Chapter 12 : Sensing Metals: the Versatility of Fur

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

Sensing Metals: the Versatility of Fur, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555816841/9781555816216_Chap12-1.gif /docserver/preview/fulltext/10.1128/9781555816841/9781555816216_Chap12-2.gif


This chapter describes the characteristics and physiological role of each subfamily, the shared and specialized structural features, and the recognition pattern of target binding sites in detail. The level of intracellular iron is regulated by various iron-sensing regulators. Intracellular manganese is reported as abundant as zinc in many bacteria, whereas it is about one-tenth of zinc in . It is known to be sensed by MntR of the DtxR family in , and a Fur family member in α-proteobacteria. In , nickel induces and represses Ni-containing and Fe-containing superoxide dismutases (SODs), respectively. In , nickel induces and represses Ni-containing and Fe-containing SODs, respectively. It was found that one of its four Fur homologs regulates these two SODs in addition to nickel-uptake systems and, hence, was named Nur. The Irr protein was first described in as an iron-responsive regulator of the Fur family that controls genes for heme biosynthesis and iron uptake systems. Binding of more than two Fur dimers may occur in sites with extended footprints, whereas tight binding with only a single dimer to one core motif is possible. The similarity of recognition sequences hinders precise prediction of regulon members based on simple consensus sequences. Structural information of various Fur members will continue to provide insights into how metal specificity is achieved in metalloregulators, providing better ways to design specific metal sensors and to predict functions of uncharacterized metalloproteins.

Citation: Cha S, Shin J, Roe J. 2011. Sensing Metals: the Versatility of Fur, p 191-204. In Storz G, Hengge R (ed), Bacterial Stress Responses, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816841.ch12
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of Figure 1.
Figure 1.

Diversity of Fur subfamilies. Specialized Fur subfamilies with respect to their activity modulators (specific metals, peroxide, heme, etc.) are presented with representative gene functions they regulate and the mode of regulation. Activity modulators that stimulate and inhibit activities are presented with arrows and bars that are directed toward each Fur subfamily, respectively. Specific metals that confer DNA binding activity to the apo-form (collectively designated as Fur in shaded rectangles) are indicated. The arrows and bars originating from each Fur subfamily toward target gene functions indicate positive and negative regulation modes, respectively. Dotted rectangular boxes around Ni-Nur and Irr/Mn-Mur indicate phylogenetic restrictions to actinobacteria and α-proteobacteria, respectively.

Citation: Cha S, Shin J, Roe J. 2011. Sensing Metals: the Versatility of Fur, p 191-204. In Storz G, Hengge R (ed), Bacterial Stress Responses, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816841.ch12
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2.
Figure 2.

Structure of functionally active form of representative Fur members: Fur from ( Fur) and Nur from ( Nur). Ribbon diagrams of DNA binding-competent Fur (Pohl et al., ) and Nur (An et al., ) are presented along with the contour of binding DNA (dotted circle). Secondary structure elements of DNA binding (DB) domain (H1-H4, S1, S2) and metal sites (M for metal at hinge region, D for metal at dimeric core site, Ni for nickel-specific site) are labeled. Dimeric core region in ScNur is veiled by transparent surface. Reprinted from (An et al., ), with permission of the publisher.

Citation: Cha S, Shin J, Roe J. 2011. Sensing Metals: the Versatility of Fur, p 191-204. In Storz G, Hengge R (ed), Bacterial Stress Responses, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816841.ch12
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3.
Figure 3.

A model for inducing DNA-binding activity of Fur family regulators by binding regulatory metals. (A) Dimeric apo-Fur proteins with only structural metal bindings (at sites 1 and/or 2) assume linear (flung-out) arrangement of DNA-binding (DB) relative to dimeric (D) domains. Binding of regulatory metals in the interdomain region (sites 3 or 4) might produce active spatial arrangement of DB domains to interact with DNA. In DB-incompetent apo-PerR from ( PerR), site 1 (C site consisting of four Cys residues) is occupied by zinc (Traore et al., 2006). In DB-competent structure of Fur from ( Fur) and , sites 2 and 3 are occupied. In active Nur from , sites 3 and 4 are occupied (An et al., ). In inactive Zur from ( Zur), sites 1, 2, and 3 are occupied with low stoichiometric occupancy (Lucarelli et al., ). Coordinating residues in each site are presented to show overall similarity as well as differences. (B) The metal site at hinge region. The M sites located in the interdomain hinge region between DB (S1-S2 sheets) and D (S3-S4 sheets) domains are presented in further detail for Zur, Fur, and Nur.

Citation: Cha S, Shin J, Roe J. 2011. Sensing Metals: the Versatility of Fur, p 191-204. In Storz G, Hengge R (ed), Bacterial Stress Responses, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816841.ch12
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Ahmad,, R.,, B. O. Brandsdal,, I. Michaud-Soret, and, N. P. Willassen. 2009. Ferric uptake regulator protein: binding free energy calculations and per-residue free energy decomposition. Proteins 75: 373386.
2. Ahn,, B. E.,, J. Cha,, E. J. Lee,, A. R. Han,, C. J. Thompson, and, J. H. Roe. 2006. Nur, a nickel-responsive regulator of the Fur family, regulates superoxide dismutases and nickel transport in Streptomyces coelicolor. Mol. Microbiol. 59: 18481858.
3. Akanuma, G.,, H. Nanamiya,, Y. Natori,, N. Nomura, and, F. Kawamura. 2006. Liberation of zinc-containing L31 (RpmE) from ribosomes by its paralogous gene product, YtiA, in Bacillus subtilis. J. Bacteriol. 188: 27152720.
4. Alamuri,, P., N. Mehta,, A. Burk, and, R. J. Maier. 2006. Regulation of the Helicobacter pylori Fe-S cluster synthesis protein NifS by iron, oxidative stress conditions, and fur. J. Bacteriol. 188: 53255330.
5. Althaus,, E. W.,, C. E. Outten,, K. E. Olson,, H. Cao, and, T. V. O’Halloran. 1999. The ferric uptake regulation (Fur) repressor is a zinc metalloprotein. Biochemistry 38: 65596569.
6. An,, Y. J.,, B. E. Ahn,, A. R. Han,, H. M. Kim,, K. M. Chung,, J. H. Shin,, Y. B. Cho,, J. H. Roe, and, S. S. Cha. 2009. Structural basis for the specialization of Nur, a nickel-specific Fur homolog, in metal sensing and DNA recognition. Nucleic Acids Res. 37: 34423451.
7. Andrews,, S. C.,, A. K. Robinson, and, F. Rodríguez-Quiñones. 2003. Bacterial iron homeostasis. FEMS Microbiol. Rev. 27: 215237.
8. Bagg, A., and, J. B Neilands. 1987a. Molecular mechanism of regulation of siderophore-mediated iron assimilation. Microbiol. Rev. 51: 509518.
9. Bagg, A., and, J. B. Neilands. 1987b. Ferric uptake regulation protein acts as a repressor, employing iron (II) as a cofactor to bind the operator of an iron transport operon in Escherichia coli. Biochemistry 26: 54715477.
10. Baichoo, N., and, J. D. Helmann. 2002. Recognition of DNA by Fur: a reinterpretation of the Fur box consensus sequence. J. Bacteriol. 184: 58265832.
11. Baichoo,, N., T. Wang,, R. Ye, and, J. D. Helmann. 2002. Global analysis of the Bacillus subtilis Fur regulon and the iron starvation stimulon. Mol. Microbiol. 45: 16131629.
12. Barton,, L. L.,, F. Goulhen,, M. Bruschi,, N. A. Woodards,, R. M. Plunkett, and, F. J. Rietmeijer. 2007. The bacterial metallome: composition and stability with specific reference to the anaerobic bacterium Desulfovibrio desulfuricans. Biometals 20: 291302.
13. Bellini, P., and, A. M. Hemmings. 2006. In vitro characterization of a bacterial manganese uptake regulator of the fur superfamily. Biochemistry 45: 26862698.
14. Belzer,, C.,, B. A. van Schendel,, E. J. Kuipers,, J. G. Kusters, and, A. H. van Vliet. 2007. Iron-responsive repression of urease expression in Helicobacter hepaticus is mediated by the transcriptional regulator Fur. Infect. Immun. 75: 745752.
15. Brenot,, A.,, K. Y. King, and, M. G. Caparon. 2005. The PerR regulon in peroxide resistance and virulence of Streptococcus pyogenes. Mol. Microbiol. 55: 221234.
16. Bsat,, N., A. Herbig,, L. Casillas-Martinez,, P. Setlow, and, J. D. Helmann. 1998. Bacillus subtilis contains multiple Fur homologues: identification of the iron uptake (Fur) and peroxide regulon (PerR) repressors. Mol. Microbiol. 29: 189198.
17. Bsat, N., L. Chen, and, J. D. Helmann. 1996. Mutation of the Bacillus subtilis alkyl hydroperoxide reductase (ahpCF) operon reveals compensatory interactions among hydrogen peroxide stress genes. J. Bacteriol. 178: 65796586.
18. Chao,, T. C.,, A. Becker,, J. Buhrmester,, A. Pühler, and, S. Weidner. 2004. The Sinorhizobium meliloti fur gene regulates, with dependence on Mn (II), transcription of the sitABCD operon, encoding a metal-type transporter. J. Bacteriol. 186: 36093620.
19. Chen, L., L. Keramati, and, J. D. Helmann. 1995. Coordinate regulation of Bacillus subtilis peroxide stress genes by hydrogen peroxide and metal ions. Proc. Natl. Acad. Sci. USA 92: 81908194.
20. Chen,, Z.,, K. A. Lewis,, R. K. Shultzaberger,, I. G. Lyakhov,, M. Zheng,, B. Doan,, G. Storz, and, T. D. Schneider. 2007. Discovery of Fur binding site clusters in Escherichia coli by information theory models. Nucleic Acids Res. 35: 67626777.
21. Chivers, P. T., and, R. T. Sauer. 2000. Regulation of high affinity nickel uptake in bacteria. Ni2+-Dependent interaction of NikR with wild-type and mutant operator sites. J. Biol. Chem. 275: 1973519741.
22. D’Autréaux, B.,, D. Touati,, B. Bersch,, J. M. Latour, and, I. Michaud-Soret. 2002. Direct inhibition by nitric oxide of the transcriptional ferric uptake regulation protein via nitrosylation of the iron. Proc. Natl. Acad. Sci. USA 99: 1661916624.
23. D’Autréaux, B., and, M. B. Toledano. 2007. ROS as signalling molecules: mechanisms that generate specificity in ROS homeostasis. Nat. Rev. Mol. Cell Biol. 8: 813824.
24. Delany, I.,, G. Spohn,, R. Rappuoli, and, V. Scarlato. 2001. The Fur repressor controls transcription of iron-activated and repressed genes in Helicobacter pylori. Mol. Microbiol. 42: 12971309.
25. Delany,, I., R. Rappuoli, and, V. Scarlato. 2004. Fur functions as an activator and as a repressor of putative virulence genes in Neisseria meningitidis. Mol. Microbiol. 52: 10811090.
26. De Lorenzo, V.,, Wee. S,, Herrero. M, and J. B. Neiland. 1987. Operator sequences of the aerobactin operon of plasmid ColVK30 binding the ferric uptake regulation (fur) repressor. J. Bacteriol. 169: 26242630.
27. De Pina,, K., V. Desjardin,, M. A. Mandrand-Berthelot,, G. Giordano, and, L. F. Wu. 1999. Isolation and characterization of the nikR gene encoding a nickel-responsive regulator in Escherichia coli. J. Bacteriol. 181: 670674.
28. Díaz-Mireles,, E., M. Wexler,, G. Sawers,, D. Bellini,, J. D. Todd, and, A. W. Johnston. 2004. The Fur-like protein Mur of Rhizobium leguminosarum is a Mn (2+)-responsive transcriptional regulator. Microbiology 150: 14471456.
29. Ernst, J. F.,, R. L. Bennett, and, L. I. Rothfield. 1978. Constitutive expression of the iron-enterochelin and ferrichrome uptake systems in a mutant strain of Salmonella typhimurium. J. Bacteriol. 135: 928934.
30. Escolar,, L., J. Pérez-Martín, and, V. de Lorenzo. 1998. Binding of the fur (ferric uptake regulator) repressor of Escherichia coli to arrays of the GATAAT sequence. J. Mol. Biol. 283: 537547.
31. Escolar,, L., J. Pérez-Martín, and, V. de Lorenzo. 1999. Opening the iron box: transcriptional metalloregulation by the Fur protein. J. Bacteriol. 181: 62236229.
32. Friedman, Y. E., and, M. R. O’Brian. 2004. The ferric uptake regulator (Fur) protein from Bradyrhizobium japonicum is an iron-responsive transcriptional repressor in vitro. J. Biol. Chem. 279: 3210032105.
33. Fuangthong,, M.,, A. F. Herbig,, N. Bsat, and, J. D. Helmann. 2002. Regulation of the Bacillus subtilis fur and perR genes by PerR: not all members of the PerR regulon are peroxide inducible. J. Bacteriol. 184: 32763286.
34. Fuangthong, M., and, J. D. Helmann. 2003. Recognition of DNA by three ferric uptake regulator (Fur) homologs in Bacillus subtilis. J. Bacteriol. 185: 63486357.
35. Gaballa, A., and, J. D. Helmann. 1998. Identification of a zinc-specific metalloregulatory protein, Zur, controlling zinc transport operons in Bacillus subtilis. J. Bacteriol. 180: 58155821.
36. Gaballa, A., and, J. D. Helmann. 2002. A peroxide-induced zinc uptake system plays an important role in protection against oxidative stress in Bacillus subtilis. Mol. Microbiol. 45: 9971005.
37. Gaballa,, A., T. Wang,, R. W. Ye, and, J. D. Helmann. 2002. Functional analysis of the Bacillus subtilis Zur regulon. J. Bacteriol. 184: 65086514.
38. Gaballa,, A., H. Antelmann,, C. Aguilar,, S. K. Khakh,, K. B. Song,, G. T. Smaldone, and, J. D. Helmann. 2008. The Bacillus subtilis iron-sparing response is mediated by a Fur-regulated small RNA and three small, basic proteins. Proc. Natl. Acad. Sci. USA 105: 1192711932.
39. Giedroc, D. P. 2009. Hydrogen peroxide sensing in Bacillus subtilis: it is all about the [metallo] regulator. Mol. Microbiol. 73: 14.
40. Giedroc, D. P., and, A. I. Arunkumar. 2007. Metal sensor proteins: nature’s metalloregulated allosteric switches. Dalton Trans. 29: 31073120.
41. Gonzalez de Peredo,, A., C. Saint-Pierre,, A. Adrait,, L. Jacquamet,, J. M. Latour,, I. Michaud-Soret, and, E. Forest. 1999. Identification of the two zinc-bound cysteines in the ferric uptake regulation protein from Escherichia coli: chemical modification and mass spectrometry analysis. Biochemistry 38: 85828589.
42. Grass, G. 2006. Iron transport in Escherichia coli: all has not been said and done. Biometals 19: 159172.
43. Hahn,, J. S.,, S. Y. Oh,, K. F. Chater,, Y. H. Cho, and, J. H. Roe. 2000. H 2O 2-sensitive fur-like repressor CatR regulating the major catalase gene in Streptomyces coelicolor. J. Biol. Chem. 275: 3825438260.
44. Hamza,, I., S. Chauhan,, R. Hassett, and, M. R. O’Brian. 1998. The bacterial irr protein is required for coordination of heme biosynthesis with iron availability. J. Biol. Chem. 273: 2166921674.
45. Hamza, I., R. Hassett, and, M. R. O’Brian. 1999. Identification of a functional fur gene in Bradyrhizobium japonicum. J. Bacteriol. 181: 58435846.
46. Hantke, K. 1981. Regulation of ferric iron transport in Escherichia coli K12: isolation of a constitutive mutant. Mol. Gen. Genet. 182: 288292.
47. Hantke, K. 2001. Iron and metal regulation in bacteria. Curr. Opin. Microbiol. 4: 172177.
48. Hantke, K. 2005. Bacterial zinc uptake and regulators. Curr. Opin. Microbiol. 8: 196202.
49. Hantke, K., and, V. Braun. 2000. The art of keeping low and high iron concentrations in balance, P. 275–288. In G. Storz, and, R. Hengge-Aronis (ed.), Bacterial Stress Responses. ASM Press, Washington, DC.
50. Herbig, A. F., and, J. D. Helmann. 2001. Roles of metal ions and hydrogen peroxide in modulating the interaction of the Bacillus subtilis PerR peroxide regulon repressor with operator DNA. Mol. Microbiol. 41: 849859.
51. Hillmann, F.,, R. J. Fischer,, F. Saint-Prix,, L. Girbal, and, H. Bahl. 2008. PerR acts as a switch for oxygen tolerance in the strict anaerobe Clostridium acetobutylicum. Mol. Microbiol. 68: 848860.
52. Hohle, T. H., and, M. R. O’Brian. 2009. The mntH gene encodes the major Mn(2+) transporter in Bradyrhizobium japonicum and is regulated by manganese via the Fur protein. Mol. Microbiol. 72: 399409.
53. Horsburgh, M. J.,, E. Ingham, and, S. J. Foster. 2001a. In Staphylococcus aureus, fur is an interactive regulator with PerR, contributes to virulence, and is necessary for oxidative stress resistance through positive regulation of catalase and iron homeostasis. J. Bacteriol. 183: 468475.
54. Horsburgh,, M. J.,, M. O. Clements,, H. Crossley,, E. Ingham, and, S. J. Foster. 2001b. PerR controls oxidative stress resistance and iron storage proteins and is required for virulence in Staphylococcus aureus. Infect. Immun. 69: 37443754.
55. Huang,, D.L.,, D.J. Tang,, Q. Liao,, H. C. Li,, Q. Chen,, Y. Q. He,, J.X. Feng,, B. L. Jiang,, G. T. Lu,, B. Chen, and, J. L. Tang. 2008. The Zur of Xanthomonas campestris functions as a repressor and an activator of putative zinc homeostasis genes via recognizing two distinct sequences within its target promoters. Nucleic Acids Res. 36: 42954309.
56. Hughes M. N., and, R. K. Poole. 1989. Metals and Microorganisms. Chapman and Hall, London-New York.
57. Jacquamet,, L., D. Aberdam,, A. Adrait,, J. L. Hazemann,, J. M. Latour, and, I. Michaud-Soret. 1998. X-ray absorption spectroscopy of a new zinc site in the fur protein from Escherichia coli. Biochemistry 37: 25642571.
58. Jacquamet,, L.,, D. A. Traore,, J. L. Ferrer,, O. Proux,, D. Testemale,, J. L. Hazemann,, E. Nazarenko,, A. E. Ghazouani,, D. Caux-Thang,, V. Duarte, and, J. M. Latour. 2009. Structural characterization of the active form of PerR: insights into the metal-induced activation of PerR and Fur proteins for DNA binding. Mol. Microbiol. 73: 2031.
59. Johnston,, A. W.,, J. D. Todd,, A. R. Curson,, S. Lei,, N. Nikolaidou-Katsaridou,, M. S. Gelfand, and, D. A. Rodionov. 2007. Living without Fur: the subtlety and complexity of iron-responsive gene regulation in the symbiotic bacterium Rhizobium and other alpha-proteobacteria. Biometals 20: 501511.
60. Kiley, P. J., and, G. Storz. 2004. Exploiting thiol modifications. PLoS Biol. 2: e400.
61. Kim, E. J., Chung,, H. J., Suh,, B., Hah,, Y. C., and, J. H. Roe. 1998a. Transcriptional and post-transcriptional regulation of sodN gene encoding nickel-containing superoxide dismutase from Streptomyces coelicolor Muller. Mol. Microbiol. 27: 187195.
62. Kim, E., J., Chung,, H. J., Suh,, B., Hah,, Y. C., and, J. H. Roe. 1998b. Expression and regulation of sodF gene encoding iron- and zinc-containing superoxide dismutase from Streptomyces coelicolor Muller. J. Bacteriol. 180: 20142020.
63. King, K. Y.,, J. A. Horenstein, and, M. G. Caparon. 2000. Aerotolerance and peroxide resistance in peroxidase and PerR mutants of Streptococcus pyogenes. J. Bacteriol. 182: 52905299.
64. Kitphati,, W., P. Ngok-Ngam,, S. Suwanmaneerat,, R. Sukchawalit, and, S. Mongkolsuk. 2007. Agrobacterium tumefaciens fur has important physiological roles in iron and manganese homeostasis, the oxidative stress response, and full virulence. Appl. Environ. Microbiol. 73: 47604768.
65. Lavrrar, J. L.,, C. A. Christoffersen, and, M. A. McIntosh. 2002. Fur-DNA interactions at the bidirectional fepDGC-entS promoter region in Escherichia coli. J. Mol. Biol. 322: 983995.
66. Lavrrar, J. L., and, M. A. McIntosh. 2003. Architecture of a fur binding site: a comparative analysis. J. Bacteriol. 185: 21942202.
67. Lee,, C.,, S. M. Lee,, P. Mukhopadhyay,, S. J. Kim,, S. C. Lee,, W. S. Ahn,, M. H. Yu,, G. Storz, and, S. E. Ryu. 2004. Redox regulation of OxyR requires specific disulfide bond formation involving a rapid kinetic reaction path. Nat. Struct. Mol. Biol. 11: 11791185.
68. Lee,, H. J.,, S. H. Bang,, K. H. Lee, and, S. J Park. 2007. Positive regulation of fur gene expression via direct interaction of fur in a pathogenic bacterium, Vibrio vulnificus. J. Bacteriol. 189: 26292636.
69. Lee, J. W., and, J. D. Helmann. 2006. The PerR transcription factor senses H2O2 by metal-catalysed histidine oxidation. Nature 440: 363367.
70. Lee, J. W., and, J. D. Helmann. 2007. Functional specialization within the Fur family of metalloregulators. Biometals 20: 485499.
71. Lee, K. C.,, W. S. Yeo, and, J. H. Roe. 2008. Oxidant-responsive induction of the suf operon, encoding a Fe-S assembly system, through Fur and IscR in Escherichia coli. J. Bacteriol. 190: 82448247.
72. Lucarelli,, D., S. Russo,, E. Garman,, A. Milano,, W. Meyer-Klaucke, and, E. Pohl. 2007. Crystal structure and function of the zinc uptake regulator FurB from Mycobacterium tuberculosis. J. Biol. Chem. 282: 99149922.
73. Maciag,, A., E. Dainese,, G. M. Rodriguez,, A. Milano,, R. Provvedi,, M. R. Pasca,, I. Smith,, G. Palù,, G. Riccardi, and, R. Manganelli. 2007. Global analysis of the Mycobacterium tuberculosis Zur (FurB) regulon. J. Bacteriol. 189: 730740.
74. Martínez, M.,, R. A. Ugalde, and, M. Almirón. 2006. Irr regulates brucebactin and 2, 3-dihydroxybenzoic acid biosynthesis, and is implicated in the oxidative stress resistance and intracellular survival of Brucella abortus. Microbiology 152: 25912598.
75. Massé, E., and, S. Gottesman. 2002. A small RNA regulates the expression of genes involved in iron metabolism in Escherichia coli. Proc. Natl. Acad. Sci. USA 99: 46204625.
76. Massé, E.,, H. Salvail,, G. Desnoyers, and, M. Arguin. 2007. Small RNAs controlling iron metabolism. Curr. Opin. Microbiol. 10: 140145.
77. McHugh,, J. P.,, F. Rodríguez-Quinoñes,, H. Abdul-Tehrani,, D. A. Svistunenko,, R. K. Poole,, C. E. Cooper, and, S. C. Andrews. 2003. Global iron-dependent gene regulation in Escherichia coli. A new mechanism for iron homeostasis. J. Biol. Chem. 278: 2947829486.
78. Mellin,, J. R.,, S. Goswami,, S. Grogan,, B. Tjaden, and, C. A. Genco. 2007. A novel fur- and iron-regulated small RNA, NrrF, is required for indirect fur-mediated regulation of the sdhA and sdhC genes in Neisseria meningitidis. J. Bacteriol. 189: 36863694.
79. Metruccio,, M. M.,, L. Fantappiè,, D. Serruto,, A. Muzzi,, D. Roncarati,, C. Donati,, V. Scarlato, and, I. Delany. 2009. The Hfq-dependent small noncoding RNA NrrF directly mediates Fur-dependent positive regulation of succinate dehydrogenase in Neisseria meningitidis. J. Bacteriol. 191: 13301342.
80. Mey,, A. R.,, E. E. Wyckoff,, V. Kanukurthy,, C. R. Fisher, and, S. M. Payne. 2005. Iron and fur regulation in Vibrio cholerae and the role of fur in virulence. Infect. Immun. 73: 81678178.
81. Mills, S. A., and, M. A. Marletta. 2005. Metal binding characteristics and role of iron oxidation in the ferric uptake regulator from Escherichia coli. Biochemistry 44: 1355313559.
82. Mukhopadhyay,, P., M. Zheng,, L. A. Bedzyk,, R. A. LaRossa, and, G. Storz. 2004. Prominent roles of the NorR and Fur regulators in the Escherichia coli transcriptional response to reactive nitrogen species. Proc. Natl. Acad. Sci. USA 101: 745750.
83. Mulrooney, S. B., and, R. P. Hausinger. 2003. Nickel uptake and utilization by microorganisms. FEMS Microbiol. Rev. 27: 239261.
84. Nanamiya,, H., G. Akanuma,, Y. Natori,, R. Murayama,, S. Kosono,, T. Kudo,, K. Kobayashi,, N. Ogasawara,, S. M. Park,, K. Ochi, and, F. Kawamura. 2004. Zinc is a key factor in controlling alternation of two types of L31 protein in the Bacillus subtilis ribosome. Mol. Microbiol. 52: 273283.
85. Nienaber, A., H. Hennecke, and, H. M. Fischer. 2001. Discovery of a haem uptake system in the soil bacterium Bradyrhizobium japonicum. Mol. Microbiol. 41: 787800.
86. Outten, C. E., and, T. V. O’Halloran. 2001. Femtomolar sensitivity of metalloregulatory proteins controlling zinc homeostasis. Science 292: 24882492.
87. Outten,, C. E.,, D. A. Tobin,, J. E. Penner-Hahn, and, T. V. O’Halloran. 2001. Characterization of the metal receptor sites in Escherichia coli Zur, an ultrasensitive zinc(II) metalloregulatory protein. Biochemistry 40: 1041710423.
88. Outten,, F. W.,, C. E. Outten, and, T., V. O’Halloran. 2000. Metalloregulatory systems at the interface between bacterial metal homeostasis and resistance, P. 145–157. In G. Storz, and, R. Hengge-Aronis (ed.), Bacterial Stress Responses. ASM Press, Washington, DC.
89. Owen, G. A.,, B. Pascoe,, D. Kallifidas, and, M. S. Paget. 2007. Zincresponsive regulation of alternative ribosomal protein genes in Streptomyces coelicolor involves zur and sigmaR. J. Bacteriol. 189: 40784086.
90. Panina,, E. M.,, A. A. Mironov, and, M. S. Gelfand. 2003. Comparative genomics of bacterial zinc regulons: enhanced ion transport, pathogenesis, and rearrangement of ribosomal proteins. Proc. Natl. Acad. Sci. USA 100: 99129917.
91. Patzer, S. I., and, K. Hantke. 1998. The ZnuABC high-affinity zinc uptake system and its regulator Zur in Escherichia coli. Mol. Microbiol. 28: 11991210.
92. Patzer, S. I., and, K. Hantke. 2000. The zinc-responsive regulator Zur and its control of the znu gene cluster encoding the Znu-ABC zinc uptake system in Escherichia coli. J. Biol. Chem. 275: 2432124332.
93. Pecqueur,, L., B. D’Autréaux,, J. Dupuy,, Y. Nicolet,, L. Jacquamet,, B. Brutscher,, I. Michaud-Soret, and, B. Bersch. 2006. Structural changes of Escherichia coli ferric uptake regulator during metal-dependent dimerization and activation explored by NMR and X-ray crystallography. J. Biol. Chem. 281: 2128621295.
94. Platero, R.,, V. De Lorenzo,, B. Garat, and, E. Fabiano. 2007. Sinorhizobium meliloti fur-like (Mur) protein binds a fur boxlike sequence present in the mntA promoter in a manganese responsive manner. Appl. Environ. Microbiol. 73: 48324838.
95. Pohl,, E.,, J. C. Haller,, A. Mijovilovich,, W. Meyer-Klaucke,, E. Garman, and, M. L. Vasil. 2003. Architecture of a protein central to iron homeostasis: crystal structure and spectroscopic analysis of the ferric uptake regulator. Mol. Microbiol. 47: 903915.
96. Qi, Z., and, M. R. O’Brian. 2002. Interaction between the bacterial iron response regulator and ferrochelatase mediates genetic control of heme biosynthesis. Mol. Cell 9: 155162.
97. Qi, Z., I. Hamza, and, M. R. O’Brian. 1999. Heme is an effector molecule for iron-dependent degradation of the bacterial iron response regulator (Irr) protein. Proc. Natl. Acad. Sci. USA 96: 1305613061.
98. Rea, R. B.,, C. G. Gahan, and, C. Hill. 2004. Disruption of putative regulatory loci in Listeria monocytogenes demonstrates a significant role for Fur and PerR in virulence. Infect. Immun. 72: 717727.
99. Rodionov,, D. A.,, M. S. Gelfand,, J. D. Todd,, A. R. Curson, and, A. W. Johnston. 2006a. Computational reconstruction of iron and manganese-responsive transcriptional networks in alpha-proteobacteria. PLoS Comput. Biol. 2: e163.
100. Rodionov,, D. A.,, P. Hebbeln,, M. S. Gelfand, and, T. Eitinger. 2006b. Comparative and functional genomic analysis of prokaryotic nickel and cobalt uptake transporters: evidence for a novel group of ATP-binding cassette transporters. J. Bacteriol. 188: 317327.
101. Rudolph,, G., G. Semini,, F. Hauser,, A. Lindemann,, M. Friberg,, H. Hennecke, and, H. M. Fischer. 2006a. The iIron control element, acting in positive and negative control of iron-regulated Bradyrhizobium japonicum genes, is a target for the Irr protein. J. Bacteriol. 188: 733744.
102. Rudolph, G., H. Hennecke, and, H. M. Fischer. 2006b. Beyond the Fur paradigm: iron-controlled gene expression in rhizobia. FEMS Microbiol. Rev. 30: 631648.
103. Sangwan,, I.,, S. K. Small, and, M. R. O’Brian. 2008. The Bradyrhizobium japonicum Irr protein is a transcriptional repressor with high-affinity DNA-binding activity. J. Bacteriol. 190: 51725177.
104. Santos,, C. L.,, J. Vieira,, F. Tavares,, D. R. Benson,, L. S. Tisa,, A. M. Berry,, P. Moradas-Ferreira, and, P. Normand. 2008. On the nature of fur evolution: a phylogenetic approach in Actinobacteria. BMC Evol. Biol. 8: 185190.
105. Sheikh, M. A., and, G. L. Taylor. 2009. Crystal structure of the Vibrio cholerae ferric uptake regulator (Fur) reveals insights into metal co-ordination. Mol. Microbiol. 72: 12081220.
106. Shin,, J. H.,, S. Y. Oh,, S. J. Kim, and, J. H. Roe. 2007. The zincresponsive regulator Zur controls a zinc uptake system and some ribosomal proteins in Streptomyces coelicolor A3(2). J. Bacteriol. 189: 40704077.
107. Small, S. K.,, S. Puri, and, M. R. O’Brian. 2009. Heme-dependent metalloregulation by the iron response regulator (Irr) protein in Rhizobium and other alpha-proteobacteria. Biometals 22: 8997.
108. Spiro, S. 2008. Metalloregulatory proteins and nitric oxide signalling in bacteria. Biochem. Soc. Trans. 36: 11601164.
109. Stoof,, J., S. Breijer,, R. G. Pot,, D. van der Neut,, E. J. Kuipers,, J. G. Kusters, and, A. H. van Vliet. 2008. Inverse nickel-responsive regulation of two urease enzymes in the gastric pathogen Helicobacter mustelae. Environ. Microbiol. 10: 25862597.
110. Storz, G., and, J. A. Imlay. 1999. Oxidative stress. Curr. Opin. Microbiol. 2: 188194.
111. Tiss, A.,, O. Barre,, I. Michaud-Soret, and, E. Forest. 2005. Characterization of the DNA-binding site in the ferric uptake regulator protein from Escherichia coli by UV crosslinking and mass spectrometry. FEBS Lett. 579: 54545460.
112. Todd, J. D.,, G. Sawers,, D. A. Rodionov, and, A. W. Johnston. 2006. The Rhizobium leguminosarum regulator IrrA affects the transcription of a wide range of genes in response to Fe availability. Mol. Genet. Genomics 275: 564577.
113. Traoré,, D. A.,, A. El Ghazouani,, S. Ilango,, J. Dupuy,, L. Jacquamet,, J. L. Ferrer,, C. Caux-Thang,, V. Duarte, and, J. M. Latour. 2006. Crystal structure of the apo-PerR-Zn protein from Bacillus subtilis. Mol. Microbiol. 61: 12111219.
114. van Oeffelen,, L., P. Cornelis,, W. Van Delm,, F. De Ridder,, B. De Moor, and, Y. Moreau. 2008. Detecting cis-regulatory binding sites for cooperatively binding proteins. Nucleic Acids Res. 36: e46.
115. van Vliet,, A. H.,, M. L. Baillon,, C. W. Penn, and, J. M. Ketley. 1999. Campylobacter jejuni contains two fur homologs: characterization of iron-responsive regulation of peroxide stress defense genes by the PerR repressor. J. Bacteriol. 181: 63716376.
116. van Vliet,, A. H.,, S. W. Poppelaars,, B. J. Davies,, J. Stoof,, S. Bereswill,, M. Kist,, C. W. Penn,, E. J. Kuipers, and, J. G. Kusters. 2002. NikR mediates nickel-responsive transcriptional induction of urease expression in Helicobacter pylori. Infect. Immun. 70: 28462852.
117. Varghese,, S., A. Wu,, S. Park,, K. R. Imlay, and, J. A. Imlay. 2007. Submicromolar hydrogen peroxide disrupts the ability of Fur protein to control free-iron levels in Escherichia coli. Mol. Microbiol. 64: 822830.
118. Vasil, M. L. 2007. How we learnt about iron acquisition in Pseudomonas aeruginosa: a series of very fortunate events. Biometals 20: 587601.
119. Wandersman, C., and, P. Delepelaire. 2004. Bacterial iron sources: from siderophores to hemophores. Annu. Rev. Microbiol. 58: 611647.
120. Wang, G., P. Alamuri, and, R. J. Maier. 2006. The diverse antioxidant systems of Helicobacter pylo ri. Mol. Microbiol. 61: 847860.
121. Weinberg, E. D. 1978. Iron and infection. Microbiol. Rev. 42: 4566.
122. White,, A., X. Ding,, J. C. vanderSpek,, J. R. Murphy, and, D. Ringe. 1998. Structure of the metal-ion-activated diphtheria toxin repressor/tox operator complex. Nature 394: 502506.
123. Wilderman,, P. J.,, N. A. Sowa,, D. J. FitzGerald,, P. C. FitzGerald,, S. Gottesman,, U. A. Ochsner, and, M. L. Vasil. 2004. Identification of tandem duplicate regulatory small RNAs in Pseudomonas aeruginosa involved in iron homeostasis. Proc. Natl. Acad. Sci. USA 101: 97929797.
124. Yang,, J.,, H. R. Panek, and, M. R. O’Brian. 2006a. Oxidative stress promotes degradation of the Irr protein to regulate haem biosynthesis in Bradyrhizobium japonicum. Mol. Microbiol. 60: 209218.
125. Yang,, J., I. Sangwan,, A. Lindemann,, F. Hauser,, H. Hennecke,, H. M. Fischer, and, M. R. O’Brian. 2006b. Bradyrhizobium japonicum senses iron through the status of haem to regulate iron homeostasis and metabolism. Mol. Microbiol. 60: 427437.
126. Yang, J., I. Sangwan, and, M. R. O’Brian. 2006c. The Bradyrhizobium japonicum Fur protein is an iron-responsive regulator in vivo. Mol. Genet. Genomics 276: 555564.
127. Zheng,, M., X. Wang,, L. J. Templeton,, D. R. Smulski,, R. A. LaRossa, and, G. Storz. 2001. DNA microarray-mediated transcriptional profiling of the Escherichia coli response to hydrogen peroxide. J. Bacteriol. 183: 45624570.


Generic image for table
Table 1.

Representative prokaryotic metal sensors

Citation: Cha S, Shin J, Roe J. 2011. Sensing Metals: the Versatility of Fur, p 191-204. In Storz G, Hengge R (ed), Bacterial Stress Responses, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816841.ch12

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error