Chapter 22 : Persister Bacteria

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

Persister Bacteria, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555816841/9781555816216_Chap22-1.gif /docserver/preview/fulltext/10.1128/9781555816841/9781555816216_Chap22-2.gif


This chapter focuses on persistence in because recent genetic analysis and novel tools for studying persistence in single cells have resulted in new data, but persistence is a ubiquitous phenomenon observed in many different bacterial species. Persistence may be a bet-hedging strategy for survival in fluctuating stressful environments. Still, the identification and characterization of underlying mechanisms responsible for persistence await future studies. The importance of persister bacteria in the recalcitrance of biofilms to antibiotic treatments and the recent observation of genes that enhance type I persistence in biofilms have suggested that biofilm formation may be one of those triggers. Wild-type () seems to generate both types of persister bacteria. The results showed that persisters of differ from both stationary phase cells and exponentially growing cells, that they downregulate chemotaxis genes, and that they overexpress several toxin-antitoxin genes. The chapter provides a mathematical model which gives a framework for the analysis and prediction of the dynamics of persister formation, with and without antibiotics. In the mutants, it has been found that stochastic fluctuations in the number of active HipA proteins underlie the high persistence phenomenon. Bacterial persistence has emerged as a fascinating example of how microorganisms may exploit the inherent noise in the concentrations of molecules in cells and amplify it to face stressful conditions.

Citation: Balaban N. 2011. Persister Bacteria, p 375-382. In Storz G, Hengge R (ed), Bacterial Stress Responses, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816841.ch22
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of Figure 1.
Figure 1.

Persistence in batch cultures is characterized by a biphasic killing curve. Schematic representation of killing curves for different persistence fractions: wild-type persistence (solid line); high persistence (dotted line) with 1,000-fold increased persistence when compared to wild type; and no persistence (dashed lines). Note that the initial killing rate is the same in all curves.

Citation: Balaban N. 2011. Persister Bacteria, p 375-382. In Storz G, Hengge R (ed), Bacterial Stress Responses, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816841.ch22
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2.
Figure 2.

Persistence at the single cell level. Schematic view of a time lapse experiment of persister bacteria in microfludic devices. Single bacteria (black) are grown in normal growth conditions and divide in the microgrooves (a, b). Exposure to antibiotics kills growing bacteria (c). Stochastic switching of persisters to normal bacteria during the antibiotic treatment might result in killing (d). Only persister bacteria that switch to normal growth after the antibiotics are removed can divide and grow (e).

Citation: Balaban N. 2011. Persister Bacteria, p 375-382. In Storz G, Hengge R (ed), Bacterial Stress Responses, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816841.ch22
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Acar, M.,, J.T. Mettetal, and, A. van Oudenaarden. 2008. Stochastic switching as a survival strategy in fluctuating environments. Nat. Genet. 40: 471475.
2. Avery, S. V. 2006. Microbial cell individuality and the underlying sources of heterogeneity. Nat. Rev. Microbiol. 4: 577587.
3. Balaban, N. Q.,, J. Merrin,, R. Chait,, L. Kowalik,, and S. Leibler. 2004. Bacterial persistence as a phenotypic switch. Science 305: 16221625.
4. Barkai, N., and, B.Z. Shilo. 2007. Variability and robustness in biomolecular systems. Mol. Cell 28: 755760.
5. Bigger, W. B. 1944. Treatment of staphylococcal infections with penicillin. Lancet ii: 497500.
6. Black, D. S.,, A.J. Kelly,, M.J. Mardis, and, H.S. Moyed. 1991. Structure and organization of hip, an operon that affects lethality due to inhibition of peptidoglycan or DNA-synthesis. J. Bacteriol. 173: 57325739.
7. Booth, I. R. 2002. Stress and the single cell: intrapopulation diversity is a mechanism to ensure survival upon exposure to stress. Int. J. Food Microbiol. 78: 1930.
8. Correia, F. F.,, A. D’Onofrio,, T. Rejtar,, L. Li,, B. L. Karger,, K. Makarova,, E. V. Koonin,, and K. Lewis. 2006. Kinase activity of overexpressed HipA is required for growth arrest and multidrug tolerance in Escherichia coli. J. Bacteriol. 188: 83608367.
9. Debbia, E. A.,, S. Roveta,, A. M. Schito,, L. Gualco,, and A. Marchese. 2001. Antibiotic persistence: the role of spontaneous DNA repair response. Microb. Drug Resist. 7: 335342.
10. De Groote, V. N.,, N. Verstraeten,, M. Fauvart,, C.I. Kint,, A. M. Verbeeck,, S. Beullens,, P. Cornelis,, and J. Michiels. 2009. Novel persistence genes in Pseudomonas aeruginosa identified by high-throughput screening. FEMS Microbiol. Lett. 297: 7379.
11. Dorr, T.,, M. Vulic,, and K. Lewis. 2010. Ciprofloxacin causes persister formation by inducing the TisB toxin in Escherichia coli. PLoS Biol. 8: e1000317.
12. Elowitz, M. B.,, A.J. Levine,, E.D. Siggia, and, P.S. Swain. 2002. Stochastic gene expression in a single cell. Science 297: 11831186.
13. Evdokimov, A., I. Voznesensky,, K. Fennell,, M. Anderson,, J.F. Smith, and, D.A. Fisher. 2009. New kinase regulation mechanism found in HipBA: a bacterial persistence switch. Acta Crystallogr. Sect. D Biol. Crystallogr. 65: 875879.
14. Falla, T. J., and, I. Chopra. 1998. Joint tolerance to beta-lactam and fluoroquinolone antibiotics in Escherichia coli results from overexpression of hipA. Antimicrob. Agents Chemother. 42: 32823284.
15. Fraser, D., and, M. Kaern. 2009. A chance at survival: gene expression noise and phenotypic diversification strategies. Mol. Microbiol. 71: 13331340.
16. Gardner, A.,, S. A. West, and, A.S. Griffin. 2007. Is bacterial persistence a social trait? PLoS ONE 2: e752.
17. Gefen, O., and, N.Q. Balaban. 2009. The importance of being persistent: heterogeneity of bacterial populations under antibiotic stress. FEMS Microbiol. Rev. 33: 704717.
18. Gefen, O.,, C. Gabay,, M. Mumcuoglu,, G. Engel, and, N.Q. Balaban. 2008. Single-cell protein induction dynamics reveals a period of vulnerability to antibiotics in persister bacteria. Proc. Natl. Acad. Sci. USA 105: 61456149.
19. Ghosh, S., and, P. Setlow. 2009. Isolation and characterization of superdormant spores of Bacillus species. J. Bacteriol. 191: 17871797.
20. Gould, G. W. 1970. Symposium on bacterial spores: IV. Germination and the problem of dormancy. J. Appl. Bacteriol. 33: 3449.
21. Hansen, S., K. Lewis, and, M. Vulic. 2008. Role of global regulators and nucleotide metabolism in antibiotic tolerance in Escherichia coli. Antimicrob. Agents Chemother. 52: 27182726.
22. Harrison, J. J., H. Ceri, and, R.J. Turner. 2007. Multimetal resistance and tolerance in microbial biofilms. Nat. Rev. Microbiol. 5: 928938.
23. Harrison, J. J.,, W.D. Wade,, S. Akierman, C., Vacchi-Suzzi, C. A., Stremick, R., J. Turner,, and H. Ceri. 2009. The chromosomal toxin gene yafQ is a determinant of multidrug tolerance for Escherichia coli growing in a biofilm. Antimicrob. Agents Chemother. 53: 22532258.
24. Keren, I.,, N. Kaldalu,, A. Spoering, Y. Wang, and, K. Lewis. 2004. Persister cells and tolerance to antimicrobials. FEMS Microbiol. Lett. 230: 1318.
25. Kim, Y.,, and T. K. Wood. 2010. Toxins Hha and CspD and small RNA regulator Hfq are involved in persister cell formation through MqsR in Escherichia coli. Biochem. Biophys. Res. Commun. 391: 209213.
26. Klapper, I., P. Gilbert,, B.P. Ayati,, J. Dockery, and, P.S. Stewart. 2007. Senescence can explain microbial persistence. Microbiology 153: 36233630.
27. Korch, S. B., T. A. Henderson, and, T.M. Hill. 2003. Characterization of the hipA7 allele of Escherichia coli and evidence that high persistence is governed by (p)ppGpp synthesis. Mol. Microbiol. 50: 11991213.
28. Korch, S. B., and, T.M. Hill. 2006. Ectopic overexpression of wildtype and mutant hipA genes in Escherichia coli: Effects on macromolecular synthesis and persister formation. J. Bacteriol. 188: 38263836.
29. Kussell, E.,, R. Kishony,, N.Q. Balaban, and, S. Leibler. 2005. Bacterial persistence: a model of survival in changing environments. Genetics 169: 18071814.
30. Kussell, E.,, and S. Leibler. 2005. Phenotypic diversity, population growth, and information in fluctuating environments. Science 309: 20752078.
31. Lachmann, M., and, E. Jablonka. 1996. The inheritance of phenotypes: an adaptation to fluctuating environments. J. Theor. Biol. 181: 19.
32. Lamarche, M. G.,, B.L. Wanner,, S. Crepin,, and J. Harel. 2008. The phosphate regulon and bacterial virulence: a regulatory network connecting phosphate homeostasis and pathogenesis. FEMS Microbiol. Rev. 32: 461473.
33. Levin, B. R., and, D.E. Rozen. 2006. Non-inherited antibiotic resistance. Nat. Rev. Microbiol. 4: 556562.
34. Levin-Reisman, I.,, O. Gefen,, O. Fridman,, I. Ronin,, D. Shwa,, H. Sheftel,, and N. Q. Balaban. 2010. Automated imaging with ScanLag reveals previously undetectable bacterial growth phenotypes. Nat. Methods. doi:101038/nmeth.1485
35. Lewis, K. 2005. Persister cells and the riddle of biofilm survival. Biochemistry 70: 267274.
36. Lewis, K. 2007. Persister cells, dormancy and infectious disease. Nat. Rev. Microbiol. 5: 4856.
37. Li, Y., and, Y. Zhang. 2007. PhoU is a persistence switch involved in persister formation and tolerance to multiple antibiotics and stresses in Escherichia coli. Antimicrob. Agents Chemother. 51: 20922099.
38. Lou, C., Z. Li, and, Q. Ouyang. 2008. A molecular model for persister in E. coli. J. Theor. Biol. 255: 205209.
39. Maamar, H., A. Raj, and, D. Dubnau. 2007. Noise in gene expression determines cell fate in Bacillus subtilis. Science 317: 526529.
40. McAdams, H. H., and, A. Arkin. 1999. It’s a noisy business! Genetic regulation at the nanomolar scale. Trends Genet. 15: 6569.
41. Moyed, H. S., and, K.P. Bertrand. 1983. hipA, a newly recognized gene of Escherichia coli K-12 that affects frequency of persistence after inhibition of murein synthesis. J. Bacteriol. 155: 768775.
42. Moyed, H. S., and, S.H. Broderick. 1986. Molecular-cloning and expression of hipA, a gene of Escherichia coli K-12 that affects frequency of persistence after inhibition of murein synthesis. J. Bacteriol. 166: 399403.
43. Pearl, S.,, C. Gabay,, R. Kishony,, A. Oppenheim, and, N.Q. Balaban. 2008. Nongenetic individuality in the host-phage interaction. PLoS Biol. 6: e120.
44. Roberts, M. E., and, P.S. Stewart. 2005. Modelling protection from antimicrobial agents in biofilms through the formation of persister cells. Microbiology 151: 7580.
45. Rotem, E.,, A. Loinger,, I. Ronin,, I. Levin-Reisman,, C. Gabay,, N. Shoresh,, O. Biham, and, N.Q. Balaban. 2010. Regulation of phenotypic variability by a threshold-based mechanism underlies bacterial persistence. Proc. Natl. Acad. Sci USA 107: 1254112546.
46. Scherrer, R., and, H.S. Moyed. 1988. Conditional impairment of celldivision and altered lethality in hipA mutants of Escherichia coli K-12. J. Bacteriol. 170: 33213326.
47. Schumacher, M. A.,, K.M. Piro,, W. Xu,, S. Hansen,, K. Lewis, and, R.G. Brennan. 2009. Molecular mechanisms of hipA-mediated multidrug tolerance and its neutralization by HipB. Science 323: 396401.
48. Shah, D.,, Z.G. Zhang,, A. Khodursky,, N. Kaldalu,, K. Kurg,, and K. Lewis. 2006. Persisters: a distinct physiological state of E. coli. BMC Microbiol. 6: 53.
49. Spoering, A. L.,, M. Vulic, and, K. Lewis. 2006. GlpD and PlsB participate in persister cell formation in Escherichia coli. J. Bacteriol. 188: 51365144.
50. Suel, G. M.,, R.P. Kulkarni,, J. Dworkin, J. Garcia-Ojalvo, and, M.B. Elowitz. 2007. Tunability and noise dependence in differentiation dynamics. Science 315: 17161719.
51. Tsilibaris, V.,, G. Maenhaut-Michel,, N. Mine, and, L. Van Melderen. 2007. What is the benefit to Escherichia coli of having multiple toxin-antitoxin systems in its genome? J. Bacteriol. 189: 61016108.
52. Vazquez-Laslop, N., H. Lee, and, A.A. Neyfakh. 2006. Increased persistence in Escherichia coli caused by controlled expression of toxins or other unrelated proteins. J. Bacteriol. 188: 34943497.
53. Woese, C. R., J. C. Vary, and, H.O. Halvorson. 1968. A kinetic model for bacterial spore germination. Proc. Natl. Acad. Sci. USA 59: 869875.
54. Wolfson, J. S.,, D.C. Hooper,, D.J. Shih, G. L. McHugh, and, M.N. Swartz. 1989. Isolation and characterization of an Escherichia coli strain exhibiting partial tolerance to quinolones. Antimicrob. Agents Chemother. 33: 705709.
55. Wolfson, J. S.,, D.C. Hooper,, G.L. McHugh,, M. A. Bozza, and, M.N. Swartz. 1990. Mutants of Escherichia coli K-12 exhibiting reduced killing by both quinolone and beta-lactam antimicrobial agents. Antimicrob. Agents Chemother. 34: 19381943.


Generic image for table
Table 1.

Genes related to persistence

Citation: Balaban N. 2011. Persister Bacteria, p 375-382. In Storz G, Hengge R (ed), Bacterial Stress Responses, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816841.ch22
Generic image for table
Table 2.

Equations for the dynamics of normal cells () and persister cells ()

Citation: Balaban N. 2011. Persister Bacteria, p 375-382. In Storz G, Hengge R (ed), Bacterial Stress Responses, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816841.ch22

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error