Chapter 6 : The Cell Wall of

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

The Cell Wall of , Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555816858/9781555815011_Chap06-1.gif /docserver/preview/fulltext/10.1128/9781555816858/9781555815011_Chap06-2.gif


The fungal cell wall is an essential organelle, vital for maintaining cell integrity against various chemical, physical, and biological stressors. This chapter covers work on the cell wall of , drawing on studies from fungi such as , , , , and , for introduction and comparison. Certain cell wall components can be up- or downregulated in response to various external conditions. The fungal cell wall contains several different components, and much is understood regarding their structures and mechanisms of synthesis. Certain proteins, such as Gas1p and Bgl2p, have been proposed to function in cell wall organization, but definitive studies are still needed. Future investigations in this area promise to dramatically increase our understanding of cell wall assembly and dynamics. Our understanding of the evolution of fungal cell wall proteins will advance with fungal genome sequencing. Studies of have revealed that its cell wall is very different from and more complex than other well-characterized fungal cell walls. Mutants of lacking β-1, 6-glucan, and therefore having decreased retention of cell wall proteins, appear to have shifts in chitosan localization. The fungal cell wall remains the most attractive target for the next generation of antifungal drugs.

Citation: Gilbert N, Lodge J, Specht C. 2011. The Cell Wall of , p 67-79. In Heitman J, Kozel T, Kwon-Chung K, Perfect J, Casadevall A (ed), . ASM Press, Washington, DC. doi: 10.1128/9781555816858.ch6
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of FIGURE 1

Quick-freeze deep-etch scanning electron micrograph of the cell wall of illustrating the attachment of capsule and the two layers of the cell wall. Micrograph kindly provided by Tamara Doering and John Heuser.

Citation: Gilbert N, Lodge J, Specht C. 2011. The Cell Wall of , p 67-79. In Heitman J, Kozel T, Kwon-Chung K, Perfect J, Casadevall A (ed), . ASM Press, Washington, DC. doi: 10.1128/9781555816858.ch6
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Albuquerque, P. C.,, E.S. Nakayasu,, M.L. Rodrigues,, S. Frases,, A. Casadevall,, R. M. Zancope-Oliveira,, I. C. Almeida,, and J. D. Nosanchuk. 2008. Vesicular transport in Histoplasma capsulatum: an effective mechanism for transcell wall transfer of proteins and lipids in ascomycetes. Cell. Microbiol. 10: 16951710.
2. Allen, A. K.,, A. Neuberger, and, N. Sharon. 1973. The purification, composition and specificity of wheat-germ agglutinin. Biochem. J. 131: 155162.
3. Araki, Y., and, E. Ito. 1975. A pathway of chitosan formation in Mucor rouxii. Enzymatic deacetylation of chitin. Eur. J. Biochem. 55: 7178.
4. Arcidiacono, S., and, D. L. Kaplan. 1992. Molecular weight distribution of chitosan isolated from Mucor rouxii under different culture and processing conditions. Biotechnol. Bioeng. 39: 281286.
5. Bacon, J. S.,, D. Jones, V. C. Farmer,, and D. M. Webley. 1968. The occurrence of alpha(1–3) glucan in Cryptococcus, Schizosaccharomyces and Polyporus species, and its hydrolysis by a Streptomyces culture filtrate lysing cell walls of Cryptococcus. Biochim. Biophys. Acta 158: 313315.
6. Baker, L. G.,, C.A. Specht,, M.J. Donlin,, and J. K. Lodge. 2007. Chitosan, the deacetylated form of chitin, is necessary for cell wall integrity in Cryptococcus neoformans. Eukaryot. Cell 6: 855867.
7. Baker, L. G., C. A. Specht, and, J. K. Lodge. 2009. Chitinases are essential for sexual development but not vegetative growth in Cryptococcus neoformans. Eukaryot. Cell. 8: 16921705.
8. Baldrian, P. 2006. Fungal laccases: occurrence and properties. FEMS Microbiol. Rev. 30: 215242.
9. Ballou, L.,, L. M Hernandez,, E. Alvarado, and, C. E. Ballou. 1990. Revision of the oligosaccharide structures of yeast carboxypeptidase Y. Proc. Natl. Acad. Sci. USA 87: 33683372.
10. Banks, I. R.,, C.A. Specht,, M.J. Donlin,, K. J Gerik,, S. M. Levitz,, and J. K. Lodge. 2005. A chitin synthase and its regulator protein are critical for chitosan production and growth of the fungal pathogen Cryptococcus neoformans. Eukaryot. Cell 4: 19021912.
11. Bartizal,, K.,, C.J. Gill,, G.K. Abruzzo,, A.M. Flattery,, L. Kong,, P. M Scott,, J. G. Smith,, C. E Leighton,, A. Bouffard,, J. F. Dropinski,, and J. Balkovec. 1997. In vitro preclinical evaluation studies with the echinocandin antifungal MK-0991 (L-743,872). Antimicrob. Agents Chemother. 41: 23262332.
12. Bartlett, M. S.,, W.L. Current,, M.P. Goheen,, C. J Boylan,, C. H. Lee,, M. M Shaw,, S. F. Queener,, and J. W. Smith. 1996. Semisynthetic echinocandins affect cell wall deposition of Pneumocystis carinii in vitro and in vivo. Antimicrob. Agents Chemother. 40: 18111816.
13. Bartnicki-Garcia, S., and, E. Lippman. 1969. Fungal morphogenesis: cell wall construction in Mucor rouxii. Science 165: 302304.
14. Beauvais, A.,, D. Maubon,, S. Park,, W. Morelle,, M. Tanguy,, M. Huerre,, D. S. Perlin,, and J. P. Latgé. 2005. Two alpha(1–3) glucan synthases with different functions in Aspergillus fumigatus. Appl. Environ. Microbiol. 71: 15311538.
15. Bernard, M., and, L. P. Latgé. 2001. Aspergillus fumigatus cell wall: composition and biosynthesis. Med. Mycol. 39 (Suppl): 1917.
16. Biondo, C.,, C. Beninati,, D. Delfino,, M. Oggioni,, G. Mancuso,, A. Midiri,, M. Bombaci,, G. Tomaselli,, and G. Teti. 2002. Identification and cloning of a cryptococcal deacetylase that produces protective immune responses. Infect. Immun. 70: 23832391.
17. Biondo, C.,, G. Mancuso,, A. Midiri,, M. Bombaci,, L. Messina,, C. Beninati,, and G. Teti. 2006. Identification of major proteins secreted by Cryptococcus neoformans. FEMS Yeast Res. 6: 645651.
18. Bowen, A. R.,, J. L. Chen-Wu,, M. Momany,, R. Young,, P. J. Szaniszlo,, and P. W. Robbins. 1992. Classification of fungal chitin synthases. Proc. Natl. Acad. Sci. USA 89: 519523.
19. Bulawa, C. E. 1992. CSD2, CSD3, and CSD4, genes required for chitin synthesis in Saccharomyces cerevisiae: the CSD2 gene product is related to chitin synthases and to developmentally regulated proteins in Rhizobium species and Xenopus laevis. Mol. Cell. Biol. 12: 17641776.
20. Cabib, E.,, N. Blanco,, C. Grau, J. M. Rodríguez-Peña,, and J. Arroyo. 2007. Crh1p and Crh2p are required for the cross-linking of chitin to beta(1–6) glucan in the Saccharomyces cerevisiae cell wall. Mol. Microbiol. 63: 921935.
21. Cabib, E.,, V. Farkas,, O. Kosík, N. Blanco,, J. Arroyo,, and P. McPhie. 2008. Assembly of the yeast cell wall. Crh1p and Crh2p act as transglycosylases in vivo and in vitro. J. Biol. Chem. 283: 2985929872.
22. Cabib, E.,, A. Sburlati,, B. Bowers,, and S. J Silverman. 1989. Chitin synthase 1, an auxiliary enzyme for chitin synthesis in Saccharomyces cerevisiae. J. Cell Biol. 108: 16651672.
23. Cabib, E., S. J. Silverman, and, J. A. Shaw. 1992. Chitinase and chitin synthase 1: counterbalancing activities in cell separation of Saccharomyces cerevisiae. J. Gen. Microbiol. 138: 97102.
24. Cannon, R. D.,, E. Lamping, A. R. Holmes,, K. Niimi,, P. V Baret,, M. V. Keniya,, K. Tanabe,, M. Niimi,, A. Goffeau,, and B. C. Monk. 2009. Efflux-mediated antifungal drug resistance. Clin. Microbiol. Rev. 22: 291321.
25. Cassone, A.,, R.E. Mason, and, D. Kerridge. 1981. Lysis of growing yeast-form cells of Candida albicans by echinocandin: a cytological study. Sabouraudia 19: 97110.
26. Chaka,, W.,, A.F. Verheul,, V.V. Vaishnav,, R. Cherniak,, J. Scharringa,, J. Verhoef,, H. Snippe,, and A. I. Hoepelman. 1997. Induction of TNF-alpha in human peripheral blood mononuclear cells by the mannoprotein of Cryptococcus neoformans involves human mannose binding protein. J. Immunol. 159: 29792985.
27. Chen, S. C.,, M. Muller, J. Z. Zhou,, L.C. Wright,, and T. C. Sorrell. 1997. Phospholipase activity in Cryptococcus neoformans: a new virulence factor? J. Infect. Dis. 175: 414420.
28. Chen, S. C.,, L.C. Wright,, J.C. Golding,, and T. C. Sorrell. 2000. Purification and characterization of secretory phospholipase B, lysophospholipase and lysophospholipase/transacylase from a virulent strain of the pathogenic fungus Cryptococcus neoformans. Biochem. J. 347 (Pt 2): 431439.
29. Chen, S. C.,, L.C. Wright,, R.T. Santangelo,, M. Muller,, V. R Moran,, P. W. Kuchel,, and T. C. Sorrell. 1997. Identification of extracellular phospholipase B, lysophospholipase, and acyltransferase produced by Cryptococcus neoformans. Infect. Immun. 65: 405411.
30. Christodoulidou, A., V. Bouriotis, and, G. Thireos. 1996. Two sporulation-specific chitin deacetylase-encoding genes are required for the ascospore wall rigidity of Saccharomyces cerevisiae. J. Biol. Chem. 271: 3142031425.
31. Cox, G. M.,, H.C. McDade,, S.C. Chen,, S. C Tucker,, M. Gottfredsson,, L. C Wright,, T. C. Sorrell,, S. D Leidich,, A. Casadevall,, M. A. Ghannoum,, and J. R. Perfect. 2001. Extracellular phospholipase activity is a virulence factor for Cryptococcus neoformans. Mol. Microbiol. 39: 166175.
32. De Groot, P. W. J., A. F. Ram, and, F. M. Klis. 2005. Features and functions of covalently linked proteins in fungal cell walls. Fungal Genet. Biol. 42: 657675.
33. De Groot,, P. W. J.,, Q.Y. Yin,, M. Weig,, G. J Sosinska,, F. M. Klis,, and C. G. de Koster. 2007. Mass spectrometric identification of covalently bound cell wall proteins from the fission yeast Schizosaccharomyces pombe. Yeast 24: 267278.
34. Del Poeta,, M.,, M.C. Cruz,, M.E. Cardenas,, J.R. Perfect,, and J. Heitman. 2000. Synergistic antifungal activities of bafilomycin A(1), fluconazole, and the pneumocandin MK-0991/caspofungin acetate (L-743,873) with calcineurin inhibitors FK506 and L-685,818 against Cryptococcus neoformans. Antimicrob. Agents Chemother. 44: 739746.
35. Del Poeta, M., W. A. Schell, and, J. R. Perfect. 1997. In vitro antifungal activity of pneumocandin L-743,872 against a variety of clinically important molds. Antimicrob. Agents Chemother. 41: 18351836.
36. DeMarini, D. J.,, A.E. Adams,, H. Fares,, C. De Virgilio,, G. Valle,, J. S. Chuang,, and J. R. Pringle. 1997. A septinbased hierarchy of proteins required for localized deposition of chitin in the Saccharomyces cerevisiae cell wall. J. CellBiol. 139: 7593.
37. De Nobel, J. G.,, F.M. Klis,, T. Munnik,, J. Priem,, and H. van den Ende. 1990. An assay of relative cell wall porosity in Saccharomyces cerevisiae, Kluyveromyces lactis and Schizosaccharomyces pombe. Yeast 6: 483490.
38. De Nobel, J. G.,, F.M. Klis,, J. Priem,, T. Munnik,, and H. van den Ende. 1990. The glucanase-soluble mannoproteins limit cell wall porosity in Saccharomyces cerevisiae. Yeast 6: 491499.
39. De Stefano, J. A.,, M.T. Cushion,, V. Puvanesarajah,, and P. D. Walzer. 1990. Analysis of Pneumocystis carinii cyst wall. II. Sugar composition. J. Protozool. 37: 436441.
40. Djordjevic, J. T.,, M. Del Poeta, T. C. Sorrell,, K.M. Turner,, and L. C. Wright. 2005. Secretion of cryptococcal phospholipase B1 (PLB1) is regulated by a glycosylphosphatidylinositol (GPI) anchor. Biochem. J. 389 (Pt 3): 803812.
41. Douglas, C. M.,, J. A. D’Ippolito,, G.J. Shei,, M. Meinz,, J. Onishi,, J. A Marrinan,, W. Li,, G. K Abruzzo,, A. Flattery,, K. Bartizal,, A. Mitchell,, and M. B. Kurtz. 1997. Identification of the FKS1 gene of Candida albicans as the essential target of 1,3-beta-D-glucan synthase inhibitors. Antimicrob. Agents Chemother. 41: 24712479.
42. Douglas, C. M.,, F. Foor, J. A. Marrinan,, N. Morin,, J. B Nielsen,, A. M. Dahl,, P. Mazur,, W. Baginsky,, W. Li,, and M. el-Sherbeini. 1994. The Saccharomyces cerevisiae FKS1 (ETG1) gene encodes an integral membrane protein which is a subunit of 1,3-beta-D-glucan synthase. Proc. Natl. Acad. Sci. USA 91: 1290712911.
43. Drgonová, J.,, T. Drgon,, K. Tanaka, R. Kollár,, G.C. Chen,, R. A Ford,, C. S. Chan,, Y. Takai,, and E. Cabib. 1996. Rho1p, a yeast protein at the interface between cell polarization and morphogenesis. Science 272: 277279.
44. Duo-Chuan, L. 2006. Review of fungal chitinases. Mycopathologia 161: 345360.
45. Eigenheer, R. A.,, Y. Jin Lee, E. Blumwald,, B.S. Phinney,, and A. Gelli. 2007. Extracellular glycosylphosphatidylinositol-anchored mannoproteins and proteases of Cryptococcus neoformans. FEMS Yeast Res. 7: 499510.
46. Eisenman, H. C.,, J.D. Nosanchuk,, J. B. W. Webber,, R. J Emerson,, T. A. Camesano,, and A. Casadevall. 2005. Microstructure of cell wall-associated melanin in the human pathogenic fungus Cryptococcus neoformans. Biochemistry 44: 36833693.
47. Feldmesser, M.,, Y. Kress,, A. Mednick,, and A. Casadevall. 2000. The effect of the echinocandin analogue caspofungin on cell wall glucan synthesis by Cryptococcus neoformans. J. Infect. Dis. 182: 17911795.
48. Fleet, G. H. 1985. Composition and structure of yeast cell walls. Curr. Top. Med. Mycol. 1: 2456.
49. Garcerá-Teruel,, A., B. Xoconostle-Cázares,, R. Rosas-Quijano, L. Ortiz,, C. León-Ramírez,, C. A Specht,, R. Sentandreu,, and J. Ruiz-Herrera. 2004. Loss of virulence in Ustilago maydis by Umchs6 gene disruption. Res. Microbiol. 155: 8797.
50. Gilbert, N. M.,, M.J. Donlin,, K.J. Gerik,, C. A Specht,, J. T. Djordjevic,, C. F Wilson,, T. C. Sorrell,, and J. K. Lodge. 2010. KRE genes are required for beta-1,6-glucan synthesis, maintenance of capsule architecture and cell wall protein anchoring in Cryptococcus neoformans. Mol. Microb. 76: 517534.
51. Goldman, D.,, S.C. Lee, and, A. Casadevall. 1994. Pathogenesis of pulmonary Cryptococcus neoformans infection in the rat. Infect. Immun. 62: 47554761.
52. Goto, M. 2007. Protein O-glycosylation in fungi: diverse structures and multiple functions. Biosci. Biotechnol. Biochem. 71: 14151427.
53. Grün, C. H.,, F. Hochstenbach, B. M. Humbel,, A.J. Verkleij,, J. H Sietsma,, F. M. Klis,, J. P. Kamerling,, and J. F. G. Vliegenthart. 2005. The structure of cell wall alpha-glucan from fission yeast. Glycobiology 15: 245257.
54. Hamilton, A. J., and, M. D. Holdom. 1997. Biochemical comparison of the Cu, Zn superoxide dismutases of Cryptococcus neoformans var. neoformans and Cryptococcus neoformans var. gattii. Infect. Immun. 65: 488494.
55. Hamilton, A. J.,, L. Jeavons,, P. Hobby, and, R. J. Hay. 1992. A 34- to 38-kilodalton Cryptococcus neoformans glycoprotein produced as an exoantigen bearing a glycosylated species-specific epitope. Infect. Immun. 60: 143149.
56. Hartland, R. P.,, C.A. Vermeulen,, F. M. Klis, J. H. Sietsma,, and J. G. Wessels. 1994. The linkage of (1–3)-beta-glucan to chitin during cell wall assembly in Saccharomyces cerevisiae. Yeast 10: 15911599.
57. Hector, R. F. 1993. Compounds active against cell walls of medically important fungi. Clin. Microbiol. Rev. 6: 121.
58. Hochstenbach,, F.,, F.M. Klis,, H. van den Ende, E. van Donselaar,, P.J. Peters,, and R. D. Klausner. 1998. Identification of a putative alpha-glucan synthase essential for cell wall construction and morphogenesis in fission yeast. Proc. Natl. Acad. Sci. USA 95: 91619166.
59. Hoy, J. F., J. W. Murphy, and, G. G. Miller. 1989. T cell response to soluble cryptococcal antigens after recovery from cryptococcal infection. J. Infect. Dis. 159: 116119.
60. Huang,, C.,, S.H. Nong,, M.K. Mansour,, C.A. Specht,, and S. M. Levitz. 2002. Purification and characterization of a second immunoreactive mannoprotein from Cryptococcus neoformans that stimulates T-Cell responses. Infect. Immun. 70: 54855493.
61. Iwata, K.,, Y. Yamamoto,, H. Yamaguchi,, and T. Hiratani. 1982. In vitro studies of aculeacin A, a new antifungal antibiotic. J. Antibiot. (Tokyo) 35: 203209.
62. Jacobson, E. S., and, R. Ikeda. 2005. Effect of melanization upon porosity of the cryptococcal cell wall. Med. Mycol. 43: 327333.
63. James, P. G.,, R. Cherniak, R. G. Jones,, C.A. Stortz,, and E. Reiss. 1990. Cell-wall glucans of Cryptococcus neoformans Cap 67. Carbohydr. Res. 198: 2338.
64. Kafetzopoulos, D., A. Martinou, and, V. Bouriotis. 1993. Bioconversion of chitin to chitosan: purification and characterization of chitin deacetylase from Mucor rouxii. Proc. Natl. Acad. Sci. USA 90: 25642568.
65. Kelly, R.,, E. Register,, M.J. Hsu,, M. Kurtz,, and J. Nielsen. 1996. Isolation of a gene involved in 1,3-beta-glucan synthesis in Aspergillus nidulans and purification of the corresponding protein. J. Bacteriol. 178: 43814391.
66. Klis, F. M. 1994. Review: cell wall assembly in yeast. Yeast 10: 851869.
67. Klis, F. M.,, P. de Groot, and, K. Hellingwerf. 2001. Molecular organization of the cell wall of Candida albicans. Med. Mycol. 39 (Suppl): 1118.
68. Klis, F. M.,, P. Mol,, K. Hellingwerf,, and S. Brul. 2002. Dynamics of cell wall structure in Saccharomyces cerevisiae. FEMS Microbiol. Rev. 26: 239256.
69. Kohno, H.,, K. Tanaka,, A. Mino,, M. Umikawa,, H. Imamura,, T. Fujiwara,, Y. Fujita,, K. Hotta,, H. Qadota,, T. Watanabe,, Y. Ohya,, and Y. Takai. 1996. Bni1p implicated in cytoskeletal control is a putative target of Rho1p small GTP binding protein in Saccharomyces cerevisiae. EMBO J. 15: 60606068.
70. Kollár, R.,, E. Petráková,, G. Ashwell, P. W. Robbins,, and E. Cabib. 1995. Architecture of the yeast cell wall. The linkage between chitin and beta(1→3)-glucan. J. Biol. Chem. 270: 11701178.
71. Kollár,, R.,, B.B. Reinhold,, E. Petráková, H. J. Yeh,, G. Ashwell,, J. Drgonová,, J. C Kapteyn,, F. M. Klis,, and E. Cabib. 1997. Architecture of the yeast cell wall. Beta (1→6)-glucan interconnects mannoprotein, beta(1→) 3-glucan, and chitin. J. Biol. Chem. 272: 1776217775.
72. Kraus, P. R.,, D.S. Fox,, G.M. Cox,, and J. Heitman. 2003. The Cryptococcus neoformans MAP kinase Mpk1 regulates cell integrity in response to antifungal drugs and loss of calcineurin function. Mol. Microbiol. 48: 13771387.
73. Krishnarao, T. V., and, J. N. Galgiani. 1997. Comparison of the in vitro activities of the echinocandin LY303366, the pneumocandin MK-0991, and fluconazole against Candida species and Cryptococcus neoformans. Antimicrob. Agents Chemother. 41: 19571960.
74. Lesage, G., and, H. Bussey. 2006. Cell wall assembly in Saccharomyces cerevisiae. Microbiol. Mol. Biol. Rev. 70: 317343.
75. Levitz, S. M., and, E. A. North. 1997. Lymphoproliferation and cytokine profiles in human peripheral blood mononuclear cells stimulated by Cryptococcus neoformans. J. Med. Vet. Mycol. 35: 229236.
76. Levitz, S. M., and, C. A. Specht. 2006. The molecular basis for the immunogenicity of Cryptococcus neoformans mannoproteins. FEMS Yeast Res. 6: 513524.
77. Lian,, T.,, M.I. Simmer,, C. A. D’Souza,, B.R. Steen,, S. D Zuyderduyn,, S. J. Jones,, M. A. Marra,, and J. W. Kronstad. 2005. Iron-regulated transcription and capsule formation in the fungal pathogen Cryptococcus neoformans. Mol. Microbiol. 55: 14521472.
78. Lipke, P. N., and, R. Ovalle. 1998. Cell wall architecture in yeast: new structure and new challenges. J. Bacteriol. 180: 37353740.
79. Liu, H.,, S. Kauffman,, J. M. Becker, and, P. J. Szaniszlo. 2004. Wangiella (Exophiala) dermatitidis WdChs5p, a class V chitin synthase, is essential for sustained cell growth at temperature of infection. Eukaryot. Cell 3: 4051.
80. Liu, L., R. P. Tewari, and, P. R. Williamson. 1999. Lac-case protects Cryptococcus neoformans from antifungal activity of alveolar macrophages. Infect. Immun. 67: 60346039.
81. Madrid, M. P., A. Di Pietro, and, M. I. G. Roncero. 2003. Class V chitin synthase determines pathogenesis in the vascular wilt fungus Fusarium oxysporum and mediates resistance to plant defence compounds. Mol. Microbiol. 47: 257266.
82. Maligie, M. A., and, C. P. Selitrennikoff. 2005. Cryptococcus neoformans resistance to echinocandins: (1,3)betaglucan synthase activity is sensitive to echinocandins. Antimicrob. Agents Chemother. 49: 28512856.
83. Mandel, M. A.,, G.G. Grace,, K.I. Orsborn,, F. Schafer,, J. W Murphy,, M. J. Orbach,, and J. N. Galgiani. 2000. The Cryptococcus neoformans gene DHA1 encodes an antigen that elicits a delayed-type hypersensitivity reaction in immune mice. Infect. Immun. 68: 61966201.
84. Manners, D. J., A. J. Masson, and, J. C. Patterson. 1973. The structure of a beta-(1→3)-D-glucan from yeast cell walls. Biochem. J. 135: 1930.
85. Mansour, M. K.,, L.E. Yauch,, J.B. Rottman,, and S. M. Levitz. 2004. Protective efficacy of antigenic fractions in mouse models of cryptococcosis. Infect. Immun. 72: 17461754.
86. Maubon, D.,, S. Park,, M. Tanguy,, M. Huerre,, C. Schmitt,, M. C. Prévost,, D. S Perlin,, J. P. Latgé,, and A. Beauvais. 2006. AGS3, an alpha(1–3)glucan synthase gene family member of Aspergillus fumigatus, modulates mycelium growth in the lung of experimentally infected mice. Fungal Genet. Biol. 43: 366375.
87. Mazur, P., and, W. Baginsky. 1996. In vitro activity of 1,3-beta-D-glucan synthase requires the GTP-binding protein Rho1. J. Biol. Chem. 271: 1460414609.
88. Mazur, P.,, N. Morin,, W. Baginsky, M. el-Sherbeini,, J. A. Clemas, J. B. Nielsen,, and F. Foor. 1995. Differential expression and function of two homologous subunits of yeast 1,3-beta-D-glucan synthase. Mol. Cell. Biol. 15: 56715681.
89. Minke, R., and, J. Blackwell. 1978. The structure of alphachitin. J. Mol. Biol. 120: 167181.
90. Mio,, T., M. Adachi-Shimizu,, Y. Tachibana,, H. Tabuchi,, S.B. Inoue,, T. Yabe,, T. Yamada-Okabe,, M. Arisawa,, T. Watanabe,, and H. Yamada-Okabe. 1997. Cloning of the Candida albicans homolog of Saccharomyces cerevisiae GSC1/FKS1 and its involvement in beta-1,3-glucan synthesis. J. Bacteriol. 179: 40964105.
91. Mouyna, I., and, T. Fontaine. 2009. Cell wall of Aspergillus fumigatus: a dynamic structure, p. 169–183. In J. P. Latgé and W. J. Steinbach (ed.), Aspergillus fumigatus and Aspergillosis. ASM Press, Washington, DC.
92. Mrsa, V., F. Klebl, and, W. Tanner. 1993. Purification and characterization of the Saccharomyces cerevisiae BGL2 gene product, a cell wall endo-beta-1,3-glucanase. J. Bacteriol. 175: 21022106.
93. Munro, C. A., and, N. A. Gow. 2001. Chitin synthesis in human pathogenic fungi. Med. Mycol. 39 (Suppl): 141153.
94. Munro, C. A.,, K. Winter,, A. Buchan,, K. Henry,, J. M Becker,, A. J. Brown,, C. E. Bulawa,, and N. A. Gow. 2001. Chs1 of Candida albicans is an essential chitin synthase required for synthesis of the septum and for cell integrity. Mol. Microbiol. 39: 14141426.
95. Murphy, J. W.,, R.L. Mosley,, R. Cherniak,, G. H Reyes,, T. R. Kozel,, and E. Reiss. 1988. Serological, electrophoretic, and biological properties of Cryptococcus neoformans antigens. Infect. Immun. 56: 424431.
96. Nonaka, H.,, K. Tanaka,, H. Hirano,, T. Fujiwara,, H. Kohno,, M. Umikawa,, A. Mino,, and Y. Takai. 1995. A downstream target of RHO1 small GTP-binding protein is PKC1, a homolog of protein kinase C, which leads to activation of the MAP kinase cascade in Saccharomyces cerevisiae. EMBO J. 14: 59315938.
97. Noverr, M. C.,, P.R. Williamson,, R.S. Fajardo,, and G. B. Huffnagle. 2004. CNLAC1 is required for extrapulmonary dissemination of Cryptococcus neoformans but not pulmonary persistence. Infect. Immun. 72: 16931699.
98. Olson, G. M.,, D.S. Fox,, P. Wang, J. A. Alspaugh,, and K. L. Buchanan. 2007. Role of protein O-mannosyltransferase Pmt4 in the morphogenesis and virulence of Cryptococcus neoformans. Eukaryot. Cell 6: 222234.
99. Ono, N.,, T. Yabe,, M. Sudoh,, T. Nakajima,, T. Yamada-Okabe, M. Arisawa,, and H. Yamada-Okabe. 2000. The yeast Chs4 protein stimulates the trypsin-sensitive activity of chitin synthase 3 through an apparent protein-protein interaction. Microbiology 146 (Pt 2): 385391.
100. Orlowski, M. 1991. Mucor dimorphism. Microbiol. Rev. 55: 234258.
101. Panepinto, J.,, K. Komperda,, S. Frases, Y. D. Park,, J. T. Djordjevic, A. Casadevall,, and P. R. Williamson. 2009. Sec6-dependent sorting of fungal extracellular exosomes and laccase of Cryptococcus neoformans. Mol. Microbiol. 71: 11651176.
102. Pfaller, M. A.,, S.A. Messer,, and S. Coffman. 1997. In vitro susceptibilities of clinical yeast isolates to a new echinocandin derivative, LY303366, and other antifungal agents. Antimicrob. Agents Chemother. 41: 763766.
103. Pietrella, D.,, R. Cherniak,, C. Strappini,, S. Perito,, P. Mosci,, F. Bistoni,, and A. Vecchiarelli. 2001. Role of mannoprotein in induction and regulation of immunity to Cryptococcus neoformans. Infect. Immun. 69: 28082814.
104. Pitzurra, L.,, R. Cherniak,, M. Giammarioli,, S. Perito,, F. Bistoni,, and A. Vecchiarelli. 2000. Early induction of interleukin-12 by human monocytes exposed to Cryptococcus neoformans mannoproteins. Infect. Immun. 68: 558563.
105. Popolo, L., and, M. Vai. 1999. The Gas1 glycoprotein, a putative wall polymer cross-linker. Biochim. Biophys. Acta 1426: 385400.
106. Privat, J. P.,, F. Delmotte,, G. Mialonier,, P. Bouchard,, and M. Monsigny. 1974. Fluorescence studies of saccharide binding to wheat-germ agglutinin (lectin). Eur. J. Biochem. 47: 514.
107. Qadota, H.,, I. Ishii,, A. Fujiyama,, Y. Ohya,, and Y. Anraku. 1992. RHO gene products, putative small GTP-binding proteins, are important for activation of the CAL1/CDC43 gene product, a protein geranylgeranyltransferase in Saccharomyces cerevisiae. Yeast 8: 735741.
108. Qadota,, H.,, C.P. Python,, S.B. Inoue,, M. Arisawa,, Y. Anraku,, Y. Zheng,, T. Watanabe,, D. E. Levin,, and Y. Ohya. 1996. Identification of yeast Rho1p GTPase as a regulatory subunit of 1,3-beta-glucan synthase. Science 272: 279281.
109. Ram, A. F.,, J.C. Kapteyn,, R.C. Montijn,, L. H Caro,, J.E. Douwes,, W. Baginsky,, P. Mazur,, H. van den Ende,, and F. M. Klis. 1998. Loss of the plasma membrane-bound protein Gas1p in Saccharomyces cerevisiae results in the release of beta1,3-glucan into the medium and induces a compensation mechanism to ensure cell wall integrity. J. Bacteriol. 180: 14181424.
110. Rappleye, C. A., J. T. Engle, and, W. E. Goldman. 2004. RNA interference in Histoplasma capsulatum demonstrates a role for alpha-(1,3)-glucan in virulence. Mol. Microbiol. 53: 153165.
111. Reese, A. J., and, T. L Doering. 2003. Cell wall alpha-1,3-glucan is required to anchor the Cryptococcus neoformans capsule. Mol. Microbiol. 50: 14011409.
112. Reese, A. J.,, A. Yoneda,, J. A. Breger,, A. Beauvais,, H. Liu,, C. L Griffith,, I. Bose,, M. Kim,, C. Skau,, S. Yang,, J. A Sefko,, M. Osumi,, J. Latge,, E. Mylonakis,, and T. L. Doering. 2007. Loss of cell wall alpha(1–3) glucan affects Cryptococcus neoformans from ultrastructure to virulence. Mol. Microbiol. 63: 13851398.
113. Reiss, E.,, R. Cherniak,, R. Eby,, and L. Kaufman. 1984. Enzyme immunoassay detection of IgM to galactoxylomannan of Cryptococcus neoformans. Diagn. Immunol. 2: 109115.
114. Rodrigues, M. L.,, M. Alvarez,, F. L Fonseca,, and A. Casadevall. 2008. Binding of the wheat germ lectin to Cryptococcus neoformans suggests an association of chitinlike structures with yeast budding and capsular glucuronoxylomannan. Eukaryot. Cell 7: 602609.
115. Rodrigues, M. L.,, A.S. Dobroff,, J.N. Couceiro,, C. S Alviano,, R. Schauer,, and L. R. Travassos. 2002. Sialylglycoconjugates and sialyltransferase activity in the fungus Cryptococcus neoformans. Glycoconj. J. 19: 165173.
116. Rodrigues, M. L.,, F. C. G. dos Reis,, R. Puccia, L. R. Travassos,, and C. S. Alviano. 2003. Cleavage of human fibronectin and other basement membrane-associated proteins by a Cryptococcus neoformans serine proteinase. Microb. Pathog. 34: 6571.
117. Rodrigues, M. L.,, L. Nimrichter,, D. L. Oliveira,, S. Frases,, K. Miranda,, O. Zaragoza,, M. Alvarez,, A. Nakouzi,, M. Feldmesser,, and A. Casadevall. 2007. Vesicular polysaccharide export in Cryptococcus neoformans is a eukaryotic solution to the problem of fungal trans-cell wall transport. Eukaryot. Cell 6: 4859.
118. Rodrigues, M. L.,, S. Rozental,, J. N. Couceiro,, J. Angluster,, C. S. Alviano,, and L.R. Travassos. 1997. Identification of N-acetylneuraminic acid and its 9-O-acetylated derivative on the cell surface of Cryptococcus neoformans: influence on fungal phagocytosis. Infect. Immun. 65: 49374942.
119. Rodríguez-Peña, J. M.,, V.J. Cid,, J. Arroyo,, and C. Nombela. 2000. A novel family of cell wall-related proteins regulated differently during the yeast life cycle. Mol. Cell. Biol. 20: 32453255.
120. Salas, S. D.,, J.E. Bennett,, K. J. Kwon-Chung, J. R. Perfect,, and P. R. Williamson. 1996. Effect of the laccase gene CNLAC1, on virulence of Cryptococcus neoformans. J. Exp. Med. 184: 377386.
121. Santangelo, R. T.,, M. H. Nouri-Sorkhabi,, T.C. Sorrell,, M. Cagney,, S. C Chen,, P. W. Kuchel,, and L. C. Wright. 1999. Biochemical and functional characterisation of secreted phospholipase activities from Cryptococcus neoformans in their naturally occurring state. J. Med. Microbiol. 48 (8): 731740.
122. Santangelo, R.,, H. Zoellner,, T. Sorrell,, C. Wilson,, C. Donald,, J. Djordjevic,, Y. Shounan,, and L. Wright. 2004. Role of extracellular phospholipases and mononuclear phagocytes in dissemination of cryptococcosis in a murine model. Infect. Immun. 72: 22292239.
123. Santos, B., and, M. Snyder. 1997. Targeting of chitin synthase 3 to polarized growth sites in yeast requires Chs5p and Myo2p. J. Cell Biol. 136: 95110.
124. Shahinian, S., and, H. Bussey. 2000. beta-1,6-Glucan synthesis in Saccharomyces cerevisiae. Mol. Microbiol. 35: 477489.
125. Shaw, J. A.,, P.C. Mol,, B. Bowers,, S. J Silverman,, M. H. Valdivieso,, A. Durán,, and E. Cabib. 1991. The function of chitin synthases 2 and 3 in the Saccharomyces cerevisiae cell cycle. J. Cell Biol. 114: 111123.
126. Siafakas, A. R.,, T.C. Sorrell,, L.C. Wright,, C. Wilson,, M. Larsen,, R. Boadle,, P. R. Williamson,, and J. T. Djordjevic. 2007. Cell wall-linked cryptococcal phospholipase B1 is a source of secreted enzyme and a determinant of cell wall integrity. J. Biol. Chem. 282: 3750837514.
127. Siafakas, A. R.,, L.C. Wright,, T.C. Sorrell,, and J. T. Djordjevic. 2006. Lipid rafts in Cryptococcus neoformans concentrate the virulence determinants phospholipase B1 and Cu/Zn superoxide dismutase. Eukaryot. Cell 5: 488498.
128. Soares, R. M.,, C.S. Alviano,, J. Angluster,, and L. R. Travassos. 1993. Identification of sialic acids on the cell surface of hyphae and yeast forms of the human pathogen Paracoccidioides brasiliensis. FEMS Microbiol. Lett. 108: 3134.
129. Soares, R. M.,, R. M. de A. Soares,, D.S. Alviano,, J. Angluster,, C. S. Alviano,, and L. R. Travassos. 2000. Identification of sialic acids on the cell surface of Candida albicans. Biochim. Biophys. Acta. 1474: 262268.
130. Soulié, M.,, A. Piffeteau,, M. Choquer,, M. Boccara,, and A. Vidal-Cros. 2003. Disruption of Botrytis cinerea class I chitin synthase gene Bcchs1 results in cell wall weakening and reduced virulence. Fungal Genet. Biol. 40: 3846.
131. Specht, C. A.,, Y. Liu, P. W. Robbins,, C.E. Bulawa,, N. Iartchouk,, K. R Winter,, P. J. Riggle,, J. C Rhodes,, C. L. Dodge,, D. W. Culp,, and P. T. Borgia. 1996. The chsD and chsE genes of Aspergillus nidulans and their roles in chitin synthesis. Fungal Genet. Biol. 20: 153167.
132. Takeshita, N., A. Ohta, and, H. Horiuchi. 2005. CsmA, a class V chitin synthase with a myosin motor-like domain, is localized through direct interaction with the actin cytoskeleton in Aspergillus nidulans. Mol. Biol. Cell. 16: 19611970.
133. Thompson, J. R.,, C.M. Douglas,, W. Li,, C. K Jue,, B. Pramanik,, X. Yuan,, T. H Rude,, D. L. Toffaletti,, J. R. Perfect,, and M. Kurtz. 1999. A glucan synthase FKS1 homolog in Cryptococcus neoformans is single copy and encodes an essential function. J. Bacteriol. 181: 444453.
134. Trilla, J. A.,, T. Cos,, A. Duran,, and C. Roncero. 1997. Characterization of CHS4 (CAL2), a gene of Saccharomyces cerevisiae involved in chitin biosynthesis and allelic to SKT5 and CSD4. Yeast 13: 795807.
135. Turner, K. M.,, L.C. Wright,, T.C. Sorrell,, and J. T. Djordjevic. 2006. N-linked glycosylation sites affect secretion of cryptococcal phospholipase B1, irrespective of glycosylphosphatidylinositol anchoring. Biochim. Bio-phys. Acta 1760: 15691579.
136. Valdivieso, M. H.,, P.C. Mol,, J.A. Shaw,, E. Cabib,, and A. Durán. 1991. CAL1, a gene required for activity of chitin synthase 3 in Saccharomyces cerevisiae. J. Cell Biol. 114: 101109.
137. Vartivarian, S. E.,, G. H. Reyes,, E. S. Jacobson,, P. G. James,, R. Cherniak,, V. R. Mumaw,, and M. J Tingler. 1989. Localization of mannoprotein in Cryptococcus neoformans. J. Bacteriol. 171: 68506852.
138. Vos, A.,, N. Dekker,, B. Distel, J. A. M. Leunissen,, and F. Hochstenbach. 2007. Role of the synthase domain of Ags1p in cell wall alpha-glucan biosynthesis in fission yeast. J. Biol. Chem. 282: 1896918979.
139. Wasylnka, J. A., M. I. Simmer, and, M. M. Moore. 2001. Differences in sialic acid density in pathogenic and non-pathogenic Aspergillus species. Microbiology 147 (Pt 4): 869877.
140. Waterman, S. R.,, M. Hacham,, J. Panepint,, G. Hu,, S. Shin,, and P. R. Williamson. 2007. Cell wall targeting of laccase of Cryptococcus neoformans during infection of mice. Infect. Immun. 75: 714722.
141. White, S. A.,, P.R. Farina,, and I. Fulton. 1979. Production and isolation of chitosan from Mucor rouxii. Appl. Environ. Microbiol. 38: 323328.
142. Williamson, P. R. 1994. Biochemical and molecular characterization of the diphenol oxidase of Cryptococcus neoformans: identification as a laccase. J. Bacteriol. 176: 656664.
143. Yamochi, W.,, K. Tanaka,, H. Nonaka,, A. Maeda,, T. Musha,, and Y. Takai. 1994. Growth site localization of Rho1 small GTP-binding protein and its involvement in bud formation in Saccharomyces cerevisiae. J. Cell Biol. 125: 10771093.
144. Yoo Ji, J.,, Y. S Lee,, C. Song, and, B. S. Kim. 2004. Purification and characterization of a 43-kilodalton extracellular serine proteinase from Cryptococcus neoformans. J. Clin. Microbiol. 42: 722726.
145. Zaas, A. K. 2008. Echinocandins: a wealth of choice— how clinically different are they? Curr. Opin. Infect. Dis. 21: 426432.
146. Zhong, J.,, S. Frases,, H. Wang,, A. Casadevall, and, R. E. Stark. 2008. Following fungal melanin biosynthesis with solid-state NMR: biopolymer molecular structures and possible connections to cell-wall polysaccharides. Biochemistry 47: 47014710.
147. Zhu, X.,, J. Gibbons,, J. Garcia-Rivera,, A. Casadevall, and, P. R. Williamson. 2001. Laccase of Cryptococcus neoformans is a cell wall-associated virulence factor. Infect. Immun. 69: 55895596.


Generic image for table

Major cell wall polysaccharides of select fungal organisms

Citation: Gilbert N, Lodge J, Specht C. 2011. The Cell Wall of , p 67-79. In Heitman J, Kozel T, Kwon-Chung K, Perfect J, Casadevall A (ed), . ASM Press, Washington, DC. doi: 10.1128/9781555816858.ch6
Generic image for table

Extracellular proteins of

Citation: Gilbert N, Lodge J, Specht C. 2011. The Cell Wall of , p 67-79. In Heitman J, Kozel T, Kwon-Chung K, Perfect J, Casadevall A (ed), . ASM Press, Washington, DC. doi: 10.1128/9781555816858.ch6

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error