Chapter 26 : Life at the Extremes of Temperature

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

Life at the Extremes of Temperature, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555816841/9781555816216_Chap26-1.gif /docserver/preview/fulltext/10.1128/9781555816841/9781555816216_Chap26-2.gif


Bacteria are classified into three main categories as a function of the temperature of their usual environment: the thermophiles, living at temperatures exceeding 50⁰C; the mesophiles, that thrive at temperatures around room temperature; and the psychrophiles (from the Greek psychros, meaning cold), able to live at temperatures around 0⁰C or below. In this chapter the term psychrophiles is used to designate microorganisms living in permanently cold environments. The main challenge of thermophiles is to secure an appropriate stability of their cellular components; this mainly concerns the cell membrane and its selectivity, the nucleic acids, and the proteins. In the case of psychrophiles, although the stability problem cannot be completely excluded because of the possibility of cold denaturation, their main problem is to achieve appropriate reaction rates despite the low temperature of the environment. The selective membrane permeability to protons is essential for the production of cellular ATP from the proton motive force and membrane ATP synthases. Low temperatures probably induce the reinforcement of secondary, tertiary, and quaternary structures of nucleic acids through a strengthening of hydrogen bonds and this increase in stability can alter some crucial function such as transcription and translation. Up to now, no specific characteristics have been described apart, maybe, from some specific posttranscriptional modifications of RNAs such as incorporation in tRNAs of higher proportions of dihydrouridine thought to improve the conformational plasticity of these nucleic acids at low temperatures.

Citation: Gerday C. 2011. Life at the Extremes of Temperature, p 425-444. In Storz G, Hengge R (ed), Bacterial Stress Responses, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816841.ch26
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of Figure 1.
Figure 1.

Small-subunit rRNA-based phylogenetic tree of the hyperthermophiles (in bold) and their relation with the other members of the three domains of life. (Reproduced, with permission, from Stetter, .)

Citation: Gerday C. 2011. Life at the Extremes of Temperature, p 425-444. In Storz G, Hengge R (ed), Bacterial Stress Responses, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816841.ch26
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2.
Figure 2.

Schematic structure of lipids from bacteria (A) and tetraether lipids from archaea (B) showing the methyl branched phytanyl chains forming a C monolayer.

Citation: Gerday C. 2011. Life at the Extremes of Temperature, p 425-444. In Storz G, Hengge R (ed), Bacterial Stress Responses, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816841.ch26
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3.
Figure 3.

Thermodynamic stability curves of a-amylases from psychrophilic, mesophilic, and thermophilic counterparts. (Reproduced, with permission, from D’Amico et al., .)

Citation: Gerday C. 2011. Life at the Extremes of Temperature, p 425-444. In Storz G, Hengge R (ed), Bacterial Stress Responses, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816841.ch26
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4.
Figure 4.

Specific activities of α-amylases from the psychrophile (in bold) and of the thermophilic counterpart from (Reproduced, with permission, from Feller et al., .)

Citation: Gerday C. 2011. Life at the Extremes of Temperature, p 425-444. In Storz G, Hengge R (ed), Bacterial Stress Responses, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816841.ch26
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Abyzov, S. S.,, I.N. Mitskevitch,, M.N. Poglazova,, N. I. Barkov,, V.Y. Lypenkov,, N.E. Robin,, B.B. Koudryashov,, V. M. Pashkevich, and, M.I. Ivanov. 2001. Microflora in the basal strata at Antarctic ice core above the Vostok lake. Adv. Space Res. 28: 701706.
2. Abyzov, S. S.,, N.I. Barkov,, N.E. Bobin,, B. B. Koudryashov,, V. Y. Lipenkov,, I. N. Mitskevich,, V. M. Pashkevich, and, M.N. Poglazova. 1998. The ice sheet of central Antarctica as an object of study of past ecological events on the earth. Izv. Akad. Nauk. USSR Ser. Biol. 5: 610616.
3. Aguilar, P. S., and, D. De Mendoza. 2006. Control of fatty acid desaturation: a mechanism conserved from bacteria to humans. Mol. Microbiol. 62: 15071514.
4. Aguilar, P. S.,, A.M. Hernandez-Arriaga,, L.E. Cybulski,, A. C. Erazo,, and D. De Mendoza. 2001. Molecular basis of thermosensing: a two-component signal transduction thermometer in Bacillus subtilis. EMBO J. 20: 16811691.
5. Altermark, B.,, R. Helland,, E. Moe,, N. P. Willassen, and, A.O. Smalas. 2008. Structural adaptation of endonuclease I from the cold-adapted and halophilic bacterium Vibrio salmonicida. Acta Crystallogr. Sect. D 64: 368376.
6. Anderson, J. T. 2005. RNA turnover: unexpected consequences of being tailed. Curr. Biol. 15: R635R638.
7. Annous, B. A.,, L.A. Becker,, D.O. Bayles,, D. P. Labeda, and, B.J. Wilkinson. 1997. Critical role of anteiso-C15:0 fatty acid in the growth of Listeria monocytogenes at low temperatures. Appl. Environ. Microbiol. 63: 38873894.
8. Arakawa, T., and, S.N. Timasheff. 1985. The stabilization of proteins by osmolytes. Biophys. J. 47: 411414.
9. Bae, E., and, G.N. Phillips. 2004. Structure and analysis of highly homologous psychrophilic, mesophilic and thermophilic adenylate kinase. J. Biol. Chem. 279: 2820228208.
10. Bjelic, S. B.,, O. Bransdal, and, J. Aqvist. 2008. Cold adaptation of enzyme reaction rates. Biochemistry 47: 1004910057.
11. Blochl, E. R.,, S. Rachel,, D. Burggraf,, H. Hafenbradl, H. W. Jannasch, and, K.O. Stetter. 1997. Pyrolobus fumarii, gen. and sp. nov., represents a novel group of archaea, extending the upper temperature for life at 113°C. Extremophiles 1: 1421.
12. Bowman, J. P. 2008. Genomic analysis of psychrophilic prokaryotes, P. 265284. In R. Margesin,, F. Schinner,, J.-C. Marx,, and C. Gerday (ed.), Psychrophiles: From Biodiversity to Biotechnology. Springer-Verlag, Berlin, Germany.
13. Brock, T. D. 1967a. Microorganisms adapted to high temperatures. Nature 214: 882885.
14. Brock, T. D. 1967b. Life at high temperatures. Science 158: 10121019.
15. Brock, T. D., and, H. Freeze. 1969. Thermus aquaticus gen. N. and sp. n., a non-sporulating extreme thermophile. J. Bacteriol. 98: 289297.
16. Chessa, J-P.,, I. Petrescu,, M. Bentahir,, J. Van Beeumen, and, C. Gerday. 2000. Purification, physico-chemical characterization and sequence of the heat labile alkaline metalloprotease isolated from a psychrophilic Pseudomonas species. Biochim. Biophys. Acta 1479: 265274.
17. Christner, B. C., E. Mosley-Thompson, L. G. Thompson, and, J.N. Reeve. 2003. Bacterial recovery from ancient glacial ice. Environ. Microbiol. 5: 433436.
18. Christner, B. C.,, E. Mosley-Thompson, L. G. Thompson,, V. Zagorodnov, K. Sandman, and, J.N. Reeve. 2000. Recovery and identification of viable bacteria immured in glacial ice. Icarus 144: 479485.
19. Christner, B. C.,, M.L. Skidmore,, J.C. Priscu, M. Tranter, and, C.M. Foreman. 2007. Bacteria in subglacial environments, P. 5171. In R. Margesin,, F. Schinner,, J.-C. Marx and, C. Gerday (ed.), Psychrophiles: From Biodiversity to Biotechnolgy. Spinger-Verlag, Berlin, Germany.
20. Clantin, B.,, C. Tricot,, T. Lonhienne, V. Stalon, and, V. Villeret. 2001. Probing the role of oligomerization in the high thermal stability of Pyrococcus furiosus ornithine carbamoyltransferase by site-specific mutants. Eur. J. Biochem. 268: 39373942.
21. Collins, T.,, M. A. Meeuwis,, C. Gerday, and, G. Feller. 2003. Activity, stability and flexibility in glycosidases adapted to extreme thermal environments. J. Mol. Biol. 338: 419428.
22. Collins, T.,, F. Roulling,, F. Piette,, J-C Marx,, G. Feller,, C. Gerday,, and S. D’Amico. 2008. Fundamentals of cold-adaped enzymes, P. 211228. In R. Margesin,, F. Schinner,, J.-C. Marx and, C. Gerday (ed.), Psychrophiles: from Biodiversity to Biotechnology. Springer-Verlag, Berlin, Germany.
23. Collins, T.,, S. D’Amico,, J-C. Marx, G. Feller, and, C. Gerday. 2007. Cold-adapted enzymes, P. 165179. In C. Gerday, and N. Glansdorff (ed.), Physiology and Biochemistry of Extremophiles. ASM Press, Washington, D.C.
24. Coquelle, N.,, E. Fioravanti,, M. Weik, F. Vellieux, and, D. Madern. 2007. Activity, stability and structural studies of lactate dehydrogenases adapted to extreme thermal environments. J. Mol. Biol. 374: 547562.
25. Corliss, J. B.,, J. Dymond,, L. I. Gordon,, J.M. Edmond,, R. P. von Herzen,, R.D. Ballard,, K. Green,, D. Williams,, A. Bainbridge,, K. Crane, and, T.K. Van Andel. 1979. Submarine thermal springs on the Galapagos rift. Science 203: 10731083.
26. Cybulski, L. E.,, D. Albanesi,, M.C. Mansilla,, S. Altabe,, P. S. Aguilar,, and D. De Mendoza. 2002. Mechanism of membrane fluidity optimization: isothermal control of the Bacillus subtilis acyllipid desaturase. Mol. Microbiol. 45: 13791388.
27. D’Amico, S., C. Gerday, and, G. Feller. 2001. Structural determinants of cold adaptation and stability in a large protein. J. Biol. Chem. 276: 2579125796.
28. D’Amico, S.,, J.-C. Marx,, C. Gerday, and, G. Feller. 2003. Activitystability relationship in extremophilic enzymes. J. Biol. Chem. 278: 78917896.
29. de Garidel-Thoron, T.,, L. Beaufort,, F. Bassinot, and, P. Henry. 2004. Evidence for large methane releases to the atmosphere from deep-sea hydrate dissociation during the last glacial episode. Proc. Natl. Acad. Sci. USA 101: 91879192.
30. Demchenko, A. P., O. I. Ruskyn, and, E.A. Saburova. 1989. Kinetics of the lactate dehydrogenase reaction in high-viscosity media. Biochim. Biophys. Acta 998: 196203.
31. Deming, J. W. 2007. Life in ice formation at very cold temperatures, P. 133144. In C. Gerday and, N. Glansdorff (ed.), Physiology and Biochemistry of Extremophiles. ASM Press, Washington, D.C.
32. Di Prisco, G. 2007. Lake Vostok and sub-glacial lakes of Antarctica: do they host life?, P. 145154. In C. Gerday, and N. Glansdorff (ed.), Physiology and Biochemistry of Extremophiles. ASM Press, Washington, D.C.
33. Driessen, A. J., and, S-V. Albers. 2007. Membrane adaptations of (hyper) thermophiles to high temperatures, p. 104116. In C. Gerday and, N. Glansdorff (ed.), Physiology and Biochemistry of Extremophiles. ASM Press, Washington, D.C.
34. Eicken, H. 2003. From the microscopic to the macroscopic, to the regional scale: Growth, microstructure and properties of sea ice, P. 2281. In D. N. Thomas, and G. S. Dieckman (ed.), Sea Ice: An Introduction to its Physics, Chemistry, Biology and Geology. Blackwell Science, Oxford, UK.
35. Engel, J., and, R.A. Kammerer. 2000. What are oligomerization domains good for? Matrix Biol. 19: 283288.
36. Eriksson, S., R. Hurme, and, M. Rhen. 2002. Low temperature sensors in bacteria. Philos. Trans. R. Soc. Lond. B 357: 887893.
37. Feller, G. 2007. Life at low temperature: is disorder the driving force? Extremophiles 11: 211216.
38. Feller, G. 2008. Enzyme function at low temperatures in psychrophiles, P. 3569. In K. S. Siddiqui, and T. Thomas (ed.), Protein Adaptation in Extremophiles. Nova Science Publishers, New York, NY.
39. Feller, G., and, C. Gerday. 2003. Psychrophilic enzymes: hot topics in cold adaptation. Nat. Rev. Microbiol. 1: 200208.
40. Feller, G.,, T. Lonhienne,, C. Deroanne,, C. Libioulle,, J. Van Beeumen,, and C. Gerday. 1992. Purification, characterization and nucleotide sequence of the thermolabile α-amylase from the Antarctic psychrotroph Alteromonas haloplanctis A 23. J. Biol. Chem. 267: 52175221.
41. Forterre, P.,, C. Bouthier De La Tour,, H. Philippe, and, M. Duguet. 2000. Reverse gyrase from hyperthermophiles: probable transfer of a thermoadaptation trait from archaea to bacteria. Trends Genet. 16: 152154.
42. Frederico, L. A., T. A. Kunkel, and, B.R. Shaw. 1990. A sensitive genetic assay for the detection of cytosine deamination: determination of rate constants and the activation energy. Biochemistry 29: 25322537.
43. Garcia-Viloca, M.,, J. Gao,, M. Karplus, and, D.G. Truhlar. 2004. How enzymes work: analysis by modern rate theory and computer simulations. Science 303: 186195.
44. Gentile, G.,, V. Bonasera,, C. Amico,, L. Giuliano, and, M.M. Yakimov. 2003. Shewanella sp. GA-22, a psychrophilic hydrocabonoclastic Antarctic bacterium producing polyunsaturated fatty acids. J. Appl. Microbiol. 95: 11241133.
45. Georlette, D.,, B. Damien,, V. Blaise,, E. Depierreux,, V.N. Uversky,, C. Gerday,, and G. Feller. 2003. Structural and functional adaptations to extreme temperatures in psychrophilic, mesophilic and thermophilic DNA ligases. J. Biol. Chem. 278: 3701537023.
46. Giaquinto, L.,, P.M. Curmi,, K.S. Siddiqui,, A. Poljak,, E. DeLong,, S. DasSarma,, and R. Cavicchioli. 2007. Structure and function of cold-shock proteins in Archaea. J. Bacteriol. 189: 57385748.
47. Gilichinski, D.,, T. Vishnivetskaya,, M. Petrova,, E. Spirina,, V. Mamykin,, and E. Rivkina. 2007. Bacteria in permafrost, P. 83102. In R. Margesin,, F. Schinner,, J.-C. Marx,, and C. Gerday (ed.), Psychrophiles: From Biodiversity to Biotechnology. Springer-Verlag, Berlin, Germany.
48. Goldstein, R. A. 2007. Amino-acid interactions in psychrophiles, mesophiles, thermophiles and hyperthermophiles: insights from the quasi-chemical approximation. Protein Sci. 16: 18871895.
49. Grabarse, W.,, M. Vaupel,, J.A. Vorholt,, S. Shima,, R. K. Thauer,, A. Wittershagen,, G. Bourenkov,, H. D. Bartunik,, and U. Ermler. 1999. The crystal structure of methenyltetrahydromethanopterin cyclohydrolase from the hyperthermophile archaeon Methanopyrus kandleri. Struct. Fold. Des. 7: 12571268.
50. Grogan, D. W. 1996. Exchange of genetic markers at extremely high temperatures in the archaeon Sulfolobus acidicaldarius. J. Bacteriol. 178: 32073211.
51. Grogan, D. W. 2004. Stability and repair of DNA in hyperthermophilic archaea. Curr. Issues Mol. Biol. 6: 137144.
52. Grogan, D. W., G. T. Carver, and, J.W. Drake. 2001. Genetic fidelity under harsh conditions: analysis of spontaneous mutation in the thermoacidophilic archaeon Sulfolobus acidocaldarius. Proc. Natl. Acad. Sci. USA 98: 79287933.
53. Grosjean, H., and, T. Oshima. 2007. How nucleic acids cope with high temperature, P. 3956. In C. Gerday and, N. Glansdorff (ed.), Physiology and Biochemistry of Extremophiles. ASM Press, Washington, D.C.
54. Grossman, S. 1994. Bacterial activity in sea ice and open water of the Weddell Sea, Antarctica: a microautographic study. Microbiol. Ecol. 28: 118.
55. Gruber, T.,, C. Kohrer,, B. Lung, D. Shcherbakov, and, W. Piendl. 2003. Affinity of ribosomal proteins S8 from mesophilic and (hyper)thermophilic archaea and bacteria for 16S rRNA correlates with the growth temperature of the organisms. FEBS Lett. 549: 123128.
56. Haines, T. H. 2001. Do sterols reduce proton and sodium leaks through lipid bilayers? Prog. Lipids Res. 40: 299324.
57. Härtig, C., N. Loffhagen, and, H. Harms. 2005. Formation of trans fatty acids is not involved in growth-linked membrane adaptation of Pseudomonas putida. Appl. Environ. Microbiol. 71: 19151922.
58. Harvey, L. D., and, Z. Huang. 1995. Evaluation of the potential impact of methane clathrate destabilization on future global warming. J. Geophys. Res. 100: 29052926.
59. Helmke, E., and, H. Weyland. 1995. Bacteria in sea ice and underlying water on the eastern Weddell Sea in midwinter. Mar. Ecol. Prog. Ser. 117: 269287.
60. Hennigan, A. N., and, J.N. Reeve. 1994. mRNAs in the methanogenic archaeon Methanococcus vannielii: numbers, half-lives and processing. Mol. Microbiol. 11: 655670.
61. Hensel, R., and, H. Konig. 1988. Thermoadaptation of methanogenic bacteria by intracellular ion concentration. FEMS Microbiol. Lett. 49: 7579.
62. Hou, S.,, J.H. Saw,, K.S. Lee,, T.A. Freitas,, C. Belisle,, Y. Kawarabayasi,, S. P. Donachie,, A. Pikina,, M. Y. Galperin,, E. V. Koonin,, K. S. Makarova,, M. V. Omelchenko,, A. Sorokin,, Y. I. Wolf,, Q. X. Li,, Y. S. Keum,, S. Campbell,, J. Denery,, S. Aizawa,, S. Shibata,, A. Malahoff,, and M. Alam. 2004. Genome sequence of the deep-sea gamma-proteobacterium Idiomarina loihiensis reveals amino acid fermentation as a source of carbon and energy. Proc. Natl. Acad. Sci USA, 101: 1803618041.
63. Jagannadham, M. V.,, M.K. Chattopadhyav,, C. Subbalahshmi,, M. Vairamani,, K. Narayanan,, Ch. Mohan Rao,, and S. Shivagi. 2000. Carotenoids of an Antarctic psychrotolerant bacterium Shingobacterium antarcticus and a mesophilic Sphingobacterium multivorum. Arch. Microbiol. 173: 418424.
64. Johnson, M.R.,, S.B. Connors,, C.I. Montero,, C.J. Chou, K. R. Shockley, and, R.M. Kelly. 2006. The Thermotoga maritima phenotype is impacted by syntrophic interaction with Methanococcus jannaschii in hyperthermophilic co-culture. Appl. Environ. Microbiol. 72: 1118.
65. Junge, K., H. Eicken, and, J.W. Deming. 2004. Bacterial activity at -2 to -20°C in Arctic wintertime sea ice. Appl. Environ. Microbiol. 70: 550557.
66. Junge, K., H. Eicken, and, J.W. Deming. 2006. Bacterial incorporation of leucine into protein down to -20°C with evidence of potential activity in sub-eutectic saline ice formation. Cryobiology 52: 417429.
67. Kampmann, M., and, D. Stock. 2004. Reverse gyrase has heat- protective DNA chaperone activity independent of supercoiling. Nucleic Acids Res. 32: 35373545.
68. Kapista, A. P.,, J.K. Ridley,, G.Q. Robin, M. J. Siegert, and, I.A. Zotikov. 1996. A large deep freshwater lake beneath the ice of central Antarctica. Nature 381: 684686.
69. Karran, P., and, T. Lindahl. 1980. Hypoxanthine in deoxyribonucleic acid: generation by heat-induced hydrolysis of adenine residues and release in free form by a deoxyribonucleic acid glycosylase from calf thymus. Biochemistry 19: 60056011.
70. Kashefi, K.,, and D.R. Lovley. 2003. Extending the upper temperature limit for life. Science 301: 934.
71. Kikuchi, A., and, K. Asai. 1984. Reverse gyrase, a topoisomerase, which introduces positive superhelical turns into DNA. Nature 309: 677681.
72. Kiran, M. D.,, S. Annapoorni,, I. Suzuki,, N. Murata,, and S. Shivagi. 2005. Cis-trans isomerase gene in psychrophilic Pseudomonas syringae is constitutively expressed during growth and under conditions of temperature and solvent stress. Extremophiles 9: 117125.
73. Klein, W.,, M. H. Weber, and, M.A. Marahiel. 1999. Cold shock response of Bacillus subtilis: isoleucine dependent switch in the fatty acid branching pattern for membrane adaptation to low temperature. J. Bacteriol. 181: 53415349.
74. Kobori, H.,, C. W. Sullivan,, and H. Shizuya. 1984. Heat-labile alkaline phosphatase from Antarctic bacteria: rapid 5” end labeling of nucleic acids. Proc. Natl. Acad. Sci. USA 81: 66916695.
75. Koga, Y. M., and, H. Morii. 2005. Recent advances in structural research on ether lipids from archaea including comparative and physiological aspects. Biosci. Biotechnol. Biochem. 69: 20192034.
76. Krembs, C.,, J.W. Deming,, K. Junge, and, H. Eicken. 2002. High concentrations of exopolymeric substances in wintertime sea ice: implications for the polar carbon cycle and cryoprotection of diatoms. Deep-sea Res. 49: 21632181.
77. Kumar, S., and, R. Nussinov. 1999. Salt bridge stability in monomeric proteins. J. Mol. Biol. 293: 12411255.
78. Kumar, S., and, R. Nussinov. 2001. How do thermophilic proteins deal with heat? Cell. Mol. Life Sci. 58: 12161233.
79. Kumar, S., T. Chung-Jung, and, R. Nussinov. 2002. Maximal stabilities of reversible two-state proteins. Biochemistry 41: 53595374.
80. Lee, J. C.,, J.J. Cannone, and, R. Gutell. 2003. The lone pair triloop: a new motif in RNA structure. J. Mol. Biol. 48: 631637.
81. Leiros, H. S.,, A.L. Pey,, M. Innselset,, E. Moe,, I. Leiros,, I. H. Steen,, and A. Martinez. 2007. Structure of phenylalanine hydroxylase from Colwellia psychrerythraea 34H, a monomeric cold activeenzyme with local flexibility around the active site and high overall stability. J. Biol. Chem. 282: 2197321986.
82. Lonhienne, T., C. Gerday, and, G. Feller. 2000. Psychrophilic enzymes: revisiting the thermodynamic parameters of activation may explain local flexibility. Biochim. Biophys. Acta 1543: 110.
83. Lonsdale, P. 1977. Clustering of suspension-feeding macrobenthos near abyssal hydrothermal vents at oceanic spreading centers. Deep-sea Res. 24: 857863.
84. Los, D. A. 2004. The effect of low temperature-induced DNA supercoiling on the expression of the desaturase gene in Synechocystis. Cell Mol. Biol. 50: 605612.
85. Luke, K. A.,, C.L. Higgins, and, P. Wittung-Stafhede. 2007. Thermodynamic stability and folding of proteins from hyperthermophilicorganisms. FEBS J. 274: 40234033.
86. Mader, H. M.,, M.E. Pettitt,, J.L. Wadham,, E. W. Wolff, and, R.J. Parkes. 2006. Subsurface ice as a microbial habitat. Geology 34: 169172.
87. Mancuso-Nichols, C. A., J. Guezennec, and, J.P. Bowman. 2005. Bacterial exopolysaccharides from extreme marine environments with special consideration of the southern ocean, sea ice and deep-sea hydrothermal vents: a review. Mar. Biol. 7: 253271.
88. Margesin, R. 2009. Effect of temperature on growth parameters of psychrophilic bacteria and yeasts. Extremophiles 13: 257262.
89. Mark, C., and, H. Grosjean. 2002. tRNomics: analysis of tRNA genes from 50 genomes of Eukarya, Archaea, and Bacteria reveals anticodon-sparing strategies and domain-specific features. RNA 8: 11891232.
90. Marx, J-C.,, T. Collins,, S. D’Amico, G. Feller, and, C. Gerday. 2006. Cold-adapted enzymes from marine Antarctic microorganisms. Mar. Biotechnol. 9: 293304.
91. Medigue, C.,, E. Krin,, G. Pascal,, V. Barbe,, A. Bernsel,, P. N. Bertin,, F. Cheung,, S. Cruveiller,, S. D’Amico,, A. Duilio,, G. Fang,, G. Feller,, C. Ho,, S. Mangenot,, G. Marino,, J. Nilsson,, E. Parrilli,, E. P. Rocha,, Z. Rouy,, A. Sekowska,, M. Tutino,, D. Vallenet,, G. von Heijne,, and A. Danchin. 2005. Coping with cold: the genome of the versatile marine Antarctica bacterium Pseudoalteromonas haloplanktis TAC125. Genome Res. 15: 13251335.
92. Methé, B. A.,, K.E. Nelson,, J.W. Deming,, B. Momen,, E. Melamud,, X. Zhang,, J. Moult,, R. Madupu,, W.C. Nelson,, R.J. Dodson,, L.M. Brinkac,, S.C. Daugherty,, A.S. Durkin,, A.T. DeBoy,, J.F. Kolonay,, S.A. Sullivan,, L. Zhou,, T. M. Davidsen,, M. Wu,, A. L. Huston,, M. Lewis,, B. Weaver,, J.F. Weidman,, H. Khouri,, T. R. Utterback,, T. V. Feldblyum, and, C.M. Fraser. 2005. The psychrophilic lifestyle as revealed by the genome sequence of Colwellia psychrerythraea 34H through genomic and proteomic analyses. Proc. Natl. Acad. Sci. USA 102: 1091310918.
93. Michaux, C.,, J. Massant,, F. Kerff,, J-M. Frère,, J-D. Docquier,, I. Vandenderghe,, B. Samyn,, A. Pierrard,, G. Feller,, P. Charlier,, J. Van Beeumen,, and J. Wouters. 2008. Crystal structure of a cold-adapted class C β-lactamase. FEBS J. 275: 16871697.
94. Mitchell, P. 1972. Chemiosmotic coupling in energy transduction: a logical development of biochemical knowledge. J. Bioenerg. Biomembr. 3: 524.
95. Miteva, V. 2007. Bacteria in snow and glacier ice, P. 3150. In R. Margesin,, F. Schinner,, J.-C. Marx,, and C. Gerday (ed.), Psychrophiles From Biodiversity to Biotechnology. Springer-Verlag, Berlin, Germany.
96. Miteva, V., and, J.E. Brenchley. 2005. Detection and isolation of ultrasmall microorganisms from a 120,000 year old Greenland glacier ice core. Appl. Environ. Microbiol. 70: 202213.
97. Mulkidjanian, A. Y., P. Dibrov, and, M.Y. Galperin. 2008. The past and present of sodium energetics: may the sodium motive force be with you. Biochim. Biophys. Acta 1777: 985992.
98. Napoli, A.,, A. Valentini,, V. Salerno,, M. Nadal,, F. Garnier,, M. Rossi,, and M. Ciaramella. 2004. Reverse gyrase recruitment to DNA after U-V irradiation in Sulfolobus solfatariticus. J. Biol. Chem. 279: 3319233198.
99. Nicholson, H.,, W. J. Becktel, and, B.W. Matthews. 1988. Enhanced protein thermostability from designed mutations that interact with α-helix dipoles. Nature 336: 651656.
100. Noon, K. R.,, R. Guymon,, P. F. Crain,, J.A. McCloskey,, M. Thomm,, J. Mim,, and R. Cavicchioli. 2003. Influence of temperature on tRNA modification in archaea: Methoncoccoides burtonii (optimum growth temperature T opt, 23°C) and Stetteria hydrogenophila ( T opt, 95°C). J. Bacteriol. 185: 54835490.
101. Olufsen, M.,, A. O. Smalas,, E. Moe, and, B.O. Brandsdal. 2005. Increased flexibility as a strategy for cold adaptation. A comparative molecular dynamics study of cold- and warm-active uracil DNA glycosylase. J. Biol. Chem. 280: 1804218048.
102. Oswald, G. K., and, G.Q. Robin. 1973. Lakes beneath the Antarctic ice sheet. Nature 245: 251254.
103. Panikov, N. S., and, M.V. Sizova. 2007. Growth kinetics of microorganisms isolated from Alaskan soil and permafrost in solid media frozen down to -35°C. FEMS Microbiol. Ecol. 59: 500512.
104. Phadtare, S., A. Janivette, and, M. Inouye. 1999. Cold shock response and cold shock proteins. Curr. Opin. Microbiol. 2: 175180.
105. Price, P. B. 2007. Microbioal life in glacier ice and implications for a cold origin of life. FEMS Microbiol. Ecol. 59: 217231.
106. Price, P. B. 2009. Microbial genesis, life and death in glacial ice. Can. J. Microbiol. 55: 111.
107. Riley, M.,, J.T. Staley,, A. Danchin,, T. Zhang Wang,, T. S. Brettin,, L.J. Hauser,, M. L. Land, and, L.S. Thompson. 2008. Genomics of an extreme psychrophile, Psychromonas ingrahamii. BMC Genomics 9: 210228.
108. Rivkina, E. M.,, E.I. Friedmann,, C.P. McKay,, and D. Gilichinski. 2000. Metabolic activity of permafrost bacteria below the freezing point. Appl. Environ. Microbiol. 66: 32303233.
109. Robb, F. T.,, and D.T. Newby. 2007. Functional genomics in thermophilic microorganisms, P. 3038. In C. Gerday,, and N. Glansdorff (ed.), Physiology and Biochemistry of Extremophiles. ASM Press, Washington, D.C.
110. Rodriguez, A. C., and, D. Stock. 2002. Crystal structure of reverse gyrase: insight into the positive supercoiling of DNA. EMBO J. 21: 418426.
111. Rohde, R. A., and, P.B. Price. 2007. Diffusion-controlled metabolism for long-term survival of single isolated microorganisms trapped within ice crystals. Proc. Natl. Acad. Sci. USA 104: 1659216597.
112. Russell, N. J. 2007. Psychrophiles: membrane adaptations, P. 155164. In C. Gerday and, N. Glansdorff (ed.), Physiology and Biochemistry of Extremophiles. ASM Press, Washington, D.C.
113. Russell, R. J.,, U. Gerike, M. J. Danson,, D.W. Hough, and, G.L. Taylor. 1998. Structural adaptations of the cold-active citrate synthase from an Antarctic bacterium. Structure 6: 351361.
114. Sandman, K., and, J.N. Reeve. 2005. Archaeal proteins: different structures but common functions? Curr. Opin. Microbiol. 8: 656661.
115. Santos, H. P.,, P. Lamosa, and, N. Borges. 2006. Characterization of organic compatible solutes of thermophilic microorganisms, P. 171198. In A. Oren and, F. Rainey (ed.), Methods In Microbiology: Extremophiles. Elsevier, Amsterdam, The Netherlands.
116. Santos, H. P.,, P. Lamosa,, T. Q. Faria,, N. Borges,, and C. Neves. 2007. The physiological role, biosynthesis and mode of action of compatible solutes from (hyper)thermophiles, P. 86103. In C. Gerday and, N. Glansdorff (ed.), Physiology and Biochemistry of Extremophiles. ASM Press, Washington, D.C.
117. Serebrov, V.,, R.J. Clark,, H.J. Gross, and, L. Kisselev. 2001. Mg 2+ -induced tRNA folding. Biochemistry 40: 66886698.
118. Sheridan, P. P., V. I. Miteva, and, J.B. Brenchley. 2003. Phylogenetic analysis of anaerobic psychrophilic enrichment cultures obtained from a Greenland ice core. Appl. Environ. Microbiol. 69: 21532160.
119. Shivagi, S.,, M.D. Kiran, and, S. Chintalapati. 2007. Perception and transduction of low temperature in bacteria, P. 194207. In C. Gerday and, N. Glansdorff (ed.), Physiology and Biochemistry of Extremophiles. ASM Press, Washington, D.C.
120. Siddiqui, K. S., and, R. Cavicchioli. 2006. Cold-adapted enzymes. Annu. Rev. Biochem. 75: 403433.
121. Siegert, M. J.,, J.C. Ellis-Evans,, M. Tranter,, C. Mayer,, J.R. Petit,, A. Salamantin, and, J.C. Priscu. 2001. Physical, chemical and biological processes in Lake Vostok and other Antarctic subglacial lakes. Nature 414: 603609.
122. Siegert, M. J.,, S. Carter,, I. Tabacco,, S. Popov, and, D.D. Blankenship. 2005. A revised inventory of Antarctic sub-glacial lakes. Antarct. Sci. 17: 453460.
123. Soina, V.,, A.L. Mulyukin,, E.V. Demkina,, E.A. Vorobyova, and, G.I. El-Registan. 2004. The structure of resting bacterial populations in soil and subsoil permafrost. Astrobiology 4: 345358.
124. Stetter, K. O. 2007. Hyperthermophilic microorganisms, P. 165202. In C. Gerday and, N. Glansdorff (ed.), Extremophiles (Life under extreme environmental conditions). Encyclopedia of Life Science Support Systems Publishers, Oxford, UK.
125. Steven, B., R. Léveillé, H. W. Pollard, and, L.G. Whyte. 2006. Microbial ecology and biodiversity in permafrost. Extremophiles 10: 259267.
126. Strop, P., and, S.L. Mayo. 2000. Contribution of surface salt bridges to protein stability. Biochemistry 39: 12511255.
127. Sun-Yong, K.,, H. Kwang-Yeon,, K. Sung-Hou, S. Ha-Chin,, H. Ye-Sun,, and C. Yunge. 1999. Structural basis for cold adaptation. Sequence, biochemical properties, and crystal structure of malate dehydrogenase from a psychrophile Aquaspirillium arcticum. J. Biol. Chem. 274: 1176111767.
128. Suzuki, I.,, D.A. Los,, Y. Kanesaki,, K. Mikami, and, N. Murata. 2000. The pathway for perception and transduction of lowtemperature signals in Synechocystis. EMBO J. 19: 13271334.
129. Tahirov, T. H.,, H. Oki,, T. Tsukihara,, K. Ogasahara,, K. Yutani,, K. Ogata,, Y. Izu,, S. Tsunawara, and, I. Kato. 1998. Crystal structure of methionine aminopeptidase from hyperthermophile, Pyrococcus furiosus. J. Mol. Biol. 284: 101124.
130. Tehei, M.,, B. Franzetti,, D. Maden,, M. Ginzburg,, B.Z. Ginzburg,, M-T. Giudici-Orticoni,, M. Bruschi,, and G. Zaccai. 2004. Adaptation to extreme environments: macromolecular dynamics in bacteria compared in vivo by neutron scattering. EMBO Rep. 5: 6670.
131. Terui, Y.,, M. Ohnuma,, K. Hiraga, E. Kawashima, and, T. Oshima. 2005. Stabilization of nucleic acids by unusual polyamines produced by an extreme thermophile, Thermus thermophilus. Biochem. J. 388: 42743.
132. Timasheff, S. N. 1992. Water as ligands: preferential binding and exclusion of denaturants in protein folding. Biochemistry 31: 98579864.
133. Tindbaek, N.,, A. Snedsen,, P. Oestergaard, and, H. Draborg. 2004. Engineering a substrate-specific cold-adapted subtilisin. Protein Eng. 17: 149156.
134. Van de Vossenberg, J. L.,, T. Ubbink-Kok, M. G. Elferink,, A.J. Driessen, and, W.N. Konings. 1995. Ion permeability of the cytoplasmic membrane limits the maximum growth temperature of bacteria and archaea. Mol. Microbiol. 18: 925932.
135. Vieille, C., and, G.J. Zeikus. 2001. Hyperthermophilc enzymes: source, uses and molecular mechanisms for thermostability. Microbiol. Mol. Biol. Rev. 65: 143.
136. Vijayanathan, V.,, T. Thomas,, A. Shirahata, and, T.J. Thomas. 2001. DNA condensation by polyamines: a laser light scattering study of structural effects. Biochemistry 40: 1364413651.
137. Violot, S.,, N. Aghajari,, M. Czjek,, G. Feller,, G.K. Sonan,, P. Gouet,, C. Gerday,, R. Haser,, and V. Receveur-Bréchot. 2005. Structure of the full-length psychrophilic cellulase from Pseudoalteromonas haloplanktis revealed by X-ray diffraction and small angle X-ray scattering. J. Mol. Biol. 348: 12111224.
138. Von Wallbrunn, A.,, H. H. Richnow,, G. Neumann,, F. Meinhardt, and, H.J. Heipieper. 2003. Mechanism of cis-trans isomerization of unsaturated fatty acids in Pseudomonas putida. J. Bacteriol. 185: 17301733.
139. Wang, Y.,, J. Delettre,, A. Guillot, G. Corrieu, and, C. Beal. 2005. Influence of cooling temperature and duration on cold adaptation of Lactobacillus acidophilus, RD758. Cryobiology 50: 294307.
140. Watanabe, K.,, T. Masuda,, H. Ohashi, H. Mihara, and, Y. Suzuki. 1994. Multiple proline substitutions cumulatively thermostabilize Bacillus cereus ATCC7064 oligo-1,6–glucosidase. Eur. J. Biochem. 226: 277283.
141. Wingham, D. J.,, M.J. Siegert,, A. Shepherd, and, A.S. Muir. 2006. Rapid discharge connects Antarctic sub-glacial lakes. Nature 440: 10331036.
142. Xiao, L., and, B. Honig. 1999. Electrostatic contributions to the stability of hyperthermophilic proteins. J. Mol. Biol. 289: 14351444.
143. Zhu, K.,, X. Ding,, M. Julotok, and, B.J. Wilkinson. 2005. Exogenous isoleucine and fatty acid shortening ensure the high content of anteiso-C15:0 required for low-temperature growth of Listeria monocytogenes. Appl. Environ. Microbiol. 71: 80028007.


Generic image for table
Table 1.

Characteristics of some thermophilic and hyperthermophilic microorganisms

Citation: Gerday C. 2011. Life at the Extremes of Temperature, p 425-444. In Storz G, Hengge R (ed), Bacterial Stress Responses, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816841.ch26
Generic image for table
Table 2.

Use of H or Na cycle in hyperthermophilic bacteria and archaea

Citation: Gerday C. 2011. Life at the Extremes of Temperature, p 425-444. In Storz G, Hengge R (ed), Bacterial Stress Responses, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816841.ch26

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error