Chapter 4 : The Architecture and Antigenic Composition of the Polysaccharide Capsule

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

The Architecture and Antigenic Composition of the Polysaccharide Capsule, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555816858/9781555815011_Chap04-1.gif /docserver/preview/fulltext/10.1128/9781555816858/9781555815011_Chap04-2.gif


This chapter focuses on chemical, physical, antigenic, architectural, and dynamical properties of the polysaccharide capsule. It examines how changes in these parameters can influence the interaction with the host and the virulence of the yeast. The capsule is composed mainly of polysaccharide. The chemical composition of the capsule is responsible for several physical characteristics. The chapter reviews the antigenic properties of the capsule and the structural properties that could have important consequences during infection. Many different monoclonal antibodies (MAbs) that specifically recognize the capsule have been obtained. The study of these antibodies has contributed to the identification of multiple structural features of the capsule. Further, the chapter discusses other important processes involved in the physical organization of the capsule, such as the polysaccharide transport mechanisms and anchoring of the polysaccharide fibers to the cell wall. Anchoring of capsular components to the cell wall is crucial for capsule assembly. However, additional interpolysaccharide interactions are expected to occur at the capsular microenvironment. The current literature indicates that at least four types of polysaccharide-polysaccharide interaction occur at the cryptococcal capsule-cell wall interface, including glucuronoxylomannan (GXM)-GXM, GXM-galactoxylomannan (GalXM), GXM-glucans, and GXM-chitin.

Citation: Rodrigues M, Casadevall A, Zaragoza O. 2011. The Architecture and Antigenic Composition of the Polysaccharide Capsule, p 43-54. In Heitman J, Kozel T, Kwon-Chung K, Perfect J, Casadevall A (ed), . ASM Press, Washington, DC. doi: 10.1128/9781555816858.ch4
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of FIGURE 1

Capsule features shown by scanning electron microscopy.(A) Cells with enlarged capsule, where differences in polysaccharide density are clearly observed. (B) Detailed magnification of the three defined capsular regions based on the differential density. The region observed corresponds to the inset highlighted in panel A. (C) Detail of the inner region of the capsule. After growth in capsule-inducing medium, the outer regions were removed by γ-irradiation treatment, making visible the high-polysaccharide-density region close to the cell wall. (D) Cell grown in non-capsule-inducing conditions. Note how in this cell, the density of polysaccharide in the regions close to the cell wall is much lower than in cells with enlarged capsules (panels A, B, and C).

Citation: Rodrigues M, Casadevall A, Zaragoza O. 2011. The Architecture and Antigenic Composition of the Polysaccharide Capsule, p 43-54. In Heitman J, Kozel T, Kwon-Chung K, Perfect J, Casadevall A (ed), . ASM Press, Washington, DC. doi: 10.1128/9781555816858.ch4
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2

Basic composition of GXM and GalXM.(A–F) Structure of the six basic motifs described in GXM. (G) GalXM structure.

Citation: Rodrigues M, Casadevall A, Zaragoza O. 2011. The Architecture and Antigenic Composition of the Polysaccharide Capsule, p 43-54. In Heitman J, Kozel T, Kwon-Chung K, Perfect J, Casadevall A (ed), . ASM Press, Washington, DC. doi: 10.1128/9781555816858.ch4
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3

Proposed model for capsule growth. (Left) Cells with small capsules. After capsule enlargement, new fibers with larger molecular weight are intercalated between the old fibers, yielding a high-density region in the inner part of the capsule (middle). Finally, the capsule grows by apical addition of longer fibers (right), which yields an intermediatedensity region (R2) and a low-density region in the outer layer (R3). (Bottom right) Magnification showing the three density regions.

Citation: Rodrigues M, Casadevall A, Zaragoza O. 2011. The Architecture and Antigenic Composition of the Polysaccharide Capsule, p 43-54. In Heitman J, Kozel T, Kwon-Chung K, Perfect J, Casadevall A (ed), . ASM Press, Washington, DC. doi: 10.1128/9781555816858.ch4
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 4

Model proposed for polysaccharide export in . According to the current literature, GXM is packaged in post-Golgi vesicles ( ) that are targeted to the cell surface. The vesicles move outside the plasma membrane, then cross the cell wall ( ) and the existing capsular network ( ) by still unknown mechanisms to be released into the extracellular space ( ), where they are supposedly lysed ( ) for polysaccharide incorporation into the growing capsule.

Citation: Rodrigues M, Casadevall A, Zaragoza O. 2011. The Architecture and Antigenic Composition of the Polysaccharide Capsule, p 43-54. In Heitman J, Kozel T, Kwon-Chung K, Perfect J, Casadevall A (ed), . ASM Press, Washington, DC. doi: 10.1128/9781555816858.ch4
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Albuquerque, P. C.,, E.S. Nakayasu,, M.L. Rodrigues,, S. Frases,, A. Casadevall,, R. M. Zancope-Oliveira,, I. C. Almeida,, and J. D. Nosanchuk. 2008. Vesicular transport in Histoplasma capsulatum: an effective mechanism for trans-cell wall transfer of proteins and lipids in ascomycetes. Cell. Microbiol. 10: 16951710.
2. Bacon, B. E.,, R. Cherniak,, K. J. Kwon-Chung, and, E. S. Jacobson. 1996. Structure of the O-deacetylated glucuronoxylomannan from Cryptococcus neoformans Cap70 as determined by 2D NMR spectroscopy. Carbohydr. Res. 283: 95110.
3. Bahn, Y. S.,, K. Kojima,, G.M. Cox,, and J. Heitman. 2005. Specialization of the HOG pathway and its impact on differentiation and virulence of Cryptococcus neoformans. Mol. Biol. Cell. 16: 22852300.
4. Barreteau, H.,, A. Kovac,, A. Boniface, M. Sova,, S. Gobec,, and D. Blanot. 2008. Cytoplasmic steps of peptidoglycan biosynthesis. FEMS Microbiol. Rev. 32: 168207.
5. Belay, T., and, R. Cherniak. 1995. Determination of antigen binding specificities of Cryptococcus neoformans factor sera by enzyme-linked immunosorbent assay. Infect. Immun. 63: 18101819.
6. Bhattacharjee, A. K., J. E. Bennett, and, C. P. Glaudemans. 1984. Capsular polysaccharides of Cryptococcus neoformans. Rev. Infect. Dis. 6: 619624.
7. Blackstock, R.,, K. L Buchanan,, A. M. Adesina, and, J. W. Murphy. 1999. Differential regulation of immune responses by highly and weakly virulent Cryptococcus neoformans isolates. Infect. Immun. 67: 36013609.
8. Blackstock, R., and, J. W. Murphy. 1997. Secretion of the C3 component of complement by peritoneal cells cultured with encapsulated Cryptococcus neoformans. Infect. Immun. 65: 41144121.
9. Bose,, I.,, A.J. Reese,, J.J. Ory,, G. Janbon,, and T. L. Doering. 2003. A yeast under cover: the capsule of Cryptococcus neoformans. Eukaryot. Cell 2: 655663.
10. Casadevall, A.,, M. DeShaw,, M. Fan, F. Dromer,, T.R. Kozel,, and L. A. Pirofski. 1994. Molecular and idiotypic analysis of antibodies to Cryptococcus neoformans glucuronoxylomannan. Infect. Immun. 62: 38643872.
11. Casadevall, A.,, J. Mukherjee,, S.J. Devi,, R. Schneerson, J. B. Robbins,, and M. D. Scharff. 1992. Antibodies elicited by a Cryptococcus neoformans-tetanus toxoid conjugate vaccine have the same specificity as those elicited in infection. J. Infect. Dis. 165: 10861093.
12. Chang, Y. C.,, B.L. Wickes,, G. F. Miller, L. A. Penoyer,, and K. J. Kwon-Chung. 2000. Cryptococcus neoformans STE12alpha regulates virulence but is not essential for mating. J. Exp. Med. 191: 871882.
13. Charlier, C.,, F. Chretien,, M. Baudrimont, E. Mordelet,, O. Lortholary,, and F. Dromer. 2005. Capsule structure changes associated with Cryptococcus neoformans crossing of the blood-brain barrier. Am. J. Pathol. 166: 421432.
14. Cherniak, R. 1988. Soluble polysaccharides of Cryptococcus neoformans. Curr. Top. Med. Mycol. 2: 4054.
15. Cherniak, R.,, R.G. Jones, and, E. Reiss. 1988. Structure determination of Cryptococcus neoformans serotype A-variant glucuronoxylomannan by 13C-n.m.r. spectroscopy. Carbohydr. Res. 172: 113138.
16. Cherniak,, R.,, L.C. Morris,, B.C. Anderson,, and S.A. Meyer. 1991. Facilitated isolation, purification, and analysis of glucuronoxylomannan of Cryptococcus neoformans. Infect. Immun. 59: 5964.
17. Cherniak, R.,, E. Reiss,, M.E. Slodki,, R.D. Plattner,, and S. O. Blumer. 1980. Structure and antigenic activity of the capsular polysaccharide of Cryptococcus neoformans serotype A. Mol. Immunol. 17: 10251032.
18. Cherniak, R., E. Reiss, and, S. Turner. 1982. A galactoxylomannan antigen of Cryptococcus neoformans serotype A. Carbohydr. Res. 103: 239250.
19. Cherniak, R., and, J. B. Sundstrom. 1994. Polysaccharide antigens of the capsule of Cryptococcus neoformans. Infect. Immun. 62: 15071512.
20. Cherniak, R.,, H. Valafar,, L.C. Morris,, and F. Valafar. 1998. Cryptococcus neoformans chemotyping by quantitative analysis of 1H nuclear magnetic resonance spectra of glucuronoxylomannans with a computer-simulated artificial neural network. Clin. Diagn. Lab. Immunol. 5: 146159.
21. Clancy, C. J.,, M.H. Nguyen,, R. Alandoerffer,, S. Cheng,, K. Iczkowski,, M. Richardson,, and J. R. Graybill. 2006. Cryptococcus neoformans var. grubii isolates recovered from persons with AIDS demonstrate a wide range of virulence during murine meningoencephalitis that correlates with the expression of certain virulence factors. Microbiology 152: 22472255.
22. Cleare, W., and, A. Casadevall. 1999. Scanning electron microscopy of encapsulated and non-encapsulated Cryptococcus neoformans and the effect of glucose on capsular polysaccharide release. Med. Mycol. 37: 235243.
23. Collins, H. L., and, G. J. Bancroft. 1991. Encapsulation of Cryptococcus neoformans impairs antigen-specific T-cell responses. Infect. Immun. 59: 38833888.
24. De Jesus,, M.,, A.M. Nicola,, M.L. Rodrigues,, G. Janbon,, and A. Casadevall. 2008. Capsular localization of the Cryptococcus neoformans polysaccharide component galactoxylomannan. Eukaryot. Cell 8: 96103.
25. Dong, Z. M., and, J. W. Murphy. 1995. Effects of the two varieties of Cryptococcus neoformans cells and culture filtrate antigens on neutrophil locomotion. Infect. Immun. 63: 26322644.
26. Dromer, F.,, J. Salamero,, A. Contrepois, C. Carbon,, and P. Yeni. 1987. Production, characterization, and antibody specificity of a mouse monoclonal antibody reactive with Cryptococcus neoformans capsular polysaccharide. Infect. Immun. 55: 742748.
27. D’Souza, C. A., and, J. Heitman. 2001. Conserved cAMP signaling cascades regulate fungal development and virulence. FEMS Microbiol. Rev. 25: 349364.
28. Dykstra, M. A., L. Friedman, and, J. W. Murphy. 1977. Capsule size of Cryptococcus neoformans: control and relationship to virulence. Infect. Immun. 16: 129135.
29. Eckert, T. F., and, T. R. Kozel. 1987. Production and characterization of monoclonal antibodies specific for Cryptococcus neoformans capsular polysaccharide. Infect. Immun. 55: 18951899.
30. Esnault,, K., B. el Moudni,, J.P. Bouchara,, D. Chabasse,, and G. Tronchin. 1999. Association of a myosin immunoanalogue with cell envelopes of Aspergillus fumigatus conidia and its participation in swelling and germination. Infect. Immun. 67: 12381244.
31. Feldmesser, M., Y. Kress, and, A. Casadevall. 2001. Dynamic changes in the morphology of Cryptococcus neoformans during murine pulmonary infection. Microbiology 147: 23552365.
32. Frases, S.,, L. Nimrichter,, N.B. Viana,, A. Nakouzi,, and A. Casadevall. 2008. Cryptococcus neoformans capsular polysaccharide and exopolysaccharide fractions manifest physical, chemical, and antigenic differences. Eukaryot. Cell 7: 319327.
33. Frases, S.,, B. Pontes,, L. Nimrichter, N. B. Viana,, M.L. Rodrigues,, and A. Casadevall. 2009. Capsule of Cryptococcus neoformans grows by enlargement of polysaccharide molecules. Proc. Natl. Acad. Sci. USA 106: 12281233.
34. Fries, B. C.,, D.L. Goldman,, R. Cherniak, R. Ju,, and A. Casadevall. 1999. Phenotypic switching in Cryptococcus neoformans results in changes in cellular morphology and glucuronoxylomannan structure. Infect. Immun. 67: 60766083.
35. Gahrs, W.,, Z. Tigyi,, L. Emody,, and J. Makovitzky. 2009. Polarization optical analysis of the surface structures of various fungi. Acta Histochem. 111: 308315.
36. Garcia-Hermoso, D., F. Dromer, and, G. Janbon. 2004. Cryptococcus neoformans capsule structure evolution in vitro and during murine infection. Infect. Immun. 72: 33593365.
37. Garcia-Rivera, J.,, Y. C. Chang,, K. J. Kwon-Chung,, and A. Casadevall. 2004. Cryptococcus neoformans CAP59 (or Cap59p) is involved in the extracellular trafficking of capsular glucuronoxylomannan. Eukaryot. Cell 3: 385392.
38. Gates, M. A., P. Thorkildson, and, T. R. Kozel. 2004. Molecular architecture of the Cryptococcus neoformans capsule. Mol. Microbiol. 52: 1324.
39. Granger, D. L., J. R. Perfect, and, D. T. Durack. 1985. Virulence of Cryptococcus neoformans. Regulation of capsule synthesis by carbon dioxide. J. Clin. Invest. 76: 508516.
40. Jacobson, E. S., M. J. Tingler, and, P. L. Quynn. 1989. Effect of hypertonic solutes upon the polysaccharide capsule in Cryptococcus neoformans. Mycoses 32: 1423.
41. James, P. G., and, R. Cherniak. 1992. Galactoxylomannans of Cryptococcus neoformans. Infect. Immun. 60: 10841088.
42. Janbon, G.,, U. Himmelreich,, F. Moyrand, L. Improvisi,, and F. Dromer. 2001. Cas1p is a membrane protein necessary for the O-acetylation of the Cryptococcus neoformans capsular polysaccharide. Mol. Microbiol. 42: 453467.
43. Kozel, T. R., and, E. C. Gotschlich. 1982. The capsule of Cryptococcus neoformans passively inhibits phagocytosis of the yeast by macrophages. J. Immunol. 129: 16751680.
44. Kozel, T. R.,, S.M. Levitz,, F. Dromer,, M. A Gates,, P. Thorkildson,, and G. Janbon. 2003. Antigenic and biological characteristics of mutant strains of Cryptococcus neoformans lacking capsular O acetylation or xylosyl side chains. Infect. Immun. 71: 28682875.
45. Kozel, T. R.,, G. S. Pfrommer,, A. S. Guerlain,, B. A. Highison,, and G. J. Highison. 1988. Strain variation in phagocytosis of Cryptococcus neoformans: dissociation of susceptibility to phagocytosis from activation and binding of opsonic fragments of C3. Infect. Immun. 56: 27942800.
46. Linnemans, W. A., P. Boer, and, P. F. Elbers. 1977. Localization of acid phosphatase in Saccharomyces cerevisiae: a clue to cell wall formation. J. Bacteriol. 131: 638644.
47. Littman, M. L. 1958. Capsule synthesis by Cryptococcus neoformans. Trans. NY Acad. Sci. 20: 623648.
48. Littman, M. L., and, E. Tsubura. 1959. Effect of degree of encapsulation upon virulence of Cryptococcus neoformans. Proc. Soc. Exp. Biol. Med. 101: 773777.
49. Ma, H.,, J. E Croudace,, D. A. Lammas, and, R. C. May. 2006. Expulsion of live pathogenic yeast by macrophages. Curr. Biol. 16: 21562160.
50. Macher, A. M.,, J.E. Bennett,, J.E. Gadek,, and M. M. Frank. 1978. Complement depletion in cryptococcal sepsis. J. Immunol. 120: 16861690.
51. Maxson, M. E.,, E. Cook,, A. Casadevall,, and O. Zaragoza. 2007. The volume and hydration of the Cryptococcus neoformans polysaccharide capsule. Fungal Genet. Biol. 44: 180186.
52. Maxson, M. E.,, E. Dadachova, A. Casadevall,, and O. Zaragoza. 2007. Radial mass density, charge, and epitope distribution in the Cryptococcus neoformans capsule. Eukaryot. Cell 6: 95109.
53. McFadden, D. C., and, A. Casadevall. 2004. Unexpected diversity in the fine specificity of monoclonal antibodies that use the same V region gene to glucuronoxylomannan of Cryptococcus neoformans. J. Immunol. 172: 36703677.
54. McFadden, D. C.,, M. De Jesus, and, A. Casadevall. 2006. The physical properties of the capsular polysaccharides from Cryptococcus neoformans suggest features for capsule construction. J. Biol. Chem. 281: 18681875.
55. McFadden, D. C.,, B.C. Fries,, F. Wang,, and A. Casadevall. 2007. Capsule structural heterogeneity and antigenic variation in Cryptococcus neoformans. Eukaryot. Cell 6: 14641473.
56. Mitchell, T. G., and, L. Friedman. 1972. In vitro phagocytosis and intracellular fate of variously encapsulated strains of Cryptococcus neoformans. Infect. Immun. 5: 491498.
57. Monari, C.,, F. Paganelli,, F. Bistoni, T. R. Kozel,, and A. Vecchiarelli. 2008. Capsular polysaccharide induction of apoptosis by intrinsic and extrinsic mechanisms. Cell Microbiol. 10: 21292137.
58. Monari, C.,, E. Pericolini,, G. Bistoni, A. Casadevall,, T.R. Kozel,, and A. Vecchiarelli. 2005. Cryptococcus neoformans capsular glucuronoxylomannan induces expression of fas ligand in macrophages. J. Immunol. 174: 34613468.
59. Murphy, J. W. 1988. Influence of cryptococcal antigens on cell-mediated immunity. Rev. Infect. Dis. 10 (Suppl 2) : S432–S435.
60. Murphy, J. W., and, G. C. Cozad. 1972. Immunological unresponsiveness induced by cryptococcal capsular polysaccharide assayed by the hemolytic plaque technique. Infect. Immun. 5: 896901.
61. Nimrichter, L.,, S. Frases,, L.P. Cinelli,, N.B. Viana,, A. Nakouzi,, L. R Travassos,, A. Casadevall,, and M. L. Rodrigues. 2007. Self-aggregation of Cryptococcus neoformans capsular glucuronoxylomannan is dependent on divalent cations. Eukaryot. Cell 6: 14001410.
62. Nimrichter, L.,, M. L Rodrigues,, E. G. Rodrigues, and, L. R. Travassos. 2005. The multitude of targets for the immune system and drug therapy in the fungal cell wall. Microbes Infect. 7: 789798.
63. Nosanchuk, J. D., and, A. Casadevall. 1997. Cellular charge of Cryptococcus neoformans: contributions from the capsular polysaccharide, melanin, and monoclonal antibody binding. Infect. Immun. 65: 18361841.
64. Nussbaum, G.,, W. Cleare,, A. Casadevall, M. D. Scharff,, and P. Valadon. 1997. Epitope location in the Cryptococcus neoformans capsule is a determinant of antibody efficacy. J. Exp. Med. 185: 685694.
65. Pericolini, E.,, E. Cenci,, C. Monari,, M. De Jesus,, F. Bistoni,, A. Casadevall,, and A. Vecchiarelli. 2006. Cryptococcus neoformans capsular polysaccharide component galactoxylomannan induces apoptosis of human T-cells through activation of caspase-8. Cell. Microbiol. 8: 267275.
66. Pierini, L. M., and, T. L. Doering. 2001. Spatial and temporal sequence of capsule construction in Cryptococcus neoformans. Mol. Microbiol. 41: 105115.
67. Pirofski, L.,, R. Lui,, M. DeShaw, A. B. Kressel,, and Z. Zhong. 1995. Analysis of human monoclonal antibodies elicited by vaccination with a Cryptococcus neoformans glucuronoxylomannan capsular polysaccharide vaccine. Infect. Immun. 63: 30053014.
68. Reese, A. J., and, T. L. Doering. 2003. Cell wall alpha-1,3-glucan is required to anchor the Cryptococcus neoformans capsule. Mol. Microbiol. 50: 14011409.
69. Reiss, E., M. Huppert, and, R. Cherniak. 1985. Characterization of protein and mannan polysaccharide antigens of yeasts, moulds, and actinomycetes. Curr. Top. Med. Mycol. 1: 172207.
70. Rodrigues, M. L.,, M. Alvarez,, F.L. Fonseca,, and A. Casadevall. 2008. Binding of the wheat germ lectin to Cryptococcus neoformans suggests an association of chitinlike structures with yeast budding and capsular glucuronoxylomannan. Eukaryot. Cell 7: 602609.
71. Sakaguchi, N. 1993. Ultrastructural study of hepatic granulomas induced by Cryptococcus neoformans by quick-freezing and deep-etching method. Virchows Arch. B Cell Pathol. Incl. Mol. Pathol. 64: 5766.
72. Schekman, R. W. 1994. Regulation of membrane traffic in the secretory pathway. Harvey Lect. 90: 4157.
73. Schliwa, M., and, G. Woehlke. 2003. Molecular motors. Nature 422: 759765.
74. Siafakas, A. R.,, T.C. Sorrell,, L.C. Wright,, C. Wilson,, M. Larsen,, R. Boadle,, P. R. Williamson,, and J. T. Djordjevic. 2007. Cell wall-linked cryptococcal phospholipase B1 is a source of secreted enzyme and a determinant of cell wall integrity. J. Biol. Chem. 282: 3750837514.
75. Small, J. M., and, T. G. Mitchell. 1989. Strain variation in antiphagocytic activity of capsular polysaccharides from Cryptococcus neoformans serotype A. Infect. Immun. 57: 37513756.
76. Takeo, K.,, I. Uesaka,, K. Uehira,, and M. Nishiura. 1973. Fine structure of Cryptococcus neoformans grown in vitro as observed by freeze-etching. J. Bacteriol. 113: 14421448.
77. Takeo, K.,, I. Uesaka,, K. Uehira,, and M. Nishiura. 1973. Fine structure of Cryptococcus neoformans grown in vivo as observed by freeze-etching. J. Bacteriol. 113: 14491454.
78. Todaro-Luck, F.,, E. Reiss,, R. Cherniak,, and L. Kaufman. 1989. Characterization of Cryptococcus neoformans capsular glucuronoxylomannan polysaccharide with monoclonal antibodies. Infect. Immun. 57: 38823887.
79. Turner, S. H., and, R. Cherniak. 1991. Glucuronoxylo-mannan of Cryptococcus neoformans serotype B: structural analysis by gas-liquid chromatographymass spectrometry and 13C-nuclear magnetic resonance spectroscopy. Carbohydr. Res. 211: 103116.
80. Turner, S. H.,, R. Cherniak,, E. Reiss, and, K. J. Kwon-Chung. 1992. Structural variability in the glucuronoxylomannan of Cryptococcus neoformans serotype A isolates determined by 13C NMR spectroscopy. Carbohydr. Res. 233: 205218.
81. Vaishnav, V. V.,, B.E. Bacon,, M. O’Neill,, and R. Cherniak. 1998. Structural characterization of the galactoxylomannan of Cryptococcus neoformans Cap67. Carbohydr. Res. 306: 315330.
82. van de Moer,, A.,, S.L. Salhi,, R. Cherniak, B. Pau,, M.L. Garrigues,, and J. M. Bastide. 1990. An anti- Cryptococcus neoformans monoclonal antibody directed against galactoxylomannan. Res. Immunol. 141: 3342.
83. Vartivarian, S. E.,, E.J. Anaissie,, R.E. Cowart,, H. A Sprigg,, M. J. Tingler,, and E. S. Jacobson. 1993. Regulation of cryptococcal capsular polysaccharide by iron. J. Infect. Dis. 167: 186190.
84. Walworth, N. C.,, B. Goud,, A. K. Kabcenell, and, P. J. Novick. 1989. Mutational analysis of SEC4 suggests a cyclical mechanism for the regulation of vesicular traffic. EMBO J. 8: 16851693.
85. Yoneda, A., and, T. L. Doering. 2006. A eukaryotic capsular polysaccharide is synthesized intracellularly and secreted via exocytosis. Mol. Biol. Cell 17: 51315140.
86. Yoneda, A., and, T. L. Doering. 2008. Regulation of Cryptococcus neoformans capsule size is mediated at the polymer level. Eukaryot. Cell 7: 546549.
87. Yue,, C.,, L.M. Cavallo,, J.A. Alspaugh,, P. Wang,, G. M Cox,, J. R. Perfect,, and J. Heitman. 1999. The STE12alpha homolog is required for haploid filamentation but largely dispensable for mating and virulence in Cryptococcus neoformans. Genetics 153: 16011615.
88. Zaragoza, O., and, A. Casadevall. 2004. Antibodies produced in response to Cryptococcus neoformans pulmonary infection in mice have characteristics of non-protective antibodies. Infect. Immun. 72: 42714274.
89. Zaragoza, O., and, A. Casadevall. 2004. Experimental modulation of capsule size in Cryptococcus neoformans. Biol. Proced. Online 6: 1015.
90. Zaragoza, O., M. Cuenca-Estrella, J. Regadera, and, J. L. Rodriguez Tudela. 2008. The capsule of the fungal pathogen Cryptococcus neoformans paradoxically inhibits invasive growth. Open Mycol. J. 2: 2939.
91. Zaragoza,, O.,, C.J. Chrisman,, M.V. Castelli,, S. Frases, M. Cuenca-Estrella, J. L. Rodriguez-Tudela,, and A. Casadevall. 2008. Capsule enlargement in Cryptococcus neoformans confers resistance to oxidative stress suggesting a mechanism for intracellular survival. Cell. Microbiol. 10: 20432057.
92. Zaragoza, O.,, B.C. Fries, and, A. Casadevall. 2003. Induction of capsule growth in Cryptococcus neoformans by mammalian serum and CO(2). Infect. Immun. 71: 61556164.
93. Zaragoza, O.,, C.P. Taborda, and, A. Casadevall. 2003. The efficacy of complement-mediated phagocytosis of Cryptococcus neoformans is dependent on the location of C3 in the polysaccharide capsule and involves both direct and indirect C3-mediated interactions. Euro. J. Immnunol. 33: 19571967.
94. Zaragoza, O.,, A. Telzak,, R. A. Bryan,, E. Dadachova,, and A. Casadevall. 2006. The polysaccharide capsule of the pathogenic fungus Cryptococcus neoformans enlarges by distal growth and is rearranged during budding. Mol. Microbiol. 59: 6783.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error