Chapter 26 : The Interaction of with Host MacroPhages and Neutrophils

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

The Interaction of with Host MacroPhages and Neutrophils, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555816858/9781555815011_Chap26-1.gif /docserver/preview/fulltext/10.1128/9781555816858/9781555815011_Chap26-2.gif


This chapter focuses on the dynamic interaction of with alveolar macrophages (AMs) and how the consequential actions of both the host and fungal pathogen can affect the outcome of exposure. In macrophages, glucuronoxylomannan (GXM) binding to Toll-like receptors 2 (TLR2) and TLR4, in conjunction with CD14, triggers NF κB activation and its translocation to the nucleus. Recognition and binding of by phagocytes occurs with greater avidity when cells are opsonized. The alveolar spaces of the lung are coated with an epithelial lining fluid containing components essential to the induction of the host immune response, including complement and immunoglobulins (Ig). Administration of mAbs against GXM can increase internalization and prolong survival in murine models of cryptococcosis via complement pathway-independent and/or -dependent mechanisms. In neutrophils, GXM is rapidly degraded, but in rat macrophages, GXM can persist for months. Thus, the role of GXM in the regulation of the host immune response through macrophages is clearly more complex than that occurring through neutrophils. has developed mechanisms to survive within the phagolysosome. The enlargement of the polysaccharide capsule following phagocytosis provides resistance to microbicidal agents within the lumen of the phagolysosome, such as reactive oxygen species and antimicrobial peptides. The majority of research attempting to reveal novel virulence attributes mostly produces new mechanisms by which the three archetypal virulence factors modulate pathogenesis.

Citation: McQuiston T, Del Poeta M. 2011. The Interaction of with Host MacroPhages and Neutrophils, p 373-385. In Heitman J, Kozel T, Kwon-Chung K, Perfect J, Casadevall A (ed), . ASM Press, Washington, DC. doi: 10.1128/9781555816858.ch26
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of FIGURE 1

Interaction of with macrophages. is internalized by macrophages through a series of receptorligand interactions. Once internalized, can either be killed by the host, grow within the phagolysosome, or enter a dormant state. can move from the intracellular to the extracellular environment through macrophage lysis or by phagosome extrusion. Many and host factors have been identified to regulate these processes that can lead either to the containment of the infection or to the dissemination of cells and the development of cryptococcosis. CR, complement receptor; App1, antiphagocytic protein 1; GXM, glucuronoxylomannan; MP, mannoprotein; TLR, Tolllike receptor; AA, arachidonic acid; ER, endoplasmic reticulum; G, Golgi; N, nucleus; M, mitochondria.

Citation: McQuiston T, Del Poeta M. 2011. The Interaction of with Host MacroPhages and Neutrophils, p 373-385. In Heitman J, Kozel T, Kwon-Chung K, Perfect J, Casadevall A (ed), . ASM Press, Washington, DC. doi: 10.1128/9781555816858.ch26
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Alcouloumre,, M. S.,, M. A. Ghannoum,, A. S. Ibrahim,, M. E. Selsted, and, J. E. Edwards, Jr. 1993. Fungicidal properties of defensin NP-1 and activity against Cryptococcus neoformans in vitro. Antimicrob. Agents Chemother. 37: 26282632.
2. Alvarez, M., and, A. Casadevall. 2007. Cell-to-cell spread and massive vacuole formation after Cryptococcus neoformans infection of murine macrophages. BMC Immunol. 8: 16.
3. Alvarez, M., and, A. Casadevall. 2006. Phagosome extrusion and host-cell survival after Cryptococcus neoformans phagocytosis by macrophages. Curr. Biol. 16: 21612165.
4. Aratani,, Y.,, F. Kura,, H. Watanabe,, H. Akagawa,, Y. Takano,, A. Ishida-Okawara,, K. Suzuki,, N. Maeda, and, H. Koyama. 2006. Contribution of the myeloperoxidase-dependent oxidative system to host defence against Cryptococcus neoformans. J. Med. Microbiol. 55: 12911299.
5. Aratani,, Y.,, F. Kura,, H. Watanabe,, H. Akagawa,, Y. Takano,, K. Suzuki,, M. C. Dinauer,, N. Maeda, and, H. Koyama. 2002. Critical role of myeloperoxidase and nicotinamide adenine dinucleotide phosphate-oxidase in highburden systemic infection of mice with Candida albicans. J. Infect. Dis. 185: 18331837.
6. Aratani,, Y.,, F. Kura,, H. Watanabe,, H. Akagawa,, Y. Takano,, K. Suzuki,, M. C. Dinauer,, N. Maeda, and, H. Koyama. 2004. In vivo role of myeloperoxidase for the host defense. Jpn. J. Infect. Dis. 57: S15.
7. Aratani,, Y.,, F. Kura,, H. Watanabe,, H. Akagawa,, Y. Takano,, K. Suzuki,, M. C. Dinauer,, N. Maeda, and, H. Koyama. 2002. Relative contributions of myeloperoxidase and NADPH-oxidase to the early host defense against pulmonary infections with Candida albicans and Aspergillus fumigatus. Med. Mycol. 40: 557563.
8. Aratani,, Y.,, F. Kura,, H. Watanabe,, H. Akagawa,, Y. Takano,, K. Suzuki,, N. Maeda, and, H. Koyama. 2000. Differential host susceptibility to pulmonary infections with bacteria and fungi in mice deficient in myeloperoxidase. J. Infect. Dis. 182: 12761279.
9. Brightbill,, H. D.,, D. H. Libraty,, S. R. Krutzik,, R. B. Yang,, J. T. Belisle,, J. R. Bleharski,, M. Maitland,, M. V. Norgard,, S. E. Plevy,, S. T. Smale,, P. J. Brennan,, B. R. Bloom,, P. J. Godowski, and, R. L. Modlin. 1999. Host defense mechanisms triggered by microbial lipoproteins through toll-like receptors. Science 285: 732736.
10. Brouwer,, A. E.,, A. A. Siddiqui,, M. I. Kester,, K. C. Sigaloff,, A. Rajanuwong,, S. Wannapasni,, W. Chierakul, and, T. S. Harrison. 2007. Immune dysfunction in HIV-seronegative, Cryptococcus gattii meningitis. J. Infect. 54: e165e168.
11. Capilla,, J.,, C. M. Maffei,, K. V. Clemons,, R. A. Sobel, and, D. A. Stevens. 2006. Experimental systemic infection with Cryptococcus neoformans var. grubii and Cryptococcus gattii in normal and immunodeficient mice. Med. Mycol. 44: 601610.
12. Casadevall, A., and, L. Pirofski. 2001. Host-pathogen interactions: the attributes of virulence. J. Infect. Dis. 184: 337344.
13. Casadevall, A., and, L. A. Pirofski. 2001. Adjunctive immune therapy for fungal infections. Clin. Infect. Dis. 33: 10481056.
14. Casadevall, A., and, L. A. Pirofski. 1999. Host-pathogen interactions: redefining the basic concepts of virulence and pathogenicity. Infect. Immun. 67: 37033713.
15. Chaka,, W.,, A. F. Verheul,, V. V. Vaishnav,, R. Cherniak,, J. Scharringa,, J. Verhoef,, H. Snippe, and, A. I. Hoe-pelman. 1997. Induction of TNF-alpha in human peripheral blood mononu-clear cells by the mannoprotein of Cryptococcus neoformans involves human mannose binding protein. J. Immunol. 159: 29792985.
16. Charlier,, C.,, K. Nielsen,, S. Daou,, M. Brigitte,, F. Chretien, and, F. Dromer. 2009. Evidence of a role for monocytes in dissemination and brain invasion by Cryptococcus neoformans. Infect. Immun. 77: 120127.
17. Chayakulkeeree, M., and, J. R. Perfect. 2006. Cryptococcosis. Infect. Dis. Clin. North Am. 20: 507544., v–vi.
18. Chayakulkeeree,, M.,, T. C. Sorrell,, A. R. Siafakas,, C. F. Wilson,, N. Pantarat,, K. J. Gerik,, R. Boadle, and, J. T. Djordjevic. 2008. Role and mechanism of phosphatidylino-sitol-specific phospholipase C in survival and virulence of Cryptococcus neoformans. Mol. Microbiol. 69: 809826.
19. Chretien,, F.,, O. Lortholary,, I. Kansau,, S. Neuville,, F. Gray, and, F. Dromer. 2002. Pathogenesis of cerebral Cryptococcus neoformans infection after fungemia. J. Infect. Dis. 186: 522530.
20. Coenjaerts,, F. E.,, A. M. Walenkamp,, P. N. Mwinzi,, J. Scharringa,, H. A. Dekker,, J. A. van Strijp,, R. Cherniak, and, A. I. Hoepelman. 2001. Potent inhibition of neutrophil migration by cryptococcal mannoprotein-4-induced desensitization. J. Immunol. 167: 39883995.
21. Collins, H. L., and, G. J. Bancroft. 1992. Cytokine enhancement of complement-dependent phagocytosis by macrophages: synergy of tumor necrosis factoralpha and granulocyte-macrophage colony-stimulating factor for phagocytosis of Cryptococcus neoformans. Eur. J. Immunol. 22: 14471454.
22. Cox,, G. M.,, T. S. Harrison,, H. C. McDade,, C. P. Taborda,, G. Heinrich,, A. Casadevall, and, J. R. Perfect. 2003. Superoxide dismutase influences the virulence of Cryptococcus neoformans by affecting growth within macrophages. Infect. Immun. 71: 173180.
23. Cox,, G. M.,, H. C. McDade,, S. C. Chen,, S. C. Tucker,, M. Gottfredsson,, L. C. Wright,, T. C. Sorrell,, S. D. Lei-dich,, A. Casadevall,, M. A. Ghannoum, and, J. R. Perfect. 2001. Extracellular phospholipase activity is a virulence factor for Cryptococcus neoformans. Mol. Microbiol. 39: 166175.
24. Daeron, M. 1997. Fc receptor biology. Annu. Rev. Immunol. 15: 203234.
25. Datta, K., and, L. A. Pirofski. 2006. Towards a vaccine for Cryptococcus neoformans: principles and caveats. FEMS Yeast Res. 6: 525536.
26. Del Poeta, M. 2004. Role of phagocytosis in the virulence of Cryptococcus neoformans. Eukaryot. Cell 3: 10671075.
27. Deshaw, M., and, L. A. Pirofski. 1995. Antibodies to the Cryptococcus neoformans capsular glucuronoxylomannan are ubiquitous in serum from HIV+ and HIV- individuals. Clin. Exp. Immunol. 99: 425432.
28. Diamond, R. D. 1974. Antibody-dependent killing of Cryptococcus neoformans by human peripheral blood mononu-clear cells. Nature 247: 148150.
29. Diamond, R. D.,, R. A. Clark, and, C. C. Haudenschild. 1980. Damage to Candida albicans hyphae and pseudohyphae by the myeloperoxidase system and oxidative products of neutrophil metabolism in vitro. J. Clin. Invest. 66: 908917.
30. Diamond,, R. D.,, J. E. May,, M. Kane, M. M. Frank, and, J. E. Bennett. 1973. The role of late complement components and the alternate complement pathway in experimental cryptococcosis. Proc. Soc. Exp. Biol. Med. 144: 312315.
31. Diamond,, R. D.,, F. Oppenheim,, Y. Nakagawa,, R. Krzesicki, and, C. C. Haudenschild. 1980. Properties of a product of Candida albicans hyphae and pseudohyphae that inhibits contact between the fungi and human neutrophils in vitro. J. Immunol. 125: 27972804.
32. Diamond, R. D.,, R. K. Root, and, J. E. Bennett. 1972. Factors influencing killing of Cryptococcus neoformans by human leukocytes in vitro. J. Infect. Dis. 125: 367376.
33. Dong, Z. M., and, J. W. Murphy. 1997. Cryptococcal polysaccharides bind to CD18 on human neutrophils. Infect. Immun. 65: 557563.
34. Dong, Z. M., and, J. W. Murphy. 1996. Cryptococcal polysaccharides induce L-selectin shedding and tumor necrosis factor receptor loss from the surface of human neutrophils. J. Clin. Invest. 97: 689698.
35. Dromer, F.,, J. Charreire,, A. Contrepois,, C. Carbon, and, P. Yeni. 1987. Protection of mice against experimental cryptococcosis by anti- Cryptococcus neoformans monoclonal antibody. Infect. Immun. 55: 749752.
36. Dromer, F.,, O. Ronin, and, B. Dupont. 1992. Isolation of Cryptococcus neoformans var. gattii from an Asian patient in France: evidence for dormant infection in healthy subjects. J. Med. Vet. Mycol. 30: 395397.
37. Ehlers, M. R. 2000. CR3: a general purpose adhesionrecognition receptor essential for innate immunity. Microbes Infect. 2: 289294.
38. Eisenhauer, P. B., and, R. I. Lehrer. 1992. Mouse neutrophils lack defensins. Infect. Immun. 60: 34463447.
39. Ellerbroek,, P. M.,, D. J. Lefeber,, R. van Veghel,, J. Scharringa,, E. Brouwer,, G. J. Gerwig,, G. Janbon,, A. I. Hoepelman, and, F. E. Coenjaerts. 2004. O-acetylation of cryptococcal capsular glucuronoxylomannan is essential for interference with neutrophil migration. J. Immunol. 173: 751375120.
40. Ellerbroek,, P. M.,, L. H. Ulfman,, A. I. Hoepelman, and, F. E. Coenjaerts. 2004. Cryptococcal glucuronoxylomannan interferes with neutrophil rolling on the endothelium. Cell Microbiol. 6: 581592.
41. Ellerbroek,, P. M.,, A. M. Walenkamp,, A. I. Hoepelman, and, F. E. Coenjaerts. 2004. Effects of the capsular polysaccharides of Cryptococcus neoformans on phagocyte migration and inflammatory mediators. Curr. Med. Chem. 11: 253266.
42. Fan, W.,, P. R. Kraus,, M. J. Boily, and, J. Heitman. 2005. Cryptococcus neoformans gene expression during murine macrophage infection. Eukaryot. Cell 4: 14201433.
43. Faurschou, M., and, N. Borregaard. 2003. Neutrophil granules and secretory vesicles in inflammation. Microbes Infect. 5: 13171327.
44. Feldmesser, M.,, Y. Kress,, P. Novikoff, and, A. Casadevall. 2000. Cryptococcus neoformans is a facultative intracellular pathogen in murine pulmonary infection. Infect. Immun. 68: 42254237.
45. Fidan,, I.,, E. Yesilyurt,, F. C. Gurelik,, B. Erdal, and, T. Imir. 2008. Effects of recombinant interferongamma on cytokine secretion from monocyte-derived macrophages infected with Salmonella typhi. Comp. Immunol. Microbiol. Infect. Dis. 31: 467475.
46. Fleuridor, R.,, Z. Zhong, and, L. Pirofski. 1998. A human IgM monoclonal antibody prolongs survival of mice with lethal cryptococcosis. J. Infect. Dis. 178: 12131216.
47. Fridovich, I. 1995. Superoxide radical and superoxide dismutases. Annu. Rev. Biochem. 64: 97112.
48. Fulton,, S. A.,, S. M. Reba,, T. D. Martin, and, W. H. Boom. 2002. Neutrophilmediated mycobacteriocidal immunity in the lung during Mycobacterium bovis BCG infection in C57BL/6 mice. Infect. Immun. 70: 53225327.
49. Garcia,, J.,, J. Shea,, F. Alvarez-Vasquez,, A. Qureshi,, C. Luberto, E. O. Voit, and, M. Del Poeta. 2008. Mathematical modeling of pathogenicity of Cryptococcus neoformans. Mol. Syst. Biol. 4: 183.
50. GarciaHermoso, D.,, G. Janbon, and, F. Dromer. 1999. Epidemiological evidence for dormant Cryptococcus neoformans infection. J. Clin. Microbiol. 37: 32043209.
51. Gerber, J. S., and, D. M. Mosser. 2001. Stimulatory and inhibitory signals originating from the macrophage Fcgamma receptors. Microbes Infect. 3: 131139.
52. Giles, S. S.,, I. Batinic-Haberle,, J. R. Perfect, and, G. M. Cox. 2005. Cryptococcus neoformans mitochondrial superoxide dismutase: an essential link between antioxidant function and hightemperature growth. Eukaryot. Cell 4: 4654.
53. Goldman, D.,, S. C. Lee, and, A. Casadevall. 1994. Pathogenesis of pulmonary Cryptococcus neoformans infection in the rat. Infect Immun. 62: 47554761.
54. Granger, D. L.,, J. R. Perfect, and, D. T. Durack. 1985. Virulence of Cryptococcus neoformans. Regulation of capsule synthesis by carbon dioxide. J. Clin. Invest. 76: 508516.
55. Greub, G., and, D. Raoult. 2004. Microorganisms resistant to freeliving amoebae. Clin. Microbiol. Rev. 17: 413433.
56. Grinsell,, M.,, L. C. Weinhold,, J. E. Cutler,, Y. Han, and, T. R. Kozel. 2001. In vivo clearance of glucuronoxylomannan, the major capsular polysaccharide of Cryptococcus neoformans: a critical role for tissue macrophages. J. Infect. Dis. 184: 479487.
57. Hackam,, D. J.,, O. D. Rotstein,, W. J. Zhang,, N. Demaurex,, M. Woodside,, O. Tsai, and, S. Grinstein. 1997. Regulation of phagosomal acidification. Differential targeting of Na+/H+ exchangers, Na+/K+-ATPases, and vacuolar-type H+-ATPases. J. Biol. Chem. 272: 2981029820.
58. Hancock, R. E., and, G. Diamond. 2000. The role of cationic antimicrobial peptides in innate host defences. Trends Microbiol. 8: 402410.
59. He, W.,, A. Casadevall,, S. C. Lee, and, D. L. Goldman. 2003. Phagocytic activity and monocyte chemotactic protein expression by pulmonary macrophages in persistent pulmonary cryptococcosis. Infect. Immun. 71: 930936.
60. Herwig, S.,, Q. Su, and, P. Tempst. 1998. Drugactivated multiple pathways of defensin mRNA regulation in HL-60 cells are defined by reversed roles of participating protein kinases. Leuk. Res. 22: 913925.
61. Herwig, S.,, Q. Su,, W. Zhang,, Y. Ma, and, P. Tempst. 1996. Distinct temporal patterns of defensin mRNA regulation during druginduced differentiation of human myeloid leukemia cells. Blood 87: 350364.
62. Heung,, L. J.,, A. E. Kaiser,, C. Luberto, and, M. Del Poeta. 2005. The role and mechanism of diacylglycerolprotein kinase C1 signaling in melanogenesis by Cryptococcus neoformans. J. Biol. Chem. 280: 2854728555.
63. Heung,, L. J.,, C. Luberto,, A. Plowden,, Y. A. Hannun, and, M. Del Poeta. 2004. The sphingolipid pathway regulates Pkc1 through the formation of diacylglycerol in Cryptococcus neoformans. J. Biol. Chem. 279: 2114421153.
64. Ihi, T.,, M. Nakazato,, H. Mukae, and, S. Matsukura. 1997. Elevated concentrations of human neutrophil peptides in plasma, blood, and body fluids from patients with infections. Clin. Infect. Dis. 25: 11341140.
65. Isomoto,, H.,, H. Mukae,, H. Ishimoto,, Y. Nishi,, C. Y. Wen,, A. Wada,, K. Ohnita,, T. Hirayama,, M. Nakazato, and, S. Kohno. 2005. High concentrations of human betadefensin 2 in gastric juice of patients with Helicobacter pylori infection. World J. Gastroenterol. 11: 47824787.
66. Jankowski, A.,, C. C. Scott, and, S. Grinstein. 2002. Determinants of the phagosomal pH in neutrophils. J. Biol. Chem. 277: 60596066.
67. Kawakami,, K.,, Y. Koguchi,, M. H. Qureshi,, Y. Kinjo,, S. Yara,, A. Miyazato,, M. Kurimoto,, K. Takeda,, S. Akira, and, A. Saito. 2000. Reduced host resistance and Th1 response to Cryptococcus neoformans in interleukin-18 deficient mice. FEMS Microbiol. Lett. 186: 121126.
68. Kawakami,, K.,, Y. Koguchi,, M. H. Qureshi,, S. Yara,, Y. Kinjo,, K. Uezu, and, A. Saito. 2000. NK cells eliminate Cryptococcus neoformans by potentiating the fungicidal activity of macrophages rather than by directly killing them upon stimulation with IL-12 and IL-18. Microbiol. Immunol. 44: 10431050.
69. Kechichian, T. B.,, J. Shea, and, M. Del Poeta. 2007. Depletion of alveolar macrophages decreases the dissemination of a glucosylceramidedeficient mutant of Cryptococcus neoformans in immunodeficient mice. Infect. Immun. 75: 47924798.
70. Klebanoff, S. J. 1999. Myeloperoxidase. Proc. Assoc. Am. Physicians 111: 383389.
71. Klebanoff, S. J. 2005. Myeloperoxidase: friend and foe. J. Leukoc. Biol. 77: 598625.
72. Kozel, T. R. 1996. Activation of the complement system by pathogenic fungi. Clin. Microbiol. Rev. 9: 3446.
73. Kozel, T. R. 1977. Nonencapsulated variant of Cryptococcus neoformans. II. Surface receptors for cryptococcal polysaccharide and their role in inhibition of phagocytosis by polysaccharide. Infect. Immun. 16: 99106.
74. Kozel, T. R., and, E. C. Gotschlich. 1982. The capsule of Cryptococcus neoformans passively inhibits phagocytosis of the yeast by macrophages. J. Immunol. 129: 16751680.
75. Kozel, T. R., and, G. S. Pfrommer. 1986. Activation of the complement system by Cryptococcus neoformans leads to binding of iC3b to the yeast. Infect. Immun. 52: 15.
76. Kozel, T. R.,, A. Tabuni,, B. J. Young, and, S. M. Levitz. 1996. Influence of opsonization conditions on C3 deposition and phagocyte binding of large- and smallcapsule Cryptococcus neoformans cells. Infect. Immun. 64: 23362338.
77. Levitz,, S. M.,, T. S. Harrison,, A. Tabuni, and, X. Liu. 1997. Chloroquine induces human mononu-clear phagocytes to inhibit and kill Cryptococcus neoformans by a mechanism independent of iron deprivation. J. Clin. Invest. 100: 16401646.
78. Levitz,, S. M.,, S. H. Nong,, K. F. Seetoo,, T. S. Harrison,, R. A. Speizer, and, E. R. Simons. 1999. Cryptococcus neoformans resides in an acidic phagolysosome of human macrophages. Infect. Immun. 67: 885890.
79. Levitz, S. M., and, A. Tabuni. 1991. Binding of Cryptococcus neoformans by human cultured macrophages. Requirements for multiple complement receptors and actin. J. Clin. Invest. 87: 528535.
80. Levy, O. 2000. Antimicrobial proteins and peptides of blood: templates for novel antimicrobial agents. Blood 96: 26642672.
81. Lien,, E.,, T. J. Sellati,, A. Yoshimura, T. H. Flo,, G. Rawadi, R. W. Finberg,, J. D. Carroll,, T. Espevik,, R. R. Ingalls,, J. D. Radolf, and, D. T. Golenbock. 1999. Tolllike receptor 2 functions as a pattern recognition receptor for diverse bacterial products. J. Biol. Chem. 274: 3341933425.
82. Liu, L.,, K. Wakamatsu,, S. Ito, and, P. R. Williamson. 1999. Catecholamine oxidative products, but not melanin, are produced by Cryptococcus neoformans during neuropathogenesis in mice. Infect. Immun. 67: 108112.
83. Liu,, O. W.,, C. D. Chun,, E. D. Chow,, C. Chen,, H. D. Madhani, and, S. M. Noble. 2008. Systematic genetic analysis of virulence in the human fungal pathogen Cryptococcus neoformans. Cell 135: 174188.
84. Liu, X.,, G. Hu,, J. Panepinto, and, P. R. Williamson. 2006. Role of a VPS41 homologue in starvation response, intracellular survival and virulence of Cryptococcus neoformans. Mol. Microbiol. 61: 11321146.
85. Lortholary, O.,, H. Nunez,, M. W. Brauner, and, F. Dromer. 2004. Pulmonary cryptococcosis. Semin. Respir. Crit. Care. Med. 25: 145157.
86. Luberto,, C.,, B. Martinez-Marino,, D. Taraskiewicz,, B. Bolanos,, P. Chitano, D. L. Toffaletti,, G. M. Cox,, J. R. Perfect,, Y. A. Hannun,, E. Balish, and, M. Del Poeta. 2003. Identification of App1 as a regulator of phagocytosis and virulence of Cryptococcus neoformans. J. Clin. Invest. 112: 10801094.
87. Luberto,, C.,, D. L. Toffaletti,, E. A. Wills,, S. C. Tucker,, A. Casadevall,, J. R. Perfect,, Y. A. Hannun, and, M. Del Poeta. 2001. Roles for inositolphosphoryl ceramide synthase 1 (IPC1) in pathogenesis of C. neoformans. Genes Dev. 15: 201212.
88. Lukacs,, G. L.,, O. D. Rotstein,, and S. Grinstein. 1991. Determinants of the phagosomal pH in macrophages. In situ assessment of vacuolar H(+)-ATPase activity, counterion conductance, and H+ “leak.” J. Biol. Chem. 266: 2454024548.
89. Lukacs, G. L.,, O. D. Rotstein, and, S. Grinstein. 1990. Phagosomal acidification is mediated by a vacuolartype H(+)-ATPase in murine macrophages. J. Biol. Chem. 265: 210991107.
90. Ma, H.,, J. E. Croudace,, D. A. Lammas, and, R. C. May. 2006. Expulsion of live pathogenic yeast by macrophages. Curr. Biol. 16: 21562160.
91. Mare,, L.,, R. Iatta,, M. T. Montagna,, C. Luberto, and, M. Del Poeta. 2005. APP1 transcription is regulated by inositol-phosphorylceramide synthase 1-diacylglycerol pathway and is controlled by ATF2 transcription factor in Cryptococcus neoformans. J. Biol. Chem. 280: 3605536064.
92. Mayer, A. M., and, R. C. Staples. 2002. Laccase: new functions for an old enzyme. Phytochemistry 60: 551565.
93. Means,, T. K.,, E. Mylonakis,, E. Tampakakis,, R. A. Colvin,, E. Seung,, L. Puckett,, M. F. Tai,, C. R. Stewart,, R. Pukkila-Worley,, S. E. Hickman,, K. J. Moore,, S. B. Calderwood,, N. Hacohen,, A. D. Luster, and, J. El Khoury. 2009. Evolutionarily conserved recognition and innate immunity to fungal pathogens by the scavenger receptors SCARF1 and CD36. J. Exp. Med. 206: 637653.
94. Mednick, A. J.,, M. Feldmesser,, J. Rivera, and, A. Casadevall. 2003. Neutropenia alters lung cytokine production in mice and reduces their susceptibility to pulmonary cryptococcosis. Eur. J. Immunol. 33: 17441753.
95. Mershon,, K. L.,, A. Vasuthasawat, G. W. Lawson,, S. L. Morrison, and, D. O. Beenhouwer. 2009. Role of complement in protection against Cryptococcus gattii infection. Infect. Immun. 77: 10611070.
96. Miller, M. F., and, T. G. Mitchell. 1991. Killing of Cryptococcus neoformans strains by human neutrophils and monocytes. Infect. Immun. 59: 2428.
97. Missall,, T. A.,, J. M. Moran,, J. A. Corbett, and, J. K. Lodge. 2005. Distinct stress responses of two functional laccases in Cryptococcus neoformans are revealed in the absence of the thiolspecific antioxidant Tsa1. Eukaryot. Cell 4: 202208.
98. Modlin, R. L.,, H. D. Brightbill, and, P. J. Godowski. 1999. The toll of innate immunity on microbial pathogens. N. Engl. J. Med. 340: 18341835.
99. Monari,, C.,, F. Bistoni,, A. Casadevall,, E. Pericolini,, D. Pietrella, T. R. Kozel, and, A. Vecchiarelli. 2005. Glucuronoxylomannan, a microbial compound, regulates expression of costimulatory molecules and production of cytokines in macrophages. J. Infect. Dis. 191: 127137.
100. Monari,, C.,, T. R. Kozel,, F. Paganelli,, E. Pericolini,, S. Perito,, F. Bistoni,, A. Casadevall, and, A. Vecchiarelli. 2006. Microbial immune suppression mediated by direct engagement of inhibitory Fc receptor. J. Immunol. 177: 68426851.
101. Monari, C.,, F. Paganelli,, F. Bistoni, T. R. Kozel, and, A. Vecchiarelli. 2008. Capsular polysaccharide induction of apoptosis by intrinsic and extrinsic mechanisms. Cell. Microbiol. 10: 21292137.
102. Monari,, C.,, E. Pericolini,, G. Bistoni,, A. Casadevall,, T. R. Kozel, and, A. Vecchiarelli. 2005. Cryptococcus neoformans capsular glucuronoxylomannan induces expression of Fas ligand in macrophages. J. Immunol. 174: 34613468.
103. Monari,, C.,, C. Retini,, A. Casadevall,, D. Netski,, F. Bistoni, T. R. Kozel, and, A. Vecchiarelli. 2003. Differences in outcome of the interaction between Cryptococcus neoformans glucuronoxylomannan and human monocytes and neutrophils. Eur. J. Immunol. 33: 10411051.
104. Moyrand, F.,, T. Fontaine, and, G. Janbon. 2007. Systematic capsule gene disruption reveals the central role of galactose metabolism on Cryptococcus neoformans virulence. Mol. Microbiol. 64: 771781.
105. Moyrand, F.,, I. Lafontaine,, T. Fontaine, and, G. Janbon. 2008. UGE1 and UGE2 regulate the UDPglucose/UDPgalactose equilibrium in Cryptococcus neoformans. Eukaryot. Cell 7: 20692077.
106. Mukherjee, J.,, G. Nussbaum,, M. D. Scharff, and, A. Casadevall. 1995. Protective and nonprotective monoclonal antibodies to Cryptococcus neoformans originating from one B cell. J. Exp. Med. 181: 405409.
107. Mukherjee, J.,, M. D. Scharff, and, A. Casadevall. 1992. Protective murine monoclonal antibodies to Cryptococcus neoformans. Infect. Immun. 60: 45344541.
108. Narasipura,, S. D.,, J. G. Ault,, M. J. Behr,, V. Chaturvedi, and, S. Chaturvedi. 2003. Characterization of Cu, Zn superoxide dismutase (SOD1) gene knockout mutant of Cryptococcus neoformans var. gattii: role in biology and virulence. Mol. Microbiol. 47: 16811694.
109. Narasipura, S. D.,, V. Chaturvedi, and, S. Chaturvedi. 2005. Characterization of Cryptococcus neoformans variety gattii SOD2 reveals distinct roles of the two superoxide dismutases in fungal biology and virulence. Mol. Microbiol. 55: 17821800.
110. Neilson, J. B.,, R. A. Fromtling, and, G. S. Bulmer. 1977. Cryptococcus neoformans: size range of infectious particles from aerosolized soil. Infect. Immun. 17: 634638.
111. Neto,, R. J.,, M. C. Guimaraes,, M. J. Moya,, F. R. Oliveira,, P. L. Louzada, Jr., and, R. Martinez. 2000. Hypogammaglobulinemia as risk factor for Cryptococcus neoformans infection: report of 2 cases. Rev. Soc. Bras. Med. Trop. 33: 603608. (In Portuguese.)
112. Nimmerjahn, F.,, P. Bruhns,, K. Horiuchi, and, J. V. Ravetch. 2005. FcgammaRIV: a novel FcR with distinct IgG subclass specificity. Immunity 23: 4151.
113. Nussbaum, G.,, W. Cleare,, A. Casadevall, M. D. Scharff, and, P. Valadon. 1997. Epitope location in the Cryptococcus neoformans capsule is a determinant of antibody efficacy. J. Exp. Med. 185: 685694.
114. Okazaki,, T.,, Y. Ota,, N. Yuki,, A. Hayashida,, A. Shoda,, M. Nishikawa,, K. Oshima,, I. Fukasawa,, H. Watanabe, and, N. Inaba. 2007. Plasma levels of alphadefensins 1–3 are an indicator of neutrophil activation in pregnant and postpartum women. J. Obstet. Gynaecol. Res. 33: 645650.
115. Panyutich,, A. V.,, E. A. Panyutich,, V. A. Krapivin,, E. A. Baturevich, and, T. Ganz. 1993. Plasma defensin concentrations are elevated in patients with septicemia or bacterial meningitis. J. Lab. Clin. Med. 122: 202207.
116. Parry,, M. F.,, R. K. Root,, J. A. Metcalf,, K. K. Delaney,, L. S. Kaplow, and, W. J. Richar. 1981. Myeloperoxidase deficiency: prevalence and clinical significance. Ann. Intern. Med. 95: 293301.
117. Pedrosa,, J.,, B. M. Saunders,, R. Appelberg, I. M. Orme,, M. T. Silva, and, A. M. Cooper. 2000. Neutrophils play a protective nonphagocytic role in systemic Mycobacterium tuberculosis infection of mice. Infect. Immun. 68: 577583.
118. Powell,, K. E.,, B. A. Dahl,, R. J. Weeks, and, F. E. Tosh. 1972. Airborne Cryptococcus neoformans: particles from pigeon excreta compatible with alveolar deposition. J. Infect. Dis. 125: 412415.
119. Price, M. S.,, C. B. Nichols, and, J. A. Alspaugh. 2008. The Cryptococcus neoformans Rho-GDP dissociation inhibitor mediates intracellular survival and virulence. Infect. Immun. 76: 57295737.
120. Ravetch, J. V., and, S. Bolland. 2001. IgG Fc receptors. Annu. Rev. Immunol. 19: 275290.
121. Ravetch, J. V., and, L. L. Lanier. 2000. Immune inhibitory receptors. Science 290: 8489.
122. Rhodes, J. C. 1985. Contribution of complement component C5 to the pathogenesis of experimental murine cryptococcosis. Sabouraudia 23: 225234.
123. Rittershaus,, P. C.,, T. B. Kechichian,, J. C. Allegood,, A. H. Merrill, Jr.,, M. Hennig,, C. Luberto, and, M. Del Poeta. 2006. Glucosylceramide synthase is an essential regulator of pathogenicity of Cryptococcus neoformans. J. Clin. Invest. 116: 16511659.
124. Rodrigues,, M. L.,, E. S. Nakayasu,, D. L. Oliveira,, L. Nimrichter,, J. D. Nosanchuk,, I. C. Almeida, and, A. Casadevall. 2008. Extracellular vesicles produced by Cryptococcus neoformans contain protein components associated with virulence. Eukaryot. Cell 7: 5867.
125. Rodrigues,, M. L.,, L. Nimrichter, D. L. Oliveira,, S. Frases,, K. Miranda,, O. Zaragoza,, M. Alvarez,, A. Nakouzi,, M. Feldmesser, and, A. Casadevall. 2007. Vesicular polysaccharide export in Cryptococcus neoformans is a eukaryotic solution to the problem of fungal transcell wall transport. Eukaryot. Cell 6: 4859.
126. Saenz, H. L., and, C. Dehio. 2005. Signaturetagged mutagenesis: technical advances in a negative selection method for virulence gene identification. Curr. Opin. Microbiol. 8: 612619.
127. Salzman,, N. H.,, D. Ghosh, K. M. Huttner,, Y. Paterson, and, C. L. Bevins. 2003. Protection against enteric salmonellosis in transgenic mice expressing a human intestinal defensin. Nature 422: 522526.
128. Sanford,, J. E.,, D. M. Lupan,, A. M. Schlageter, and, T. R. Kozel. 1990. Passive immunization against Cryptococcus neoformans with an isotypeswitch family of monoclonal antibodies reactive with cryptococcal polysaccharide. Infect. Immun. 58: 19191923.
129. Santangelo,, R.,, H. Zoellner,, T. Sorrell,, C. Wilson,, C. Donald,, J. Djordjevic,, Y. Shounan, and, L. Wright. 2004. Role of extracellular phospholipases and mononu-clear phagocytes in dissemination of cryptococcosis in a murine model. Infect. Immun. 72: 22292239.
130. Segal, A. W. 1981. The antimicrobial role of the neutrophil leukocyte. J. Infect. 3: 317.
131. Segal,, A. W.,, M. Geisow,, R. Garcia,, A. Harper, and, R. Miller. 1981. The respiratory burst of phagocytic cells is associated with a rise in vacuolar pH. Nature 290: 406409.
132. Segal,, A. W.,, A. Harper,, R. Garcia,, O. T. Jones, and, A. R. Cross. 1981. The nature and function of the microbicidal oxidase system of neutrophils. Bull. Eur. Physiopathol. Respir. 17(Suppl) : 187191.
133. Seiler,, P.,, P. Aichele,, B. Raupach,, B. Odermatt,, U. Steinhoff, and, S. H. Kaufmann. 2000. Rapid neutrophil response controls fastreplicating intracellular bacteria but not slowreplicating Mycobacterium tuberculosis. J. Infect. Dis. 181: 671680.
134. Shao,, X.,, A. Mednick,, M. Alvarez, N. van Rooijen,, A. Casadevall, and, D. L. Goldman. 2005. An innate immune system cell is a major determinant of speciesrelated susceptibility differences to fungal pneumonia. J. Immunol. 175: 32443251.
135. Shapiro,, S.,, D. O. Beenhouwer,, M. Feldmesser,, C. Taborda,, M. C. Carroll,, A. Casadevall, and, M. D. Scharff. 2002. Immunoglobulin G monoclonal antibodies to Cryptococcus neoformans protect mice deficient in complement component C3. Infect. Immun. 70: 25982604.
136. Shea, J. M.,, J. L. Henry, and, M. Del Poeta. 2006. Lipid metabolism in Cryptococcus neoformans. FEMS Yeast Res. 6: 469479.
137. Shea,, J. M.,, T. B. Kechichian,, C. Luberto, and, M. Del Poeta. 2006. The cryptococcal enzyme inositol phosphosphingolipidphospholipase C confers resistance to the antifungal effects of macrophages and promotes fungal dissemination to the central nervous system. Infect. Immun. 74: 59775988.
138. Shoham,, S.,, C. Huang,, J. M. Chen,, D. T. Golenbock, and, S. M. Levitz. 2001. Tolllike receptor 4 mediates intracellular signaling without TNF-alpha release in response to Cryptococcus neoformans polysaccharide capsule. J. Immunol. 166: 46204626.
139. Siafakas,, A. R.,, T. C. Sorrell,, L. C. Wright,, C. Wilson,, M. Larsen,, R. Boadle,, P. R. Williamson, and, J. T. Djordjevic. 2007. Cell walllinked cryptococcal phospholipase B1 is a source of secreted enzyme and a determinant of cell wall integrity. J. Biol. Chem. 282: 3750837514.
140. Siafakas,, A. R.,, L. C. Wright,, T. C. Sorrell, and, J. T. Djordjevic. 2006. Lipid rafts in Cryptococcus neoformans concentrate the virulence determinants phospholipase B1 and Cu/Zn superoxide dismutase. Eukaryot. Cell 5: 488498.
141. Siddiqui,, A. A.,, A. E. Brouwer,, V. Wuthiekanun,, S. Jaffar,, R. Shattock,, D. Irving,, J. Sheldon,, W. Chierakul,, S. Peacock,, N. Day,, N. J. White, and, T. S. Harrison. 2005. IFN-gamma at the site of infection determines rate of clearance of infection in cryptococcal meningitis. J. Immunol. 174: 17461750.
142. Spitzer,, E. D.,, S. G. Spitzer,, L. F. Freundlich, and, A. Casadevall. 1993. Persistence of initial infection in recurrent Cryptococcus neoformans meningitis. Lancet 341: 595596.
143. Stano,, P.,, V. Williams,, M. Villani, E. S. Cymbalyuk,, A. Qureshi,, Y. Huang,, G. Morace,, C. Luberto,, S. Tomlinson, and, M. Del Poeta. 2009. App1: an antiphagocytic protein that binds to complement receptors 3 and 2. J. Immunol. 182: 8491.
144. Steenbergen, J. N.,, H. A. Shuman, and, A. Casadevall. 2001. Cryptococcus neoformans interactions with amoebae suggest an explanation for its virulence and intracellular pathogenic strategy in macrophages. Proc. Natl. Acad. Sci. USA 98: 1524515250.
145. Syme,, R. M.,, J. C. Spurrell,, L. L. Ma,, F. H. Green, and, C. H. Mody. 2000. Phagocytosis and protein processing are required for presentation of Cryptococcus neoformans mitogen to T lymphocytes. Infect. Immun. 68: 61476153.
146. Taborda, C. P., and, A. Casadevall. 2002. CR3 (CD11b/CD18) and CR4 (CD11c/CD18) are involved in complementindependent antibodymediated phagocytosis of Cryptococcus neoformans. Immunity 16: 791802.
147. Takeo, K.,, I. Uesaka,, K. Uehira, and, M. Nishiura. 1973. Fine structure of Cryptococcus neoformans grown in vivo as observed by freezeetching. J. Bacteriol. 113: 14491454.
148. Tateda,, K.,, T. A. Moore,, J. C. Deng,, M. W. Newstead,, X. Zeng,, A. Matsukawa,, M. S. Swanson,, K. Yamaguchi, and, T. J. Standiford. 2001. Early recruitment of neutrophils determines subsequent T1/T2 host responses in a murine model of Legionella pneumophila pneumonia. J. Immunol. 166: 33553361.
149. Tateda,, K.,, T. A. Moore,, M. W. Newstead,, W. C. Tsai,, X. Zeng,, J. C. Deng,, G. Chen,, R. Reddy,, K. Yamaguchi, and, T. J. Standiford. 2001. Chemokinedependent neutrophil recruitment in a murine model of Legionella pneumonia: potential role of neutrophils as immunoregulatory cells. Infect. Immun. 69: 20172024.
150. Tjelle, T. E.,, T. Lovdal, and, T. Berg. 2000. Phagosome dynamics and function. Bioessays 22: 255263.
151. Tommasino,, N.,, M. Villani,, A. Qureshi,, J. Henry,, C. Luberto, and, M. Del Poeta. 2008. Atf2 transcription factor binds to the APP1 promoter in Cryptococcus neoformans: stimulatory effect of diacylglycerol. Eukaryot. Cell 7: 294301.
152. Torda, A.,, R. K. Kumar, and, P. D. Jones. 2001. The pathology of human and murine pulmonary infection with Cryptococcus neoformans var. gattii. Pathology 33: 475478.
153. Tucker, S. C., and, A. Casadevall. 2002. Replication of Cryptococcus neoformans in macrophages is accompanied by phagosomal permeabilization and accumulation of vesicles containing polysaccharide in the cytoplasm. Proc. Natl. Acad. Sci. USA 99: 3165170.
154. Urban, C. F.,, S. Lourido, and, A. Zychlinsky. 2006. How do microbes evade neutrophil killing? Cell. Microbiol. 8: 16871696.
155. Van den Herik-Oudijk,, I. E.,, P. J. Capel,, T. van der Bruggen, and, J. G. Van de Winkel. 1995. Identification of signaling motifs within human Fc gamma RIIa and Fc gamma RIIb isoforms. Blood 85: 22022211.
156. Vecchiarelli,, A.,, M. Dottorini,, D. Pietrella,, C. Monari,, C. Retini,, T. Todisco, and, F. Bistoni. 1994. Role of human alveolar macrophages as antigenpresenting cells in Cryptococcus neoformans infection. Am. J. Respir. Cell Mol. Biol. 11: 130137.
157. Vecchiarelli,, A.,, C. Monari,, C. Retini,, D. Pietrella,, B. Palazzetti,, L. Pitzurra, and, A. Casadevall. 1998. Cryptococcus neoformans differently regulates B7–1 (CD80) and B7–2 (CD86) expression on human monocytes. Eur. J. Immunol. 28: 114121.
158. Vecchiarelli,, A.,, D. Pietrella,, M. Dottorini,, C. Monari,, C. Retini,, T. Todisco, and, F. Bistoni. 1994. Encapsulation of Cryptococcus neoformans regulates fungicidal activity and the antigen presentation process in human alveolar macrophages. Clin. Exp. Immunol. 98: 217223.
159. Villena,, S. N.,, R. O. Pinheiro,, C. S. Pinheiro,, M. P. Nunes,, C. M. Takiya,, G. A. DosReis,, J. O. Previato,, L. MendoncaPreviato, and, C. G. Freirede-Lima. 2008. Capsular polysaccharides galactoxylomannan and glucuronoxylomannan from Cryptococcus neoformans induce macrophage apoptosis mediated by Fas ligand. Cell. Microbiol. 10: 12741285.
160. Wang,, Y.,, Y. Jiang,, T. Gong,, X. Cui,, W. Li,, Y. Feng,, B. Wang,, Z. Jiang, and, M. Li. 2010. Highlevel expression and novel antifungal activity of mouse beta defensin-1 mature peptide in Escherichia coli. Appl. Biochem. Biotechnol. 160: 213221.
161. Washburn,, R. G.,, B. J. Bryant-Varela,, N. C. Julian, and, J. E. Bennett. 1991. Differences in Cryptococcus neoformans capsular polysaccharide structure influence assembly of alternative complement pathway C3 convertase on fungal surfaces. Mol. Immunol. 28: 465470.
162. Waterman,, S. R.,, M. Hacham,, J. Panepinto,, G. Hu,, S. Shin, and, P. R. Williamson. 2007. Cell wall targeting of laccase of Cryptococcus neoformans during infection of mice. Infect. Immun. 75: 714722.
163. Wetsel, R. A.,, D. T. Fleischer, and, D. L. Haviland. 1990. Deficiency of the murine fifth complement component (C5). A 2-base pair gene deletion in a 5’-exon. J. Biol. Chem. 265: 24352440.
164. Wheat,, W. H.,, R. Wetsel,, A. Falus,, B. F. Tack, and, R. C. Strunk. 1987. The fifth component of complement (C5) in the mouse. Analysis of the molecular basis for deficiency. J. Exp. Med. 165: 14421447.
165. Williamson, P. R. 1994. Biochemical and molecular characterization of the diphenol oxidase of Cryptococcus neoformans: identification as a laccase. J. Bacteriol. 176: 656664.
166. Wright,, L. C.,, R. M. Santangelo,, R. Ganendren,, J. Payne,, J. T. Djordjevic, and, T. C. Sorrell. 2007. Cryptococcal lipid metabolism: phospholipase B1 is implicated in transcellular metabolism of macrophagederived lipids. Eukaryot. Cell 6: 3747.
167. Yauch, L. E.,, M. K. Mansour, and, S. M. Levitz. 2005. Receptormediated clearance of Cryptococcus neoformans capsular polysaccharide in vivo. Infect. Immun. 73: 84298432.
168. Young, B. J., and, T. R. Kozel. 1993. Effects of strain variation, serotype, and structural modification on kinetics for activation and binding of C3 to Cryptococcus neoformans. Infect. Immun. 61: 29662972.
169. Yuan, R.,, A. Casadevall,, G. Spira, and, M. D. Scharff. 1995. Isotype switching from IgG3 to IgG1 converts a nonprotective murine antibody to Cryptococcus neoformans into a protective antibody. J. Immunol. 154: 18101816.
170. Yuan, R. R.,, A. Casadevall,, J. Oh, and, M. D. Scharff. 1997. T cells cooperate with passive antibody to modify Cryptococcus neoformans infection in mice. Proc. Natl. Acad. Sci. USA 94: 24832488.
171. Zaragoza, O., and, A. Casadevall. 2004. Antibodies produced in response to Cryptococcus neoformans pulmonary infection in mice have characteristics of nonprotective antibodies. Infect. Immun. 72: 42714274.
172. Zaragoza, O., and, A. Casadevall. 2004. Experimental modulation of capsule size in Cryptococcus neoformans. Biol. Proced. Online 6: 1015.
173. Zaragoza, O., and, A. Casadevall. 2006. Monoclonal antibodies can affect complement deposition on the capsule of the pathogenic fungus Cryptococcus neoformans by both classical pathway activation and steric hindrance. Cell. Microbiol. 8: 18621876.
174. Zaragoza,, O.,, C. J. Chrisman,, M. V. Castelli,, S. Frases,, M. Cuenca-Estrella,, J. L. RodriguezTudela, and, A. Casadevall. 2008. Capsule enlargement in Cryptococcus neoformans confers resistance to oxidative stress suggesting a mechanism for intracellular survival. Cell. Microbiol. 10: 20432057.
175. Zhu, X.,, J. Gibbons,, S. Zhang, and, P. R. Williamson. 2003. Coppermediated reversal of defective laccase in a Deltavph1 avirulent mutant of Cryptococcus neoformans. Mol. Microbiol. 47: 10071014.
176. Zhu, X., and, P. R. Williamson. 2004. Role of laccase in the biology and virulence of Cryptococcus neoformans. FEMS Yeast Res. 5: 110.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error