Chapter 27 : Comparative Genomics of Stress Response Systems in Bacteria

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

Comparative Genomics of Stress Response Systems in Bacteria, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555816841/9781555816216_Chap27-1.gif /docserver/preview/fulltext/10.1128/9781555816841/9781555816216_Chap27-2.gif


This chapter describes the approaches and results of comparative genomic analysis of with an emphasis on stress response systems and their impact on contemporary models of extreme ionizing radiation (IR) resistance. Clusters of orthologous genes (COGs) are the most useful framework for comparative genomics. Researchers assigned the proteins of to tdCOGs, which has reinforced the view of the proliferation of genes involved in stress response pathways. Gene expression in recovering from high-dose irradiation has been investigated using whole genome microarrays, which identified hundreds of genes that were upregulated during recovery. The radiation/desiccation response (RDR) regulon is dominated by DNA repair genes, including the recombinational repair proteins RecA and RecQ, the mismatch repair proteins MutS and MutL, and the UvrB and UvrC proteins, which are involved in nucleotide excision repair. The prospect of comparative genomics helping researchers resolve the seemingly paradoxical mechanism of extreme IR resistance in is good. Based on historical and contemporary research, it now seems evident that the extreme IR resistance phenotype of stems from a subtle regulatory interplay between diverse but widespread systems including Mn homeostasis, metabolite regulation, respiratory control, macromolecular degradation, and other oxidative stress response pathways.

Citation: Makarova K, Daly M. 2011. Comparative Genomics of Stress Response Systems in Bacteria, p 445-457. In Storz G, Hengge R (ed), Bacterial Stress Responses, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816841.ch27
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of Figure 1.
Figure 1.

Model of ionizing radiation-driven manganese and iron redox cycling. Water is the most abundant chemical found in living cells and the primary ROS known to arise during the radiolysis of HO are hydroxyl radicals (HO → HO+ H [proton] + e [hydrated electron]) (Daly, ; von Sonntag, ); hydrogen peroxide (2 HO HO) (Daly, ; von Sonntag, ); and superoxide anions (O + e O ) (Daly, ; von Sonntag, ). Immediate cellular damage during exposure to IR is typically attributed to HO. Whereas HO radicals are extremely reactive and short-lived, O and HO are relatively inert and long-lived (Daly, ; von Sonntag, ); this, however, does not imply that HO will display greater toxicity. For ROS, high reactivity without specificity is distributed uniformly across cell targets; low reactivity with high specificity is focused on particular cellular targets (Omar et al., ). A secondary source of HO in cells during irradiation is the Fenton reaction, which is one of the most powerful oxidizing reactions known and involves the catalytic decomposition of HO by ferrous ions (HO + Fe(II) Fe(III) + OH+ HO); the analogous reaction with Mn(II) does not occur (Daly et al., ). The most consequential damage by O and HO in cells is to proteins which contain exposed iron-sulfur or haem groups (Imlay, ), to proteins which contain cysteine residues (Omar et al., ; Yan, ), and to proteins containing cationbinding sites where an iron-catalyzed site-specific oxidation occurs (Stadtman and Levine, ). It follows that the survival of irradiated enzymes and their hosts rests on preventing both nonspecific (HO) and site-specific (O and HO) forms of ROS damage. Under IR, Fe(II, III) redox cycling is predicted to generate HO and O , whereas Mn(II, III) redox cycling is predicted to favor O scavenging without HO production. Thus, manganese complexes are predicted to prevent the proliferation of iron-dependent ROS and protect diverse cellular functions (Daly, ; Daly et al., ; Daly et al., ).

Citation: Makarova K, Daly M. 2011. Comparative Genomics of Stress Response Systems in Bacteria, p 445-457. In Storz G, Hengge R (ed), Bacterial Stress Responses, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816841.ch27
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Albuquerque, L., C. Simoes,, M.F. Nobre,, N.M. Pino,, J. R. Battista,, M. T. Silva,, F., A. Rainey, and, M.S. da Costa. 2005. Truepera radiovictrix gen. nov., sp. nov., a new radiation resistant species and the proposal of Trueperaceae fam. nov. FEMS Microbiol. Lett. 247: 161169.
2. Anderson, A., H. Nordan,, R. Cain,, G. Parrish,, and D. Duggan. 1956. Studies on a radioresistant micrococcus. I. Isolation, morphology, cultural characteristics, and resistance to gamma radiation. Food Technol. 10: 575578.
3. Argueso, J. L.,, J. Westmoreland, P. A. Mieczkowski,, M. Gawel,, T. D. Petes, and, M.A. Resnick. 2008. Double-strand breaks associated with repetitive DNA can reshape the genome. Proc. Natl. Acad. Sci. USA 105: 1184511850.
4. Barnese, K.,, E. B. Gralla,, D. E. Cabelli, and, J.S. Valentine. 2008. Manganous phosphate acts as a superoxide dismutase. J. Am. Chem. Soc. 130: 46044606.
5. Battista, J. R. 1997. Against all odds: the survival strategies of Deinococcus radiodurans. Annu. Rev. Microbiol. 51: 203224.
6. Battista, J. R.,, M. J. Park, and, A.E. McLemore. 2001. Inactivation of two homologues of proteins presumed to be involved in the desiccation tolerance of plants sensitizes deinococcus radiodurans R1 to desiccation. Cryobiology 43: 133139.
7. Bearson, S. M., J. A. Albrecht, and, R.P. Gunsalus. 2002. Oxygen and nitrate-dependent regulation of dmsABC operon expression in Escherichia coli: sites for Fnr and NarL protein interactions. BMC Microbiol. 2: 13.
8. Berlett, B. S.,, P.B. Chock,, M.B. Yim, and, E.R. Stadtman. 1990. Manganese(II) catalyzes the bicarbonate-dependent oxidation of amino acids by hydrogen peroxide and the amino acid-facilitated dismutation of hydrogen peroxide. Proc. Natl. Acad. Sci. USA 87: 389393.
9. Blasius, M., S. Sommer, and, U. Hubscher. 2008. Deinococcus radiodurans: what belongs to the survival kit? Crit. Rev. Biochem. Mol. Biol. 43: 221238.
10. Bruce, A. K., and, J.D. Berner. 1976. Respiratory activity as a determinant of radiation survival response. Can. J. Microbiol. 22: 13361344.
11. Chang, S.,, H. Shu,, Z. Li,, Y. Wang,, L. Chen,, Y. Hua,, and G. Qin. 2009. Disruption of manganese ions [Mn(II)] transporter genes DR1709 or DR2523 in extremely radio-resistant bacterium Deinococcus radiodurans. Wei Sheng Wu Xue Bao 49: 438444.
12. Cox, M. M., and, J.R. Battista. 2005. Deinococcus radiodurans— the consummate survivor. Nat. Rev. Microbiol. 3: 882892.
13. Daly, M. J. 2009. A new perspective on radiation resistance based on Deinococcus radiodurans. Nat. Rev. Microbiol. 7: 237245.
14. Daly, M. J.,, E.K. Gaidamakova,, V.Y. Matrosova,, J. G. Kiang,, R. Fukumoto,, D. Y. Lee,, N. B. Wehr,, G. A. Viteri,, B. S. Berlett,, and R. L. Leviñe. 2010. Small-molecule antioxidant proteomeshields in Deinococcus radiodurans. PLoS ONE 5: e12570.
15. Daly, M. J.,, E.K. Gaidamakova,, V.Y. Matrosova,, A. Vasilenko,, and M. Zhai. 2007. Protein oxidation implicated as the primary determinant of bacterial radioresistance. PLoS Biol. 5: 769779.
16. Daly, M. J.,, E.K. Gaidamakova,, V.Y. Matrosova,, A. Vasilenko,, M. Zhai,, A. Venkateswaran,, M. Hess,, M. V. Omelchenko,, H. M. Kostandarithes,, K. S. Makarova,, L. P. Wackett,, J. K. Fredrickson,, and D. Ghosal. 2004. Accumulation of Mn(II) in Deinococcus radiodurans facilitates gamma-radiation resistance. Science 306: 10251028.
17. Daly, M. J., and, K.W. Minton. 1996. An alternative pathway of recombination of chromosomal fragments precedes recAdependent recombination in the radioresistant bacterium Deinococcus radiodurans. J. Bacteriol. 178: 44614471.
18. Daly, M. J., and, K.W. Minton. 1995. Interchromosomal recombination in the extremely radioresistant bacterium Deinococcus radiodurans. J. Bacteriol. 177: 54955505.
19. Daly, M. J.,, O. Ling, and, K.W. Minton. 1994. Interplasmidic recombination following irradiation of the radioresistant bacterium Deinococcus radiodurans. J. Bacteriol. 176: 75067515.
20. Davies, R., and, A.J. Sinskey. 1973. Radiation-resistant mutants of Salmonella typhimurium LT2: development and characterization. J. Bacteriol. 113: 133144.
21. de Groot, A.,, V. Chapon,, P. Servant,, R. Christen,, M.F. Saux,, S. Sommer,, and T. Heulin. 2005. Deinococcus deserti sp. nov., a gamma-radiation-tolerant bacterium isolated from the Sahara Desert. Int. J. Syst. Evol. Microbiol. 55: 24412446.
22. de Groot, A.,, R. Dulermo,, P. Ortet,, L. Blanchard,, P. Guerin,, B. Fernandez,, B. Vacherie,, C. Dossat,, E. Jolivet,, P. Siguier,, M. Chandler,, M. Barakat,, A. Dedieu,, V. Barbe,, T. Heulin,, S. Sommer,, W. Achouak,, and J. Armengaud. 2009. Alliance of proteomics and genomics to unravel the specificities of Sahara bacterium Deinococcus deserti. PLoS Genet. 5: e1000434.
23. Earl, A. M.,, M.M. Mohundro,, I.S. Mian, and, J.R. Battista. 2002. The IrrE protein of Deinococcus radiodurans R1 is a novel regulator of recA expression. J. Bacteriol. 184: 62166224.
24. Erdman, I. E., F. S. Thatcher, and, K.F. Macqueen. 1961. Studies on the irradiation of microorganisms in relation to food preservation. II. Irradiation resistant mutants. Can. J. Microbiol. 7: 207215.
25. Fredrickson, J. K.,, J.M. Zachara,, D.L. Balkwill,, D. Kennedy,, S. M. Li,, H. M. Kostandarithes,, M. J. Daly,, M. F. Romine, and, F.J. Brockman. 2004. Geomicrobiology of high-level nuclear waste-contaminated vadose sediments at the Hanford site, Washington state. Appl. Environ. Microbiol. 70: 42304241.
26. Fredrickson, J. K.,, S.M. Li,, E.K. Gaidamakova,, V. Y. Matrosova,, M. Zhai,, H.M. Sulloway,, J.C. Scholten,, M.G. Brown,, D. L. Balkwill, and, M.J. Daly. 2008. Protein oxidation: key to bacterial desiccation resistance? ISME J. 2: 393403.
27. Funayama, T.,, I. Narumi,, M. Kikuchi,, S. Kitayama,, H. Watanabe,, and K. Yamamoto. 1999. Identification and disruption analysis of the recN gene in the extremely radioresistant bacterium Deinococcus radiodurans. Mutat. Res. 435: 151161.
28. Galperin, M. Y., and, E.V. Koonin. 2001. Comparative genome analysis. Methods Biochem. Anal. 43: 359392.
29. Galperin, M. Y.,, O.V. Moroz,, K.S. Wilson, and, A.G. Murzin. 2006. House cleaning, a part of good housekeeping. Mol. Microbiol. 59: 519.
30. Gao, G.,, D. Le,, L. Huang,, H. Lu,, I. Narumi,, and Y. Hua. 2006. Internal promoter characterization and expression of the Deinococcus radiodurans pprI-folP gene cluster. FEMS Microbiol. Lett. 257: 195201.
31. Gerard, E.,, E. Jolivet,, D. Prieur, and, P. Forterre. 2001. DNA protection mechanisms are not involved in the radioresistance of the hyperthermophilic archaea Pyrococcus abyssi and P. furiosus. Mol. Genet. Genomics 266: 7278.
32. Gerischer, U. 2002. Specific and global regulation of genes associated with the degradation of aromatic compounds in bacteria. J. Mol. Microbiol. Biotechnol. 4: 111121.
33. Ghosal, D.,, M.V. Omelchenko,, E.K. Gaidamakova,, V. Y. Matrosova,, A. Vasilenko,, A., Venkateswaran, M., Zhai, H.M., Kostandarithes, H., Brim, K. S., Makarova, L.P., Wackett, J., K. Fredrickson, and, M.J. Daly. 2005. How radiation kills cells: survival of Deinococcus radiodurans and Shewanella oneidensis under oxidative stress. FEMS Microbiol. Rev. 29: 361375.
34. Gladyshev, E., and, M. Meselson. 2008. Extreme resistance of bdelloid rotifers to ionizing radiation. Proc. Natl. Acad. Sci. USA 105: 51395144.
35. Gupta, R. S. 1998. Protein phylogenies and signature sequences: a reappraisal of evolutionary relationships among archaebacteria, eubacteria, and eukaryotes. Microbiol. Mol. Biol. Rev. 62: 14351491.
36. Gutman, P. D., P. Fuchs, and, K.W. Minton. 1994. Restoration of the DNA damage resistance of Deinococcus radiodurans DNA polymerase mutants by Escherichia coli DNA polymerase I and Klenow fragment. Mutat. Res. 314: 8797.
37. Gutman, P. D.,, P. Fuchs,, L. Ouyang,, and K.W. Minton. 1993. Identification, sequencing, and targeted mutagenesis of a DNA polymerase gene required for the extreme radioresistance of Deinococcus radiodurans. J. Bacteriol. 175: 35813590.
38. Harris, D. R.,, M. Tanaka, S. V. Saveliev,, E. Jolivet,, A. M. Earl,, M. M. Cox, and, J.R. Battista. 2004. Preserving genome integrity: the DdrA protein of Deinococcus radiodurans R1. PLoS Biol. 2: e304.
39. Harris, D. R.,, S.V. Pollock,, E.A. Wood,, R. J. Goiffon,, A. J. Klingele,, E. L. Cabot,, W. Schackwitz,, J. Martin,, J., Eggington, T. J., Durfee, C.M., Middle, J.E., Norton, M.C., Popelars, H., Li, S. A., Klugman, L.L., Hamilton, L.B., Bane, L.A., Pennacchio, T.J., Albert, N.T., Perna, M., M. Cox, and, J.R. Battista. 2009. Directed evolution of ionizing radiation resistance in Escherichia coli. J. Bacteriol. 191: 52405252.
40. Heitman, J.,, N.D. Zinder, and, P. Model. 1989. Repair of the Escherichia coli chromosome after in vivo scission by the EcoRI endonuclease. Proc. Natl. Acad. Sci. USA 86: 22812285.
41. Hirsch, P.,, C.A. Gallikowski,, J. Siebert,, K. Peissl,, R. Kroppenstedt,, P. Schumann,, E. Stackebrandt,, and R. Anderson. 2004. Deinococcus frigens sp. nov., Deinococcus saxicola sp. nov., and Deinococcus marmoris sp. nov., low temperature and draught-tolerating, UV-resistant bacteria from continental Antarctica. Syst. Appl. Microbiol. 27: 636645.
42. Hobman, J. L., J. Wilkie, and, N.L. Brown. 2005. A design for life: prokaryotic metal-binding MerR family regulators. Biometals 18: 429436.
43. Howard-Flanders, P.,, R.P. Boyce, and, L. Theriot. 1966. Three loci in Escherichia coli K-12 that control the excision of pyrimidine dimers and certain other mutagen products from DNA. Genetics 53: 11191136.
44. Hua, Y.,, I. Narumi,, G. Gao,, B. Tian,, K. Satoh,, S. Kitayama,, and B. Shen. 2003. PprI: a general switch responsible for extreme radioresistance of Deinococcus radiodurans. Biochem. Biophys. Res. Commun. 306: 354360.
45. Huang, L.,, X. Hua,, H. Lu,, G. Gao,, B. Tian,, B. Shen,, and Y. Hua. 2007. Three tandem HRDC domains have synergistic effect on the RecQ functions in Deinococcus radiodurans. DNA Repair (Amsterdam) 6: 167176.
46. Imlay, J. A. 2006. Iron-sulphur clusters and the problem with oxygen. Mol. Microbiol. 59: 10731082.
47. Imlay, J. A. 2008. Cellular defenses against superoxide and hydrogen peroxide. Annu. Rev. Biochem. 77: 755776.
48. Kish, A.,, G. Kirkali,, C. Robinson,, R. Rosenblatt,, P. Jaruga,, M. Dizdaroglu,, and J. DiRuggiero. 2009. Salt shield: intracellular salts provide cellular protection against ionizing radiation in the halophilic archaeon, Halobacterium salinarum NRC-1. Environ. Microbiol. 11: 10661078.
49. Kitayama, S.,, M. Kohoroku,, A. Takagi, and, H. Itoh. 1997. Mutation of D. radiodurans in a gene homologous to ruvB of E. coli. Mutat. Res. 385: 151157.
50. Kitayama, S.,, I. Narumi,, M. Kikuchi, and, H. Watanabe. 2000. Mutation in recR gene of Deinococcus radiodurans and possible involvement of its product in the repair of DNA interstrand cross-links. Mutat. Res. 461: 179187.
51. Knofel, T., and, N. Strater. 1999. X-ray structure of the Escherichia coli periplasmic 59-nucleotidase containing a dimetal catalytic site. Nat. Struct. Biol. 6: 448453.
52. Koonin, E. V., and, Y.I. Wolf. 2008. Genomics of bacteria and archaea: the emerging dynamic view of the prokaryotic world. Nucleic Acids Res. 36: 66886719.
53. Kota, S., and, H.S. Misra. 2006. PprA: A protein implicated in radioresistance of Deinococcus radiodurans stimulates catalase activity in Escherichia coli. Appl. Microbiol. Biotechnol. 72: 790796.
54. Kunkel, T. A., and, D.A. Erie. 2005. DNA mismatch repair. Annu. Rev. Biochem. 74: 681710.
55. Kuzminov, A. 1999. Recombinational repair of DNA damage in Escherichia coli and bacteriophage lambda. Microbiol. Mol. Biol. Rev. 63: 751813.
56. Lecointe, F.,, I. V. Shevelev,, A. Bailone,, S. Sommer, and, U. Hubscher. 2004. Involvement of an X family DNA polymerase in double-stranded break repair in the radioresistant organism Deinococcus radiodurans. Mol. Microbiol. 53: 17211730.
57. Levin-Zaidman, S.,, J. Englander,, E. Shimoni,, A. K. Sharma,, K. W. Minton,, and A. Minsky. 2003. Ringlike structure of the Deinococcus radiodurans genome: a key to radioresistance? Science 299: 254256.
58. Lin, J., R. Qi,, C. Aston,, J. Jing,, T.S. Anantharaman,, B. Mishra,, O. White,, M. J. Daly,, K. W. Minton,, J. C. Venter, and, D.C. Schwartz. 1999. Whole-genome shotgun optical mapping of Deinococcus radiodurans. Science 285: 15581562.
59. Lipton, M. S.,, L. Pasa-Tolic,, G. A. Anderson,, D.J. Anderson,, D. L. Auberry,, J. R. Battista,, M. J. Daly,, J. Fredrickson,, K. K. Hixson,, H. Kostandarithes,, C. Masselon,, L. M. Markillie,, R. J. Moore,, M. F. Romine,, Y. Shen,, E. Stritmatter,, N. Tolic,, H. R. Udseth,, A. Venkateswaran,, K. K. Wong,, R. Zhao, and, R.D. Smith. 2002. Global analysis of the Deinococcus radiodurans proteome by using accurate mass tags. Proc. Natl. Acad. Sci. USA 99: 1104911054.
60. Liu, Y., J. Zhou,, M.V. Omelchenko,, A.S. Beliaev,, A. Venkateswaran,, J. Stair,, L. Wu,, D. K. Thompson,, D. Xu,, I., B. Rogozin,, E. K. Gaidamakova,, M. Zhai,, K. S. Makarova,, E. V. Koonin, and, M.J. Daly. 2003. Transcriptome dynamics of Deinococcus radiodurans recovering from ionizing radiation. Proc. Natl. Acad. Sci. USA 100: 41914196.
61. Makarova, K. S.,, L. Aravind,, Y. I. Wolf,, R.L. Tatusov,, K. W. Minton,, E. V. Koonin, and, M.J. Daly. 2001. Genome of the extremely radiation-resistant bacterium Deinococcus radiodurans viewed from the perspective of comparative genomics. Microbiol. Mol. Biol. Rev. 65: 4479.
62. Makarova, K. S.,, M.V. Omelchenko,, E.K. Gaidamakova,, V. Y. Matrosova,, A. Vasilenko,, M. Zhai,, A. Lapidus,, A. Copeland,, E. Kim,, M. Land,, K. Mavrommatis,, S. Pitluck,, P. M. Richardson,, C. Detter,, T. Brettin,, E. Saunders,, B. Lai,, B. Ravel,, K. M. Kemner,, Y. I. Wolf,, A. Sorokin,, A. V. Gerasimova,, M. S. Gelfand,, J. K. Fredrickson,, E. V. Koonin, and, M.J. Daly. 2007. Deinococcus geothermalis: the pool of extreme radiation resistance genes shrinks. PLoS ONE 2: e955.
63. Makarova, K. S.,, Y. I. Wolf, and, E.V. Koonin. 2009. Comprehensive comparative-genomic analysis of type 2 toxin-antitoxin systems and related mobile stress response systems in prokaryotes. Biol. Direct 4: 19.
64. Makarova, K. S.,, Y.I. Wolf,, O. White, K. Minton, and, M.J. Daly. 1999. Short repeats and IS elements in the extremely radiationresistant bacterium Deinococcus radiodurans and comparison to other bacterial species. Res. Microbiol. 150: 711724.
65. Mattimore, V., and, J.R. Battista. 1996. Radioresistance of Deinococcus radiodurans: functions necessary to survive ionizing radiation are also necessary to survive prolonged desiccation. J. Bacteriol. 178: 633637.
66. Minton, K. W. 1996. Repair of ionizing-radiation damage in the radiation resistant bacterium Deinococcus radiodurans. Mutat. Res. 363: 17.
67. Minton, K. W., and, M.J. Daly. 1995. A model for repair of radiation-induced DNA double-strand breaks in the extreme radiophile Deinococcus radiodurans. Bioessays 17: 457464.
68. Misra, H. S.,, N.P. Khairnar,, S. Kota,, S. Shrivastava,, V. P. Joshi, and, S.K. Apte. 2006. An exonuclease I-sensitive DNA repair pathway in Deinococcus radiodurans: a major determinant of radiation resistance. Mol. Microbiol. 59: 13081316.
69. Molina-Henares, A. J.,, T. Krell,, M. Eugenia Guazzaroni,, A. Segura, and, J.L. Ramos. 2006. Members of the IclR family of bacterial transcriptional regulators function as activators and/ or repressors. FEMS Microbiol. Rev. 30: 157186.
70. Narumi, I.,, K. Satoh,, M. Kikuchi,, T. Funayama,, T. Yanagisawa,, Y. Kobayashi,, H. Watanabe,, and K. Yamamoto. 2001. The LexA protein from Deinococcus radiodurans is not involved in RecA induction following gamma irradiation. J. Bacteriol. 183: 69516956.
71. Norais, C. A.,, S. Chitteni-Pattu,, E. A. Wood,, R.B. Inman, and, M. M. Cox. 2009. DdrB protein, an alternative Deinococcus radiodurans SSB induced by ionizing radiation. J. Biol. Chem. 284: 2140221411.
72. Omar, B. A., S. C. Flores, and, J.M. McCord. 1992. Superoxide dismutase: pharmacological developments and applications. Adv. Pharmacol. 23: 109161.
73. Omelchenko, M. V.,, Y.I. Wolf,, E.K. Gaidamakova, V. Y., Matrosova, A., Vasilenko, M., Zhai, M. J., Daly, E., V. Koonin, and, K.S. Makarova. 2005. Comparative genomics of Thermus thermophilus and Deinococcus radiodurans: divergent routes of adaptation to thermophily and radiation resistance. BMC Evol. Biol. 5: 57.
74. Parisi, A., and, A.D. Antoine. 1974. Increased radiation resistance of vegetative Bacillus pumilus. Appl. Microbiol. 28: 4146.
75. Ramos, J. L.,, M. Martinez-Bueno,, A. J. Molina-Henares,, W. Teran,, K. Watanabe,, X. Zhang,, M. T. Gallegos,, R. Brennan,, and R. Tobes. 2005. The TetR family of transcriptional repressors. Microbiol. Mol. Biol. Rev. 69: 326356.
76. Rodionov, D. A. 2007. Comparative genomic reconstruction of transcriptional regulatory networks in bacteria. Chem. Rev. 107: 34673497.
77. Sandrini, M. P.,, A.R. Clausen,, B. Munch-Petersen,, and J. Piskur. 2006. Thymidine kinase diversity in bacteria. Nucleosides Nucleotides Nucleic Acids 25: 11531158.
78. Satoh, K.,, H. Ohba,, H. Sghaier, and, I. Narumi. 2006. Downregulation of radioresistance by LexA2 in Deinococcus radiodurans. Microbiology 152: 32173226.
79. Slade, D.,, A.B. Lindner,, G. Paul, and, M. Radman. 2009. Recombination and replication in DNA repair of heavily irradiated Deinococcus radiodurans. Cell 136: 10441055.
80. Stadtman, E. R.,, and R.L. Levine. 2006. Chemical modification of proteins by reactive oxygen species, P. 123168. In I. Dalle-Donne,, A. Scaloni,, D. A. Butterfield,, D. M. Desiderio,, and N. M. Nibbering (ed.), Redox Proteomics: From Protein Modifications to Cellular Dysfunction and Diseases. Wiley Interscience, New York, NY.
81. Sweet, D. M., and, B.E. Moseley. 1976. The resistance of Micrococcus radiodurans to killing and mutation by agents which damage DNA. Mutat. Res. 34: 175186.
82. Tanaka, A.,, H. Hirano,, M. Kikuchi,, S. Kitayama, and, H. Watanabe. 1996. Changes in cellular proteins of Deinococcus radiodurans following gamma-irradiation. Radiat. Environ. Biophys. 35: 9599.
83. Tanaka, M.,, A.M. Earl,, H.A. Howell,, M.J. Park,, J. A. Eisen,, S. N. Peterson, and, J.R. Battista. 2004. Analysis of Deinococcus radiodurans’s transcriptional response to ionizing radiation and desiccation reveals novel proteins that contribute to extreme radioresistance. Genetics 168: 2133.
84. Tatusov, R. L.,, M.Y. Galperin,, D.A. Natale, and, E.V. Koonin. 2000. The COG database: a tool for genome-scale analysis of protein functions and evolution. Nucleic Acids Res. 28: 3336.
85. Touati, E.,, C. Laurent-Winter,, P. Quillardet, and, M. Hofnung. 1996. Global response of Escherichia coli cells to a treatment with 7–methoxy-2–nitronaphtho[2,1–b]furan (R7000), an extremely potent mutagen. Mutat. Res. 349: 193200.
86. Udupa, K. S.,, P.A. O’Cain,, V. Mattimore, and, J.R. Battista. 1994. Novel ionizing radiation-sensitive mutants of Deinococcus radiodurans. J. Bacteriol. 176: 74397446.
87. von Sonntag, C. 1987. The Chemical Basis of Radiation Biology. Taylor & Francis, London, United Kingdom.
88. White, O.,, J.A. Eisen,, J.F. Heidelberg,, E.K. Hickey,, J. D. Peterson,, R. J. Dodson,, D. H. Haft,, M. L. Gwinn,, W. C. Nelson,, D. L. Richardson,, K. S. Moffat,, H. Qin,, L. Jiang,, W. Pamphile,, M. Crosby,, M. Shen,, J. J. Vamathevan,, P. Lam,, L. McDonald,, T. Utterback,, C. Zalewski,, K. S. Makarova,, L. Aravind,, M. J. Daly,, K. W. Minton,, R. D. Fleischmann,, K. A. Ketchum,, K. E. Nelson,, S. Salzberg,, H. O. Smith,, J. C. Venter,, and C. M. Fraser. 1999. Genome sequence of the radioresistant bacterium Deinococcus radiodurans R1. Science 286: 15711577.
89. Wolf, Y. I.,, I.B. Rogozin,, N.V. Grishin,, R. L. Tatusov,, and E. V. Koonin. 2001. Genome trees constructed using five different approaches suggest new major bacterial clades. BMC Evol. Biol. 1: 8.
90. Xu, G.,, L. Wang,, H. Chen,, H. Lu,, N. Ying,, B. Tian,, and Y. Hua. 2008. RecO is essential for DNA damage repair in Deinococcus radiodurans. J. Bacteriol. 190: 26242628.
91. Yan, L.-J. 2009. Analysis of oxidative modification of proteins. Curr. Protoc. Protein Sci. 56:
92. Yokoyama, K.,, S.A. Ishijima,, L. Clowney,, H. Koike,, H. Aramaki,, C. Tanaka,, K. Makino,, and M. Suzuki. 2006. Feast/famine regulatory proteins (FFRPs): Escherichia coli Lrp, AsnC and related archaeal transcription factors. FEMS Microbiol. Rev. 30: 89108.
93. Zhang, Y. M., J. K. Liu, and, T.Y. Wong. 2003. The DNA excision repair system of the highly radioresistant bacterium Deinococcus radiodurans is facilitated by the pentose phosphate pathway. Mol. Microbiol. 48: 13171323.


Generic image for table
Table 1.

Protein family expansions specific for the lineage

Citation: Makarova K, Daly M. 2011. Comparative Genomics of Stress Response Systems in Bacteria, p 445-457. In Storz G, Hengge R (ed), Bacterial Stress Responses, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816841.ch27
Generic image for table
Table 2.

Protein family expansions specific for the lineage

Citation: Makarova K, Daly M. 2011. Comparative Genomics of Stress Response Systems in Bacteria, p 445-457. In Storz G, Hengge R (ed), Bacterial Stress Responses, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816841.ch27
Generic image for table
Table 3.

Selected D. radiodurans genesimplicatedinradiationresistance

Citation: Makarova K, Daly M. 2011. Comparative Genomics of Stress Response Systems in Bacteria, p 445-457. In Storz G, Hengge R (ed), Bacterial Stress Responses, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816841.ch27

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error