known about the regulation and defenses against reactive oxygen species and nitrogen species. In and a subset of enteric bacteria, SoxR only controls the expression of SoxS, an AraC-type transcription regulator. Structural and spectral studies of oxidized SoxR bound to DNA show that the activated protein introduces a significant distortion into the DNA in order to activate transcription, as has been observed for other MerR family members. In and , OxyR regulates numerous genes whose expression is induced by exposure to HO and that make sense in terms of a defense against peroxides, including genes encoding catalase and the AhpC peroxiredoxin together with the AhpF reductase, the iron-sequestering protein Dps, and the disulfide bond reducing enzymes thioredoxin and glutaredoxin. In the denitrifying organism , the single subunit quinol-oxidizing respiratory free radical nitric oxide (NO) reductase is encoded by the gene, which is co-transcribed with under the control of the transcription activator encoded by the divergently transcribed gene. In higher eukaryotes, the major receptor for NO is the soluble guanylate cyclase (sGC). DosS (DevS) and DosT are paralogous histidine kinases from that each contain a heme cofactor bound to an N-terminal GAF domain. In all cases, the redox-active centers contain reactive metals or cysteine or histidine residues, although the types of modifications that occur are surprisingly varied.

Citation: Storz G, Spiro S. 2011. Sensing and Responding to Reactive Oxygen and Nitrogen Species, p 157-173. In Storz G, Hengge R (ed), Bacterial Stress Responses, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816841.ch10
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


1. Almeida,, C. C.,, C. V. Romão,, P. F. Lindley,, M. Teixeira, and, L. M. Saraiva. 2006. The role of the hybrid cluster protein in oxidative stress defense. J. Biol. Chem. 281: 3244532450.
2. Anjem, A., S. Varghese, and, J. A. Imlay. 2009. Manganese import is a key element of the OxyR response to hydrogen peroxide in Escherichia coli. Mol. Microbiol. 72: 812814.
3. Arai, H.,, M. Hayashi,, A. Kuroi,, M. Ishii, and, Y. Igarashi. 2005. Transcriptional regulation of the flavohemoglobin gene for aerobic nitric oxide detoxification by the second nitric oxideresponsive regulator of Pseudomonas aeruginosa. J. Bacteriol. 187: 39603968.
4. Aravind, L., and, C. P. Ponting. 1997. The GAF domain: an evolutionary link between diverse phototransducing proteins. Trends Biochem. Sci. 22: 458459.
5. Bae,, J. B.,, J. H. Park,, M. Y. Hahn,, M. S. Kim, and, J. H. Roe. 2004. Redox-dependent changes in RsrA, an anti-sigma factor in Streptomyces coelicolor: zinc release and disulfide bond formation. J. Mol. Biol. 335: 425435.
6. Bang,, I. S.,, L. Liu,, A. Vazquez-Torres,, M. L. Crouch,, J. S. Stamler, and, F. C. Fang. 2006. Maintenance of nitric oxide and redox homeostasis by the Salmonella flavohemoglobin Hmp. J. Biol. Chem. 281: 2803928047.
7. Barraud,, N.,, D. J. Hassett,, S. H. Hwang,, S. A. Rice,, S. Kjelleberg, and, J. S. Webb. 2006. Involvement of nitric oxide in biofilm dispersal of Pseudomonas aeruginosa. J. Bacteriol. 188: 73447353.
8. Barraud,, N., D. Schleheck,, J. Klebensberger,, J. S. Webb,, D. J. Hassett,, S. A. Rice, and, S. Kjelleberg. 2009. Nitric oxide signaling in Pseudomonas aeruginosa biofilms mediates phosphodiesterase activity, decreased cyclic di-GMP levels, and enhanced dispersal. J. Bacteriol. 191: 73337342.
9. Bartnikas,, T. B.,, Y. Wang,, T. Bobo,, A. Veselov,, C. P. Scholes, and, J. P. Shapleigh. 2002. Characterization of a member of the NnrR regulon in Rhodobacter sphaeroides 2.4.3 encoding a haem-copper protein. Microbiology 148: 82533.
10. Beaumont,, H. J. E.,, S. I. Lens,, W. N. M. Reijnders,, H. V. Westerhoff, and, R. J. M. van Spanning. 2004. Expression of nitrite reductase in Nitrosomonas europaea involves NsrR, a novel nitritesensitive transcription repressor. Mol. Microbiol. 54: 148158.
11. Blanchard,, J. L.,, W. Y. Wholey,, E. M. Conlon, and, P. J. Pomposiello. 2007. Rapid changes in gene expression dynamics in response to superoxide reveal SoxRS-dependent and independent transcriptional networks. PLoS ONE 2: e1186.
12. Bodenmiller, D. M., and, S. Spiro. 2006. The yjeB ( nsrR) gene of Escherichia coli encodes a nitric oxide sensitive transcriptional regulator. J. Bacteriol. 188: 874881.
13. Brandes, N.,, A. Rinck,, L. I. Leichert, and, U. Jakob. 2007. Nitrosative stress treatment of E. Coli targets distinct set of thiolcontaining proteins. Mol. Microbiol. 66: 901914.
14. Bryk,, R., P. Griffin, and, C. Nathan. 2000. Peroxynitrite reductase activity of bacterial peroxiredoxins. Nature 407: 211215.
15. Buddha, M. R., and, B. R. Crane. 2005. Structure and activity of an aminoacyl-tRNA synthetase that charges tRNA with nitrotryptophan. Nat. Struct. Mol. Biol. 12: 274275.
16. Busch,, A., B. Friedrich, and, R. Cramm. 2002. Characterization of the norB gene, encoding nitric oxide reductase, in the nondenitrifying cyanobacterium Synechocystis sp. strain PCC6803. Appl. Environ. Microbiol. 68: 668672.
17. Cabello,, P., C. Pino,, M. F. Olmo-Mira,, F. Castillo,, M. D. Roldán, and, C. Moreno-Vivián. 2004. Hydroxylamine assimilation by Rhodobacter capsulatus E1F1. Requirement of the hcp gene (hybrid cluster protein) located in the nitrate assimilation nas gene region for hydroxylamine reduction. J. Biol. Chem. 279: 4548545494.
18. Castiglione, N.,, S. Rinaldo,, G. Giardina, and, F. Cutruzzolà. 2009. The transcription factor DNR from Pseudomonas aeruginosa specifically requires nitric oxide and haem for the activation of a target promoter in Escherichia coli. Microbiology 155: 28382844.
19. Chen, L.,, Q. W. Xie, and, C. Nathan. 1998. Alkyl hydroperoxide reductase subunit C (AhpC) protects bacterial and human cells against reactive nitrogen intermediates. Mol. Cell 1: 795805.
20. Chen,, P. R.,, T. Bae,, W. A. Williams,, E. M. Duguid,, P. A. Rice,, O. Schneewind, and, C. He. 2006. An oxidation-sensing mechanism is used by the global regulator MgrA in Staphylococcus aureus. Nat. Chem. Biol. 2: 591595.
21. Chen,, P. R.,, S. Nishida,, C. B. Poor,, A. Cheng,, T. Bae,, L. Kuechenmeister,, P. M. Dunman,, D. Missiakas, and, C. He. 2009. A new oxidative sensing and regulation pathway mediated by the MgrA homologue SarZ in Staphylococcus aureus. Mol. Microbiol. 71: 198211.
22. Cho,, H. Y.,, H. J. Cho,, Y. M. Kim,, J. I. Oh, and, B. S. Kang. 2009. Structural insight into the heme-based redox sensing by DosS from Mycobacterium tuberculosis. J. Biol. Chem. 284: 1305713067.
23. Choi,, H., S. Kim,, P. Mukhopadhyay,, S. Cho,, J. Woo,, G. Storz, and, S. Ryu. 2001. Structural basis of the redox switch in the OxyR transcription factor. Cell 105: 103113.
24. Constantinidou,, C.,, J. L. Hobman,, L. Griffiths,, M. D. Patel,, C. W. Penn,, J. A. Cole, and, T. W. Overton. 2006. A reassessment of the FNR regulon and transcriptomic analysis of the effects of nitrate, nitrite, NarXL, and NarQP as Escherichia coli K12 adapts from aerobic to anaerobic growth. J. Biol. Chem. 281: 48024815.
25. Corker, H., and, R. K. Poole. 2003. Nitric oxide formation by Escherichia coli: dependence on nitrite reductase, the NO-sensing regulator Fnr, and flavohemoglobin Hmp. J. Biol. Chem. 278: 3158431592.
26. Cruz-Ramos,, H., J. Crack,, G. Wu,, M. N. Hughes,, C. Scott,, A. J. Thomson,, J. Green, and, R. K. Poole. 2002. NO sensing by FNR: regulation of the Escherichia coli NO-detoxifying flavohaemoglobin, Hmp. EMBO J. 21: 32353244.
27. D’Autréaux, B.,, D. Touati,, B. Bersch,, J. M. Latour, and, I. Michaud-Soret. 2002. Direct inhibition by nitric oxide of the transcriptional ferric uptake regulation protein via nitrosylation of the iron. Proc. Natl. Acad. Sci. USA 99: 1661916624.
28. D’Autréaux, B.,, N. P. Tucker,, R. Dixon, and, S. Spiro. 2005. A nonhaem iron centre in the transcription factor NorR senses nitric oxide. Nature 437: 769772.
29. D’Autréaux,, B., O. Horner,, J. L. Oddou,, C. Jeandey,, S. Gambarelli,, C. Berthomieu,, J. M. Latour, and, I. Michaud-Soret. 2004. Spectroscopic description of the two nitrosyl-iron complexes responsible for Fur inhibition by nitric oxide. J. Am. Chem. Soc. 126: 60056016.
30. Derbyshire, E. R., and, M. A. Marletta. 2009. Biochemistry of soluble guanylate cyclase. Handb. Exp. Pharmacol. 191: 1731.
31. Dietrich,, L. E.,, A. Price-Whelan,, A. Petersen,, M. Whiteley, and, D. K. Newman. 2006. The phenazine pyocyanin is a terminal signalling factor in the quorum sensing network of Pseudomonas aeruginosa. Mol. Microbiol. 61: 13081321.
32. Dietrich,, L. E. P.,, T. K. Teal,, A. Price-Whelan, and, D. K. Newman. 2008. Redox-active antibiotics control gene expression and community behavior in divergent bacteria. Science 321: 12031206.
33. Ding, H., and, B. Demple. 1997. In vivo kinetics of a redox regulated transcriptional switch. Proc. Natl. Acad. Sci. USA 94: 84458449.
34. Ding, H., and, B. Demple. 2000. Direct nitric oxide signal transduction via nitrosylation of iron-sulfur centers in the SoxR transcription activator. Proc. Natl. Acad. Sci. USA 97: 51465150.
35. Ding,, H., E. Hidalgo, and, B. Demple. 1996. The redox state of the [2Fe-2S] clusters in SoxR protein regulates its activity as a transcription factor. J. Biol. Chem. 271: 3317333175.
36. Dunn,, A. K.,, E. A. Karr,, Y. Wang,, A. R. Batton,, E. G. Ruby, and, E. V. Stabb. 2010. The alternative oxidase (AOX) gene in Vibrio fischeri is controlled by Nsr R and upregulated in response to nitric oxide. Mol. Microbiol. 77: 4455.
37. Elvers,, K. T.,, S. M. Turner,, L. M. Wainwright,, G. Marsden,, J. Hinds,, J. A. Cole,, R. K. Poole,, C. W. Penn, and, S. F. Park. 2005. NssR, a member of the Crp-Fnr superfamily from Campylobacter jejuni, regulates a nitrosative stress-responsive regulon that includes both a single-domain and a truncated haemoglobin. Mol. Microbiol. 57: 735750.
38. Fang, F. C. 2004. Antimicrobial reactive oxygen and nitrogen species: concepts and controversies. Nat. Rev. Microbiol. 2: 820832.
39. Filenko,, N., S. Spiro,, D. F. Browning,, D. Squire,, T. W. Overton,, J. Cole, and, C. Constantinidou. 2007. The NsrR regulon of Escherichia coli K-12 includes genes encoding the hybrid cluster protein and the periplasmic, respiratory nitrite reductase. J. Bacteriol. 189: 44104417.
40. Flatley,, J., J. Barrett,, S. T. Pullan,, M. N. Hughes,, J. Green, and, R. K. Poole. 2005. Transcriptional responses of Escherichia coli to S-nitrosoglutathione under defined chemostat conditions reveal major changes in methionine biosynthesis. J. Biol. Chem. 280: 1006510072.
41. Fuangthong, M., and, J. D. Helmann. 2002. The OhrR repressor senses organic hydroperoxides by reversible formation of a cysteine-sulfenic acid derivative. Proc. Natl. Acad. Sci. USA 99: 66906695.
42. Fuangthong,, M.,, A. F. Herbig,, N. Bsat, and, J. D. Helmann. 2002. Regulation of the Bacillus subtilis fur and perR genes by PerR: not all members of the PerR regulon are peroxide inducible. J. Bacteriol. 184: 32763286.
43. Gardner, A. M.,, C. R. Gessner, and, P. R. Gardner. 2003. Regulation of the nitric oxide reduction operon ( norRVW) in Escherichia coli. Role of NorR and s 54 in the nitric oxide stress response. J. Biol. Chem. 278: 1008110086.
44. Gardner, A. M.,, R. A. Helmick, and, P. R. Gardner. 2002. Flavorubredoxin, an inducible catalyst for nitric oxide reduction and detoxification in Escherichia coli. J. Biol. Chem. 277: 81728177.
45. Gaudu,, P., N. Moon, and, B. Weiss. 1997. Regulation of the soxRS oxidative stress regulon. Reversible oxidation of the Fe-S centers of SoxR in vivo. J. Biol. Chem. 272: 50825086.
46. Gaudu, P., and, B. Weiss. 1996. SoxR, a [2Fe-2S] transcription factor, is active only in its oxidized form. Proc. Natl. Acad. Sci. USA 93: 1009410098.
47. Giardina, G.,, S. Rinaldo,, N. Castiglione,, M. Caruso, and, F. Cutruzzolà. 2009. A dramatic conformational rearrangement is necessary for the activation of DNR from Pseudomonas aeruginosa. Crystal structure of wild-type DNR. Proteins 77: 174180.
48. Giardina,, G., S. Rinaldo,, K. A. Johnson,, A. Di Matteo,, M. Brunori, and, F. Cutruzzolà. 2008. NO sensing in Pseudomonas aeruginosa: structure of the transcriptional regulator DNR. J. Mol. Biol. 378: 10021015.
49. Giel,, J. L.,, D. Rodionov,, M. Liu,, F. R. Blattner, and, P. J. Kiley. 2006. IscR-dependent gene expression links iron-sulphur cluster assembly to the control of O 2-regulated genes in Escherichia coli. Mol. Microbiol. 60: 10581075.
50. Gilberthorpe,, N. J.,, M. E. Lee,, T. M. Stevanin,, R. C. Read, and, R. K. Poole. 2007. NsrR: a key regulator circumventing Salmonella enterica serovar Typhimurium oxidative and nitrosative stress in vitro and in IFN-g-stimulated J774.2 macrophages. Microbiology 153: 17561771.
51. Gilberthorpe, N. J., and, R. K. Poole. 2008. Nitric oxide homeostasis in Salmonella typhimurium: roles of respiratory nitrate reductase and flavohemoglobin. J. Biol. Chem. 283: 1114611154.
52. Gomes,, C. M.,, A. Giuffre,, E. Forte,, J. B. Vicente,, L. M. Saraiva,, M. Brunori, and, M. Teixeira. 2002. A novel type of nitricoxide reductase. Escherichia coli flavorubredoxin. J. Biol. Chem. 277: 2527325276.
53. Gorodetsky,, A. A.,, L. E. Dietrich,, P. E. Lee,, B. Demple,, D. K. Newman, and, J. K. Barton. 2008. DNA binding shifts the redox potential of the transcription factor SoxR. Proc. Natl. Acad. Sci. USA 105: 36843689.
54. Griffith, K. L.,, I. M. Shah, and, R. E. J. Wolf. 2004. Proteolytic degradation of Escherichia coli transcription activators SoxS and MarA as the mechanism for reversing the induction of the superoxide (SoxRS) and multiple antibiotic resistance (Mar) regulons. Mol. Microbiol. 51: 18011816.
55. Gusarov, I., and, E. Nudler. 2005. NO-mediated cytoprotection: Instant adaptation to oxidative stress in bacteria. Proc. Natl. Acad. Sci. USA 102: 1385513860.
56. Gusarov, I.,, K. Shatalin,, M. Starodubtseva, and, E. Nudler. 2009. Endogenous nitric oxide protects bacteria against a wide spectrum of antibiotics. Science 325: 13801384.
57. Hausladen,, A.,, C. T. Privalle,, T. Keng,, J. DeAngelo, and, J. S. Stamler. 1996. Nitrosative stress: activation of the transcription factor OxyR. Cell 86: 719729.
58. Helmann,, J. D.,, M. F. Wu,, A. Gaballa,, P. A. Kobel,, M. M. Morshedi,, P. Fawcett, and, C. Paddon. 2003. The global transcriptional response of Bacillus subtilis to peroxide stress is coordinated by three transcription factors. J. Bacteriol. 185: 243253.
59. Heo,, Y. J.,, I. Y. Chung,, W. J. Cho,, B. Y. Lee,, J. H. Kim,, K. H. Choi,, J. W. Lee,, D. J. Hassett, and, Y. H. Cho. 2010. The major catalase (katA) gene of Pseudomonas aeruginosa PA14 is under both positive and negative control by the global transactivator OxyR in response to hydrogen peroxide. J. Bacteriol. 192: 381390.
60. Herbig, A. F., and, J. D. Helmann. 2001. Roles of metal ions and hydrogen peroxide in modulating the interaction of the Bacillus subtilis PerR peroxide regulon repressor with operator DNA. Mol. Microbiol. 41: 849859.
61. Heurlier,, K.,, M. J. Thomson,, N. Aziz, and, J. W. Moir. 2008. The nitric oxide (NO)-sensing repressor NsrR of Neisseria meningitidis has a compact regulon of genes involved in NO synthesis and detoxification. J. Bacteriol. 190: 24882495.
62. Hillmann, F.,, R. J. Fischer,, F. Saint-Prix,, L. Girbal, and, H. Bahl. 2008. PerR acts as a switch for oxygen tolerance in the strict anaerobe Clostridium acetobutylicum. Mol. Microbiol. 68: 848860.
63. Hochgräfe,, F., C. Wolf,, S. Fuchs,, M. Liebeke,, M. Lalk,, S. Engelmann, and, M. Hecker. 2008. Nitric oxide stress induces different responses but mediates comparable protein thiol protection in Bacillus subtilis and Staphylococcus aureus. J. Bacteriol. 190: 49975008.
64. Hutchings, M. I.,, N. Mandhana, and, S. Spiro. 2002. The NorR protein of Escherichia coli activates expression of the flavorubredoxin gene norV in response to reactive nitrogen species. J. Bacteriol. 184: 46404643.
65. Hyduke,, D. R.,, L. R. Jarboe,, L. M. Tran,, K. J., Y. Chou, and, J. C. Liao. 2007. Integrated network analysis identifies nitric oxide response networks and dihydroxyacid dehydratase as a crucial target in Escherichia coli. Proc. Natl. Acad. Sci. USA 104: 84848489.
66. Ieva,, R., D. Roncarati,, M. M. Metruccio,, K. L. Seib,, V. Scarlato, and, I. Delany. 2008. OxyR tightly regulates catalase expression in Neisseria meningitidis through both repression and activation mechanisms. Mol. Microbiol. 70: 11521165.
67. Ilbert,, M., J. Horst,, S. Ahrens,, J. Winter,, P. C. Graf,, H. Lilie, and, U. Jakob. 2007. The redox-switch domain of Hsp33 functions as dual stress sensor. Nat. Struct. Mol. Biol. 14: 556563.
68. Imlay, J. A. 2008. Cellular defenses against superoxide and hydrogen peroxide. Annu. Rev. Biochem. 77: 755776.
69. Isabella,, V. M.,, J. D. Lapek Jr,, E. M. Kennedy, and, V. L. Clark. 2009. Functional analysis of NsrR, a nitric oxide-sensing Rrf2 repressor in Neisseria gonorrhoeae. Mol. Microbiol. 71: 227239.
70. Iyer, L. M.,, V. Anantharaman, and, L. Aravind. 2003. Ancient conserved domains shared by animal soluble guanylyl cyclases and bacterial signaling proteins. BMC Genomics 4: 5.
71. Jarboe,, L. R.,, D. R. Hyduke,, L. M. Tran,, K. J. Chou, and, J. C. Liao. 2008. Determination of the Escherichia coli S-nitrosoglutathione response network using integrated biochemical and systems analysis. J. Biol. Chem. 283: 51485157.
72. Justino,, M. C.,, C. C. Almeida,, M. Teixeira, and, L. M. Saraiva. 2007. Escherichia coli di-iron YtfE protein is necessary for the repair of stress-damaged iron-sulfur clusters. J. Biol. Chem. 282: 1035210359.
73. Justino,, M. C.,, C. C. Almeida,, V. L. Goncalves,, M. Teixeira, and, L. M. Saraiva. 2006. Escherichia coli YtfE is a di-iron protein with an important function in assembly of iron-sulphur clusters. FEMS Microbiol. Lett. 257: 278284.
74. Justino,, M. C.,, J. B. Vicente,, M. Teixeira, and, L. M. Saraiva. 2005. New genes implicated in the protection of anaerobically grown Escherichia coli against nitric oxide. J. Biol. Chem. 280: 26362643.
75. Kehres,, D. G.,, A. Janakiraman,, J. M. Slauch, and, M. E. Maguire. 2002. Regulation of Salmonella enterica serovar Typhimurium mntH transcription by H 2O 2, Fe 2+, and Mn 2+. J. Bacteriol. 184: 31513158.
76. Kers,, J. A.,, M. J. Wach,, S. B. Krasnoff,, J. Widom,, K. D. Cameron,, R. A. Bukhalid,, D. M. Gibson,, B. R. Crane, and, R. Loria. 2004. Nitration of a peptide phytotoxin by bacterial nitric oxide synthase. Nature 429: 7982.
77. Kidd,, S. P.,, A. J. Potter,, M. A. Apicella,, M. P. Jennings, and, A. G. McEwan. 2005. NmlR of Neisseria gonorrhoeae: a novel redox responsive transcription factor from the MerR family. Mol. Microbiol. 57: 16761689.
78. Kim,, S. O.,, K. Merchant,, R. Nudelman,, W. F. Beyer Jr.,, T. Keng,, J. DeAngelo,, A. Hausladen, and, J. S. Stamler. 2002. OxyR: a molecular code for redox-related signaling. Cell 109: 383396.
79. Klink, A.,, B. Elsner,, K. Strube, and, R. Cramm. 2007. Characterization of the signaling domain of the NO-responsive regulator NorR from Ralstonia eutropha H16 by site-directed mutagenesis. J. Bacteriol. 189: 27432749.
80. Kobayashi, K., and, S. Tagawa. 2004. Activation of SoxR-dependent transcription in Pseudomonas aeruginosa. J. Biochem. 136: 607615.
81. Kohanski,, M. A.,, D. J. Dwyer,, B. Hayete,, C. A. Lawrence, and, J. J. Collins. 2007. A common mechanism of cellular death induced by bactericidal antibiotics. Cell 130: 797810.
82. Kolodkin-Gal, I.,, B. Sat,, A. Keshet, and, H. Engelberg-Kulka. 2008. The communication factor EDF and the toxin-antitoxin module mazEF determine the mode of action of antibiotics. PLoS Biol. 6: e319.
83. Koo,, M. S.,, J. H. Lee,, S. Y. Rah,, W. S. Yeo,, J. W. Lee,, K. L. Lee,, Y. S. Koh,, S. O. Kang, and, J. H. Roe. 2003. A reducing system of the superoxide sensor SoxR in Escherichia coli. EMBO J. 22: 26142622.
84. Kumar,, A.,, J. C. Toledo,, R. P. Patel,, J. R. Lancaster Jr., and, A. J. Steyn. 2007. Mycobacterium tuberculosis DosS is a redox sensor and DosT is a hypoxia sensor. Proc. Natl. Acad. Sci. USA 104: 1156811573.
85. Lee,, C.,, S. M. Lee,, P. Mukhopadhyay,, S. J. Kim,, S. C. Lee,, W. S. Ahn,, M. H. Yu,, G. Storz, and, S. E. Ryu. 2004. Redox regulation of OxyR requires specific disulfide bond formation involving a rapid kinetic reaction path. Nat. Struct. Mol. Biol. 11: 11791185.
86. Lee,, J. H.,, K. L. Lee,, W. S. Yeo,, S. J. Park, and, J. H. Roe. 2009a. SoxRS-mediated lipopolysaccharide modification enhances resistance against multiple drugs in Escherichia coli. J. Bacteriol. 191: 44414450.
87. Lee, P. E.,, B. Demple, and, J. K. Barton. 2009b. DNA-mediated redox signaling for transcriptional activation of SoxR. Proc. Natl. Acad. Sci. USA 106: 1316413168.
88. Lee, J. W., and, J. D. Helmann. 2006. The PerR transcription factor senses H 2O 2 by metal-catalysed histidine oxidation. Nature 440: 363367.
89. Lee, J. W.,, S. Soonsanga, and, J. D. Helmann. 2007. A complex thiolate switch regulates the Bacillus subtilis organic peroxide sensor OhrR. Proc. Natl. Acad. Sci. USA 104: 87438748.
90. Lee, K. C., W., S. Yeo, and, J. H. Roe. 2008. Oxidant-responsive induction of the suf operon, encoding a Fe-S assembly system, through Fur and IscR in Escherichia coli. J. Bacteriol. 190: 82448247.
91. Lee, Y. Y.,, N. Shearer, and, S. Spiro. 2006. Transcription factor NNR from Paracoccus denitrificans is a sensor of both nitric oxide and oxygen: isolation of nnr* alleles encoding effector-independent proteins and evidence for a haem-based sensing mechanism. Microbiology 152: 14611470.
92. Li,, W.,, A. R. Bottrill,, M. J. Bibb,, M. J. Buttner,, M. S. Paget, and, C. Kleanthous. 2003. The role of zinc in the disulphide stress- regulated anti-sigma factor RsrA from Streptomyces coelicolor. J. Mol. Biol. 333: 461472.
93. Lin, H. Y.,, P. J. Bledsoe, and, V. Stewart. 2007. Activation of yeaR-yoaG operon transcription by the nitrate-responsive regulator NarL is independent of oxygen- responsive regulator Fnr in Escherichia coli K-12. J. Bacteriol. 189: 75397548.
94. Loisel-Meyer,, S.,, M. P. Jiménez de Bagüés,, E. Bassères,, J. Dornand,, S. Köhler,, J. P. Liautard, and, V. Jubier-Maurin. 2006. Requirement of norD for Brucella suis virulence in a murine model of in vitro and in vivo infection. Infect. Immun. 74: 19731976.
95. Mason,, M. G.,, M. Shepherd,, P. Nicholls,, P. S. Dobbin,, K. S. Dodsworth,, R. K. Poole, and, C. E. Cooper. 2009. Cytochrome bd confers nitric oxide resistance to Escherichia coli. Nat. Chem. Biol. 5: 9496.
96. Mills,, P. C.,, G. Rowley,, S. Spiro,, J. C. Hinton, and, D. J. Richardson. 2008. A combination of cytochrome c nitrite reductase (NrfA) and flavorubredoxin (NorV) protects Salmonella enterica serovar Typhimurium against killing by NO in anoxic environments. Microbiology 154: 12181228.
97. Monk,, C. E.,, B. M. Pearson,, F. Mulholland,, H. K. Smith, and, R. K. Poole. 2008. Oxygen- and NssR-dependent globin expression and enhanced iron acquisition in the response of Campylobacter to nitrosative stress. J. Biol. Chem. 283: 2841328425.
98. Moore,, C. M.,, M. M. Nakano,, T. Wang,, R. W. Ye, and, J. D. Helmann. 2004. Response of Bacillus subtilis to nitric oxide and the nitrosating agent sodium nitroprusside. J. Bacteriol. 186: 46554664.
99. Mukhopadhyay,, P., M. Zheng,, L. A. Bedzyk,, R. A. LaRossa, and, G. Storz. 2004. Prominent roles of the NorR and Fur regulators in the Escherichia coli transcriptional response to reactive nitrogen species. Proc. Natl. Acad. Sci. USA 101: 745750.
100. Nakano, M. M.,, H. Geng,, S. Nakano, and, K. Kobayashi. 2006. The nitric oxide-responsive regulator NsrR controls ResDE-dependent gene expression. J. Bacteriol. 188: 58785887.
101. Nakano, S.,, K. N. Erwin,, M. Ralle, and, P. Zuber. 2005. Redox-sensitive transcriptional control by a thiol/disulphide switch in the global regulator, Spx. Mol. Microbiol. 55: 498510.
102. Newberry,, K. J.,, M. Fuangthong,, W. Panmanee,, S. Mongkolsuk, and, R. G. Brennan. 2007. Structural mechanism of organic hydroperoxide induction of the transcription regulator OhrR. Mol. Cell 28: 652664.
103. Nioche,, P., V. Berka,, J. Vipond,, N. Minton,, A. L. Tsai, and, C. S. Raman. 2004. Femtomolar sensitivity of a NO sensor from Clostridium botulinum. Science 306: 15501553.
104. Nunoshiba, T.,, T. DeRojas-Walker,, S. R. Tannenbaum, and, B. Demple. 1995. Roles of nitric oxide in inducible resistance of Escherichia coli to activated murine macrophages. Infect. Immun. 63: 794798.
105. Outten, F. W.,, O. Djaman, and, G. Storz. 2004. A suf operon requirement for Fe-S cluster assembly during iron starvation in Escherichia coli. Mol. Microbiol. 52: 861872.
106. Overton,, T. W.,, M. C. Justino,, Y. Li,, J. M. Baptista,, A. M. Melo,, J. A. Cole, and, L. M. Saraiva. 2008. Widespread distribution in pathogenic bacteria of di-iron proteins that repair oxidative and nitrosative damage to iron-sulfur centers. J. Bacteriol. 190: 20042013.
107. Overton,, T. W.,, R. Whitehead,, Y. Li,, L. A. S. Snyder,, N. J. Saunders,, H. Smith, and, J. A. Cole. 2006. Coordinated regulation of the Neisseria gonorrhoeae-truncated denitrification pathway by the nitric oxide-sensitive repressor, NsrR, and nitrite insensitive NarQ-NarP. J. Biol. Chem. 281: 3311533126.
108. Paget, M. S., and, M. J. Buttner. 2003. Thiol-based regulatory switches. Annu. Rev. Genet. 37: 91121.
109. Partridge,, J. D.,, D. M. Bodenmiller,, M. S. Humphrys, and, S. Spiro. 2009. NsrR targets in the Escherichia coli genome: new insights into DNA sequence requirements for binding and a role for NsrR in the regulation of motility. Mol. Microbiol. 73: 680694.
110. Patel,, B. A.,, M. Moreau,, J. Widom,, H. Chen,, L. Yin,, Y. Hua, and, B. R. Crane. 2009. Endogenous nitric oxide regulates the recovery of the radiation-resistant bacterium Deinococcus radiodurans from exposure to UV light. Proc. Natl. Acad. Sci. USA 106: 1818318188.
111. Pohlmann, A.,, R. Cramm,, K. Schmelz, and, B. Friedrich. 2000. A novel NO-responding regulator controls the reduction of nitric oxide in Ralstonia eutropha. Mol. Microbiol. 38: 626638.
112. Poock,, S. R.,, E. R. Leach,, J. W. Moir,, J. A. Cole, and, D. J. Richardson. 2002. Respiratory detoxification of nitric oxide by the cytochrome c nitrite reductase of Escherichia coli. J. Biol. Chem. 277: 2366423669.
113. Poole, R. K., and, M. N. Hughes. 2000. New functions for the ancient globin family: bacterial responses to nitric oxide and nitrosative stress. Mol. Microbiol. 36: 775783.
114. Poor,, C. B.,, P. R. Chen,, E. Duguid,, P. A. Rice, and, C. He. 2009. Crystal structures of the reduced, sulfenic acid, and mixed disulfide forms of SarZ, a redox active global regulator in Staphylococcus aureus. J. Biol. Chem. 284: 2351723524.
115. Potter,, A. J.,, S. P. Kidd,, J. L. Edwards,, M. L. Falsetta,, M. A. Apicella,, M. P. Jennings, and, A. G. McEwan. 2009. Thioredoxin reductase is essential for protection of Neisseria gonorrhoeae against killing by nitric oxide and for bacterial growth during interaction with cervical epithelial cells. J. Infect. Dis. 199: 227235.
116. Price, M. S.,, L. Y. Chao, and, M. A. Marletta. 2007. Shewanella oneidensis MR-1 H-NOX regulation of a histidine kinase by nitric oxide. Biochemistry 46: 1367713683.
117. Pullan,, S. T.,, M. D. Gidley,, R. A. Jones,, J. Barrett,, T. M. Stevanin,, R. C. Read,, J. Green, and, R. K. Poole. 2007. Nitric oxide in chemostat-cultured Escherichia coli is sensed by Fnr and other global regulators: unaltered methionine biosynthesis indicates lack of S-nitrosation. J. Bacteriol. 189: 18451855.
118. Rankin,, L. D.,, D. M. Bodenmiller,, J. D. Partridge,, S. F. Nishino,, J. C. Spain, and, S. Spiro. 2008. Escherichia coli NsrR regulates a pathway for the oxidation of 3-nitrotyramine to 4-hydroxy-3-nitrophenylacetate. J. Bacteriol. 190: 61706177.
119. Ren, B.,, N. Zhang,, J. Yang, and, H. Ding. 2008. Nitric oxide-induced bacteriostasis and modification of iron-sulphur proteins in Escherichia coli. Mol. Microbiol. 70: 953964.
120. Richardson, A. R.,, P. M. Dunman, and, F. C. Fang. 2006. The nitrosative stress response of Staphylococcus aureus is required for resistance to innate immunity. Mol. Microbiol. 61: 927939.
121. Richardson, A. R.,, S. J. Libby, and, F. C. Fang. 2008. A nitric oxide-inducible lactate dehydrogenase enables Staphylococcus aureus to resist innate immunity. Science 319: 16721676.
122. Rock,, J. D.,, M. J. Thomson,, R. C. Read, and, J. W. B. Moir. 2007. Regulation of denitrification genes in Neisseria meningitidis by nitric oxide and the repressor NsrR. J. Bacteriol. 189: 11381144.
123. Rodionov,, D. A.,, I. L. Dubchak,, A. P. Arkin,, E. J. Alm, and, M. S. Gelfand. 2005. Dissimilatory metabolim of nitrogen oxides in bacteria: comparative reconstruction of transcriptional networks. PLoS Comput. Biol. 1: e55.
124. Rungrassamee,, W.,, K. C. Ryan,, M. J. Maroney, and, P. J. Pomposiello. 2009. The PqrR transcriptional repressor of Pseudomonas aeruginosa transduces redox signals via an ironcontaining prosthetic group. J. Bacteriol. 191: 67096721.
125. Schlag,, S., C. Nerz,, T. A. Birkenstock,, F. Altenberend, and, F. Gotz. 2007. Inhibition of staphylococcal biofilm formation by nitrite. J. Bacteriol. 189: 79117919.
126. Schmidt,, I.,, P. J. M. Steenbakkers,, H. J. M. op den Camp,, K. Schmidt, and, M. S. M. Jetten. 2004. Physiologic and proteomic evidence for a role of nitric oxide in biofilm formation by Nitrosomonas europaea and other ammonia oxidizers. J. Bacteriol. 186: 27812788.
127. Schwartz,, C. J.,, J. L. Giel,, T. Patschkowski,, C. Luther,, F. J. Ruzicka,, H. Beinert, and, P. J. Kiley. 2001. IscR, an Fe-S cluster-containing transcription factor, represses expression of Escherichia coli genes encoding Fe-S cluster assembly proteins. Proc. Natl. Acad. Sci. USA 98: 1489514900.
128. Shatalin,, K., I. Gusarov,, E. Avetissova,, Y. Shatalina,, L. E. McQuade,, S. J. Lippard, and, E. Nudler. 2008. Bacillus anthracis-derived nitric oxide is essential for pathogen virulence and survival in macrophages. Proc. Natl. Acad. Sci. USA 105: 10091013.
129. Soonsanga,, S.,, J. W. Lee, and, J. D. Helmann. 2008. Oxidant-dependent switching between reversible and sacrificial oxidation pathways for Bacillus subtilis OhrR. Mol. Microbiol. 68: 978986.
130. Sousa,, E. H.,, J. R. Tuckerman,, G. Gonzalez, and, M. A. Gilles-Gonzalez. 2007. DosT and DevS are oxygen-switched kinases in Mycobacterium tuberculosis. Protein Sci. 16: 17081719.
131. Spiro, S. 2007. Regulators of bacterial responses to nitric oxide. FEMS Microbiol. Rev. 31: 193211.
132. Stevanin, T. M.,, J. W. Moir, and, R. C. Read. 2005. Nitric oxide detoxification systems enhance survival of Neisseria meningitidis in human macrophages and in nasopharyngeal mucosa. Infect. Immun. 73: 33223329.
133. Stevanin,, T. M.,, R. K. Poole,, E. A. Demoncheaux, and, R. C. Read. 2002. Flavohemoglobin Hmp protects Salmonella enterica serovar Typhimurium from nitric oxide-related killing by human macrophages. Infect. Immun. 70: 43994405.
134. Storz, G., and, M. Zheng. 2000. Oxidative stress, P. 47–59. In G. Storz and, R. Hengge-Aronis (ed.), Bacterial Stress Responses. ASM Press, Washington, DC.
135. Strube,, K., S. de Vries, and, R. Cramm. 2007. Formation of a dinitrosyl iron complex by NorA, a nitric oxide-binding diiron protein from Ralstonia eutropha H16. J. Biol. Chem. 282: 2029220300.
136. Sudhamsu, J., and, B. R. Crane. 2009. Bacterial nitric oxide synthases: what are they good for? Trends Microbiol. 17: 212218.
137. Sund,, C. J.,, E. R. Rocha,, A. O. Tzianabos,, W. G. Wells,, J. M. Gee,, M. A. Reott,, D. P. O’Rourke, and, C. J. Smith. 2008. The Bacteroides fragilis transcriptome response to oxygen and H 2O 2: the role of OxyR and its effect on survival and virulence. Mol. Microbiol. 67: 129142.
138. Tosques, I. E.,, J. Shi, and, J. P. Shapleigh. 1996. Cloning and characterization of nnrR, whose product is required for the expression of proteins involved in nitric oxide metabolism in Rhodobacter sphaeroides 2.4.3. J. Bacteriol. 178: 49584964.
139. Tucker,, N. P.,, B. D’Autréaux,, D. J. Studholme,, S. Spiro, and, R. Dixon. 2004. DNA binding activity of the Escherichia coli nitric oxide sensor NorR suggests a conserved target sequence in diverse proteobacteria. J. Bacteriol. 186: 66566660.
140. Tucker,, N. P.,, B. D’Autréaux,, F. K. Yousafzai,, S. A. Fairhurst,, S. Spiro, and, R. Dixon. 2008. Analysis of the nitric oxide-sensing non-heme iron center in the NorR regulatory protein. J. Biol. Chem. 283: 908918.
141. Tucker,, N. P.,, M. G. Hicks,, T. A. Clarke,, J. C. Crack,, G. Chandra,, N. E. Le Brun,, R. Dixon, and, M. I. Hutchings. 2008. The transcriptional repressor protein NsrR senses nitric oxide directly via a [2Fe-2S] cluster. PLoS ONE 3: e3623.
142. Tucker,, N. P.,, T. Ghosh,, M. Bush,, X. Zhang, and, R. Dixon. 2010. Essential roles of three enhancer sites in σ 54-dependent transcription by the nitric oxide sensing regulatory protein NorR. Nucl. Acids Res. 38: 11821194.
143. Van Alst,, N. E.,, K. F. Picardo,, B. H. Iglewski, and, C. G. Haidaris. 2007. Nitrate sensing and metabolism modulate motility, biofilm formation, and virulence in Pseudomonas aeruginosa. Infect. Immun. 75: 37803790.
144. Van Spanning,, R. J.,, E. Houben,, W. N. Reijnders,, S. Spiro,, H. V. Westerhoff, and, N. Saunders. 1999. Nitric oxide is a signal for NNR-mediated transcription activation in Paracoccus denitrificans. J. Bacteriol. 181: 41294132.
145. van Wonderen,, J. H.,, B. Burlat,, D. J. Richardson,, M. R. Cheesman, and, J. N. Butt. 2008. The nitric oxide reductase activity of cytochrome c nitrite reductase from Escherichia coli. J. Biol. Chem. 283: 95879594.
146. Vollack, K. U., and, W. G. Zumft. 2001. Nitric oxide signaling and transcriptional control of denitrification genes in Pseudomonas stutzeri. J. Bacteriol. 183: 25162526.
147. Wang,, W.,, A. R. Richardson,, W. Martens-Habbena,, D. A. Stahl,, F. C. Fang, and, E. J. Hansen. 2008. Identification of a repressor of a truncated denitrification pathway in Moraxella catarrhalis. J. Bacteriol. 190: 77627772.
148. Watanabe, S.,, A. Kita,, K. Kobayashi, and, K. Miki. 2008. Crystal structure of the [2Fe-2S] oxidative-stress sensor SoxR bound to DNA. Proc. Natl. Acad. Sci. USA 105: 41214126.
149. Watmough,, N. J.,, G. Butland,, M. R. Cheesman,, J. W. Moir,, D. J. Richardson, and, S. Spiro. 1999. Nitric oxide in bacteria: synthesis and consumption. Biochim. Biophys. Acta 1411: 45674.
150. Winter,, J., M. Ilbert,, P. C. Graf,, D. Ozcelik, and, U. Jakob. 2008. Bleach activates a redox-regulated chaperone by oxidative protein unfolding. Cell 135: 691701.
151. Wolfe, M. T.,, J. Heo,, J. S. Garavelli, and, P. W. Ludden. 2002. Hydroxylamine reductase activity of the hybrid cluster protein from Escherichia coli. J. Bacteriol. 184: 58985902.
152. Yukl,, E. T.,, M. A. Elbaz,, M. M. Nakano, and, P. Moënne-Loccoz. 2008. Transcription factor NsrR from Bacillus subtilis senses nitric oxide with a 4Fe-4S cluster. Biochemistry 47: 1308413092.
153. Zheng, M.,, B. Doan,, T. D. Schneider, and, G. Storz. 1999. OxyR and SoxRS regulation of fur. J. Bacteriol. 181: 46394643.
154. Ziegelhoffer, E. C., and, T. J. Donohue. 2009. Bacterial responses to photo-oxidative stress. Nat. Rev. Microbiol. 7: 856863.
155. Zuber, P. 2009. Management of oxidative stress in Bacillus. Annu. Rev. Microbiol. 63: 575597.


Generic image for table
Table 1.

Modification of regulatory proteins by reactive oxygen species

Citation: Storz G, Spiro S. 2011. Sensing and Responding to Reactive Oxygen and Nitrogen Species, p 157-173. In Storz G, Hengge R (ed), Bacterial Stress Responses, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816841.ch10
Generic image for table
Table 2.

Protection against reactive oxygen species

Citation: Storz G, Spiro S. 2011. Sensing and Responding to Reactive Oxygen and Nitrogen Species, p 157-173. In Storz G, Hengge R (ed), Bacterial Stress Responses, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816841.ch10
Generic image for table
Table 3.

Modification of regulatory proteins by NO or -nitrosothiols

Citation: Storz G, Spiro S. 2011. Sensing and Responding to Reactive Oxygen and Nitrogen Species, p 157-173. In Storz G, Hengge R (ed), Bacterial Stress Responses, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816841.ch10
Generic image for table
Table 4.

Protection against reactive nitrogen species

Citation: Storz G, Spiro S. 2011. Sensing and Responding to Reactive Oxygen and Nitrogen Species, p 157-173. In Storz G, Hengge R (ed), Bacterial Stress Responses, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816841.ch10

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error