Chapter 30 : Interactions with Innate Cytotoxic Lymphocytes

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

Interactions with Innate Cytotoxic Lymphocytes, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555816858/9781555815011_Chap30-1.gif /docserver/preview/fulltext/10.1128/9781555816858/9781555815011_Chap30-2.gif


This chapter portrays the current understanding of the mechanisms involved in direct killing of by innate cytotoxic lymphocytes. Binding results in natural killer (NK)- cell reorganization of the actin and microtubular cytoskeleton that is important for formation of the immunological synapse (NKIS). Syngeneic, nylon wool nonadherent, splenic cells (NK cells) were adoptively transferred into the depleted mice. The mice were injected intravenously with in the presence or absence of anti-asialo GM1, which depletes NK cells. The response of NK cells to has been extended to human studies. Human NK cells can be obtained from the blood, where they are present as a small percentage of the total lymphocyte population. Perforin is the effector molecule required for NK-cell killing of . Via exocytosis of lytic granules, NK cells secrete effector molecules that are involved in the killing of tumor targets. NK cells can receive signals from other innate cells in response to as well as produce cytokines that stimulate other effector cells and shape adaptive immune responses. Human primary NK cells also secrete gamma interferon (IFN-γ) that correlates with increased killing of in vitro. Cytokines and chemokines are important mediators of immune cell function. In addition, similar to the observations of NK cells, NKT cells enhanced host defense against in the presence of interleukin-12 (IL-12) and IFN-γ. Thus, similar to NK cells, cytokines are important in eliciting NKT cell responses to and in direct killing of the organism.

Citation: Huston S, Mody C. 2011. Interactions with Innate Cytotoxic Lymphocytes, p 417-427. In Heitman J, Kozel T, Kwon-Chung K, Perfect J, Casadevall A (ed), . ASM Press, Washington, DC. doi: 10.1128/9781555816858.ch30
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of FIGURE 1

(A) Scanning electron micrograph of an NK-cell conjugate with . (B) Higher magnification of the area from panel A, showing appendages from the NK effector cell directed at the target. Image from Nabavi and Murphy ( ). Reprinted from with permission of the publisher.

Citation: Huston S, Mody C. 2011. Interactions with Innate Cytotoxic Lymphocytes, p 417-427. In Heitman J, Kozel T, Kwon-Chung K, Perfect J, Casadevall A (ed), . ASM Press, Washington, DC. doi: 10.1128/9781555816858.ch30
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2

Percollfractionated splenic large granular lymphocyte (NK cell) Golgi apparatus and centrioles at the site of contact. (a) Transmission electron microscopy of an NK cell conjugate with , identifying NK cell cytoskeletal changes. (b) Higher magnification including Golgi apparatus. Image from Hidore and associates ( ). Reprinted from with permission of the publisher

Citation: Huston S, Mody C. 2011. Interactions with Innate Cytotoxic Lymphocytes, p 417-427. In Heitman J, Kozel T, Kwon-Chung K, Perfect J, Casadevall A (ed), . ASM Press, Washington, DC. doi: 10.1128/9781555816858.ch30
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3

The NK cell MTOC forms near the site of contact with . (A) NK cell in association with as imaged by differential interference contrast imaging. (B) The same NK cell showing formation of the MTOC identified by fluorescence microscopy using antibodyspecific labeling of tubulin in association with the site of contact of Bar represents 1 μm. Images acquired by Martina Timm-McCann.

Citation: Huston S, Mody C. 2011. Interactions with Innate Cytotoxic Lymphocytes, p 417-427. In Heitman J, Kozel T, Kwon-Chung K, Perfect J, Casadevall A (ed), . ASM Press, Washington, DC. doi: 10.1128/9781555816858.ch30
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Akiba, H.,, Y. Motoki,, M. Satoh,, K. Iwatsuki, and, F. Kaneko. 2001. Recalcitrant trichophytic granuloma associated with NK-cell deficiency in a SLE patient treated with corticosteroid. Eur. J. Dermatol. 11: 5862.
2. Andreu, D.,, C. Carreno,, C. Linde, H. G. Boman, and, M. Andersson. 1999. Identification of an anti-mycobacterial domain in NK-lysin and granulysin. Biochem. J. 344(Pt 3) : 845849.
3. Barber, D. F., and, E. O. Long. 2003. Coexpression of CD58 or CD48 with intercellular adhesion molecule 1 on target cells enhances adhesion of resting NK cells. J. Immunol. 170: 294299.
4. Behar,, S. M.,, C. C. Dascher,, M. J. Grusby,, C. R. Wang, and, M. B. Brenner. 1999. Susceptibility of mice deficient in CD1D or TAP1 to infection with Mycobacterium tuberculosis. J. Exp. Med. 189: 19731980.
5. Beno, D. W., and, H. L. Mathews. 1990. Growth inhibition of Candida albicans by interleukin-2-induced lymph node cells. Cell. Immunol. 128: 89100.
6. Berntman, E.,, J. Rolf,, C. Johansson,, P. Anderson, and, S. L. Cardell. 2005. The role of CD1d-restricted NK T lymphocytes in the immune response to oral infection with Salmonella typhimurium. Eur. J. Immunol. 35: 21002109.
7. Berzins,, S. P.,, A. P. Uldrich,, D. G. Pellicci,, F. McNab,, Y. Hayakawa,, M. J. Smyth, and, D. I. Godfrey. 2004. Parallels and distinctions between T and NKT cell development in the thymus. Immunol. Cell Biol. 82: 269275.
8. Billiau, A., and, P. Matthys. 2009. Interferon-gamma: a historical perspective. Cytokine Growth Factor Rev. 20: 97113.
9. Brill,, K. J.,, Q. Li,, R. Larkin,, D. H. Canaday,, D. R. Kaplan,, W. H. Boom, and, R. F. Silver. 2001. Human natural killer cells mediate killing of intracellular Mycobacterium tuberculosis H37Rv via granule-independent mechanisms. Infect. Immun. 69: 17551765.
10. Brown, G. D., and, S. Gordon. 2001. Immune recognition. A new receptor for beta-glucans. Nature 413: 3637.
11. Bryceson,, Y. T.,, M. E. March,, D. F. Barber,, H. G. Ljunggren, and, E. O. Long. 2005. Cytolytic granule polarization and degranulation controlled by different receptors in resting NK cells. J. Exp. Med. 202: 10011012.
12. Canaday,, D. H.,, R. J. Wilkinson,, Q. Li, C. V. Harding,, R. F. Silver, and, W. H. Boom. 2001. CD4(+) and CD8(+) T cells kill intracellular Mycobacterium tuberculosis by a perforin and Fas/Fas ligand-independent mechanism. J. Immunol. 167: 27342742.
13. Carpen, O.,, I. Virtanen,, V. P. Lehto, and, E. Saksela. 1983. Polarization of NK cell cytoskeleton upon conjugation with sensitive target cells. J. Immunol. 131: 26952698.
14. Chen, X.,, P. P. Trivedi,, B. Ge,, K. Krzewski, and, J. L. Strominger. 2007. Many NK cell receptors activate ERK2 and JNK1 to trigger microtubule organizing center and granule polarization and cytotoxicity. Proc. Natl. Acad. Sci. USA 104: 63296334.
15. Clemons, K. V.,, E. Brummer, and, D. A. Stevens. 1994. Cytokine treatment of central nervous system infection: efficacy of interleukin-12 alone and synergy with conventional antifungal therapy in experimental cryptococcosis. Antimicrob. Agents Chemother. 38: 460464.
16. Cooper, M. A.,, T. A. Fehniger, and, M. A. Caligiuri. 2001. The biology of human natural killer-cell subsets. Trends Immunol. 22: 633640.
17. Crowe,, N. Y.,, A. P. Uldrich,, K. Kyparissoudis, K. J. Hammond,, Y. Hayakawa,, S. Sidobre,, R. Keating,, M. Kronenberg,, M. J. Smyth, and, D. I. Godfrey. 2003. Glycolipid antigen drives rapid expansion and sustained cytokine production by NK T cells. J. Immunol. 171: 40204027.
18. Davis,, D. M.,, I. Chiu,, M. Fassett,, G. B. Cohen,, O. Mandelboim, and, J. L. Strominger. 1999. The human natural killer cell immune synapse. Proc. Natl. Acad. Sci. USA 96: 1506215067.
19. Dong, Z. M., and, J. W. Murphy. 1997. Cryptococcal polysaccharides bind to CD18 on human neutrophils. Infect. Immun. 65: 557563.
20. Drexler, H. G., and, Y. Matsuo. 2000. Malignant hematopoietic cell lines: in vitro models for the study of multiple myeloma and plasma cell leukemia. Leukoc. Res. 24: 681703.
21. Ellner,, J. J.,, G. R. Olds,, C. W. Lee,, M. E. Kleinhenz, and, K. L. Edmonds. 1982. Destruction of the multicellular parasite Schistosoma mansoni by T lymphocytes. J. Clin. Invest. 70: 369378.
22. Elloso,, M. M.,, H. C. van der Heyde,, J. A. vande Waa,, D. D. Manning, and, W. P. Weidanz. 1994. Inhibition of Plasmodium falciparum in vitro by human gamma delta T cells. J. Immunol. 153: 11871194.
23. Ernst,, W. A.,, S. Thoma-Uszynski,, R. Teitelbaum,, C. Ko, D. A. Hanson,, C. Clayberger,, A. M. Krensky,, M. Leippe,, B. R. Bloom,, T. Ganz, and, R. L. Modlin. 2000. Granulysin, a T cell product, kills bacteria by altering membrane permeability. J. Immunol. 165: 71027108.
24. Faveeuw,, C.,, V. Angeli,, J. Fontaine,, C. Maliszewski,, A. Capron, L. Van Kaer,, M. Moser,, M. Capron, and, F. Trottein. 2002. Antigen presentation by CD1d contributes to the amplification of Th2 responses to Schistosoma mansoni glycoconjugates in mice. J. Immunol. 169: 906912.
25. Gansert,, J. L.,, V. Kiessler,, M. Engele,, F. Wittke,, M. Rollinghoff,, A. M. Krensky,, S. A. Porcelli,, R. L. Modlin, and, S. Stenger. 2003. Human NKT cells express granulysin and exhibit antimycobacterial activity. J. Immunol. 170: 31543161.
26. Gantner, B. N.,, R. M. Simmons, and, D. M. Underhill. 2005. Dectin-1 mediates macrophage recognition of Candida albicans yeast but not filaments. EMBO J. 24: 12771286.
27. Gazit,, R.,, K. Hershko,, A. Ingbar,, M. Schlesinger,, S. Israel,, C. Brautbar,, O. Mandelboim, and, V. Leibovici. 2008. Immunological assessment of familial tinea corporis. J. Eur. Acad. Dermatol. Venereol. 22: 871874.
28. Gersuk,, G. M.,, D. M. Underhill,, L. Zhu, and, K. A. Marr. 2006. Dectin-1 and TLRs permit macrophages to distinguish between different Aspergillus fumigatus cellular states. J. Immunol. 176: 37173724.
29. Gonzalez-Amaro,, R.,, J. F. Salazar-Gonzalez,, L. Baranda,, C. Abud-Mendoza,, O. Martinez-Maza,, M. Miramontes, and, B. Moncada. 1991. Natural killer cell-mediated cytotoxicity in cryptococcal meningitis. Rev. Invest. Clin. 43: 133138.
30. Graham,, D. B.,, M. Cella,, E. Giurisato,, K. Fujikawa, A. V. Miletic,, T. Kloeppel,, K. Brim,, T. Takai,, A. S. Shaw,, M. Colonna, and, W. Swat. 2006. Vav1 controls DAP10-mediated natural cytotoxicity by regulating actin and microtubule dynamics. J. Immunol. 177: 23492355.
31. Hidore, M. R.,, T. W. Mislan, and, J. W. Murphy. 1991. Responses of murine natural killer cells to binding of the fungal target Cryptococcus neoformans. Infect. Immun. 59: 14891499.
32. Hidore, M. R., and, J. W. Murphy. 1986. Correlation of natural killer cell activity and clearance of Cryptococcus neoformans from mice after adoptive transfer of splenic nylon wool-nonadherent cells. Infect. Immun. 51: 547555.
33. Hidore, M. R., and, J. W. Murphy. 1989. Murine natural killer cell interactions with a fungal target, Cryptococcus neoformans. Infect. Immun. 57: 19901997.
34. Hidore, M. R., and, J. W. Murphy. 1986. Natural cellular resistance of beige mice against Cryptococcus neoformans. J. Immunol. 137: 36243631.
35. Hidore, M. R.,, N. Nabavi,, F. Sonleitner, and, J. W. Murphy. 1991. Murine natural killer cells are fungicidal to Cryptococcus neoformans. Infect. Immun. 59: 17471754.
36. Hildreth,, J. E.,, F. M. Gotch,, P. D. Hildreth, and, A. J. McMichael. 1983. A human lymphocyte-associated antigen involved in cell-mediated lympholysis. Eur. J. Immunol. 13: 202208.
37. Hoag,, K. A.,, N. E. Street,, G. B. Huffnagle, and, M. F. Lipscomb. 1995. Early cytokine production in pulmonary Cryptococcus neoformans infections distinguishes susceptible and resistant mice. Am. J. Respir. Cell Mol. Biol. 13: 487495.
38. Horn, C. A., and, R. G. Washburn. 1995. Anticryptococcal activity of NK cell-enriched peripheral blood lymphocytes from human immunodeficiency virus-infected subjects: responses to interleukin-2, interferon-gamma, and interleukin-12. J. Infect. Dis. 172: 10231027.
39. Ishikawa,, H.,, H. Hisaeda,, M. Taniguchi,, T. Nakayama,, T. Sakai,, Y. Maekawa,, Y. Nakano,, M. Zhang,, T. Zhang,, M. Nishitani,, M. Takashima, and, K. Himeno. 2000. CD4(+) v(alpha)14 NKT cells play a crucial role in an early stage of protective immunity against infection with Leishmania major. Int. Immunol. 12: 12671274.
40. Jimenez, B. E., and, J. W. Murphy. 1984. In vitro effects of natural killer cells against Paracoccidioides brasiliensis yeast phase. Infect. Immun. 46: 552558.
41. Jones,, G. J.,, J. C. Wiseman,, K. J. Marr,, S. Wei,, J. Y. Djeu, and, C. H. Mody. 2009. In contrast to anti-tumor activity, YT cell and primary NK cell cytotoxicity for Cryptococcus neoformans bypasses LFA-1. Int. Immunol. 21: 42332.
42. Kahana,, D. D.,, O. Cass,, J. Jessurun,, S. J. Schwarzenberg,, H. Sharp, and, K. Khan. 2003. Sclerosing cholangitis associated with trichosporon infection and natural killer cell deficiency in an 8-year-old girl. J. Pediatr. Gastroenterol. Nutr. 37: 620623.
43. Kaspar,, A. A.,, S. Okada,, J. Kumar,, F. R. Poulain,, K. A. Drouvalakis,, A. Kelekar,, D. A. Hanson,, R. M. Kluck,, Y. Hitoshi,, D. E. Johnson,, C. J. Froelich,, C. B. Thompson,, D. D. Newmeyer,, A. Anel,, C. Clayberger, and, A. M. Krensky. 2001. A distinct pathway of cell-mediated apoptosis initiated by granulysin. J. Immunol. 167: 350356.
44. Kawakami,, K.,, Y. Kinjo,, K. Uezu,, S. Yara,, K. Miyagi,, Y. Koguchi,, T. Nakayama,, M. Taniguchi, and, A. Saito. 2001. Monocyte chemoattractant protein-1-dependent increase of V alpha 14 NKT cells in lungs and their roles in Th1 response and host defense in cryptococcal infection. J. Immunol. 167: 65256532.
45. Kawakami,, K.,, Y. Kinjo,, S. Yara,, Y. Koguchi,, K. Uezu,, T. Nakayama,, M. Taniguchi, and, A. Saito. 2001. Activation of Valpha14(+) natural killer T cells by alpha-galactosylceramide results in development of Th1 response and local host resistance in mice infected with Cryptococcus neoformans. Infect. Immun. 69: 213220.
46. Kawakami,, K.,, Y. Kinjo,, S. Yara,, K. Uezu,, Y. Koguchi,, M. Tohyama,, M. Azuma,, K. Takeda,, S. Akira, and, A. Saito. 2001. Enhanced gamma interferon production through activation of Valpha14(+) natural killer T cells by alpha-galactosylceramide in interleukin-18-deficient mice with systemic cryptococcosis. Infect. Immun. 69: 66436650.
47. Kawakami,, K.,, Y. Koguchi,, M. H. Qureshi,, S. Yara,, Y. Kinjo,, K. Uezu, and, A. Saito. 2000. NK cells eliminate Cryptococcus neoformans by potentiating the fungicidal activity of macrophages rather than by directly killing them upon stimulation with IL-12 and IL-18. Microbiol. Immunol. 44: 10431050.
48. Kawakami,, K.,, N. Yamamoto,, Y. Kinjo,, K. Miyagi,, C. Nakasone,, K. Uezu,, T. Kinjo,, T. Nakayama,, M. Taniguchi, and, A. Saito. 2003. Critical role of Valpha14+ natural killer T cells in the innate phase of host protection against Streptococcus pneumoniae infection. Eur. J. Immunol. 33: 33223330.
49. Khan, I. A.,, K. A. Smith, and, L. H. Kasper. 1988. Induction of antigen-specific parasiticidal cytotoxic T cell splenocytes by a major membrane protein (P30) of Toxoplasma gondii. J. Immunol. 141: 36003605.
50. Krishnaraj, R., and, A. Svanborg. 1993. Low natural killer cell function in disseminated aspergillosis. Scand. J. Infect. Dis. 25: 537541.
51. Kumar, H.,, A. Belperron,, S. W. Barthold, and, L. K. Bockenstedt. 2000. Cutting edge: CD1d deficiency impairs murine host defense against the spirochete, Borrelia burgdorferi. J. Immunol. 165: 47974801.
52. Lanier, L. L. 2008. Up on the tightrope: natural killer cell activation and inhibition. Nat. Immunol. 9: 495502.
53. Laskay, T.,, M. Rollinghoff, and, W. Solbach. 1993. Natural killer cells participate in the early defense against Leishmania major infection in mice. Eur. J. Immunol. 23: 22372241.
54. Levitz, S. M., and, M. P. Dupont. 1993. Phenotypic and functional characterization of human lymphocytes activated by interleukin-2 to directly inhibit growth of Cryptococcus neoformans in vitro. J. Clin. Invest. 91: 14901498.
55. Levitz, S. M.,, M. P. Dupont, and, E. H. Smail. 1994. Direct activity of human T lymphocytes and natural killer cells against Cryptococcus neoformans. Infect. Immun. 62: 194202.
56. Levitz, S. M., and, E. A. North. 1996. Gamma interferon gene expression and release in human lymphocytes directly activated by Cryptococcus neoformans and Candida albicans. Infect. Immun. 64: 15951599.
57. Levitz,, S. M.,, E. A. North,, M. P. Dupont, and, T. S. Harrison. 1995. Mechanisms of inhibition of Cryptococcus neoformans by human lymphocytes. Infect. Immun. 63: 35503554.
58. Lipscomb,, M. F.,, T. Alvarellos, G. B. Toews,, R. Tompkins,, Z. Evans,, G. Koo, and, V. Kumar. 1987. Role of natural killer cells in resistance to Cryptococcus neoformans infections in mice. Am. J. Pathol. 128: 354361.
59. Ma,, L. L.,, J. C. Spurrell,, J. F. Wang,, G. G. Neely,, S. Epelman,, A. M. Krensky, and, C. H. Mody. 2002. CD8 T cell-mediated killing of Cryptococcus neoformans requires granulysin and is dependent on CD4 T cells and IL-15. J. Immunol. 169: 57875795.
60. Ma,, L. L.,, C. L. Wang,, G. G. Neely,, S. Epelman,, A. M. Krensky, and, C. H. Mody. 2004. NK cells use perforin rather than granulysin for anticryptococcal activity. J. Immunol. 173: 33573365.
61. Mansour, M. K.,, E. Latz, and, S. M. Levitz. 2006. Cryptococcus neoformans glycoantigens are captured by multiple lectin receptors and presented by dendritic cells. J. Immunol. 176: 30533061.
62. Markham, R. B.,, J. Goellner, and, G. B. Pier. 1984. In vitro T cell-mediated killing of Pseudomonas aeruginosa. I. Evidence that a lymphokine mediates killing. J. Immunol. 133: 962968.
63. Marr,, K. J.,, G. J. Jones,, C. Zheng, S. M. Huston,, M. Timm-McCann,, A. Islam,, B. M. Berenger,, L. L. Ma,, J. C. Wiseman, and, C. H. Mody. 2009. Cryptococcus neoformans directly stimulates perforin production and rearms NK cells for enhanced anticryptococcal microbicidal activity. Infect. Immun. 77: 24362446.
64. Matsuda,, J. L.,, O. V. Naidenko,, L. Gapin,, T. Nakayama,, M. Taniguchi,, C. R. Wang,, Y. Koezuka, and, M. Kronenberg. 2000. Tracking the response of natural killer T cells to a glycolipid antigen using CD1d tetramers. J. Exp. Med. 192: 741754.
65. Matsumoto, G.,, M. P. Nghiem,, N. Nozaki,, R. Schmits, and, J. M. Penninger. 1998. Cooperation between CD44 and LFA-1/CD11a adhesion receptors in lymphokine-activated killer cell cytotoxicity. J. Immunol. 160: 57815789.
66. Matsumoto,, G.,, Y. Omi,, U. Lee,, T. Nishimura,, J. Shindo, and, J. M. Penninger. 2000. Adhesion mediated by LFA-1 is required for efficient IL-12-induced NK and NKT cell cytotoxicity. Eur. J. Immunol. 30: 37233731.
67. Matsuyama,, W.,, S. Takenaga,, K. Nakahara,, M. Kawabata,, Y. Iwakiri,, K. Arimura, and, M. Osame. 1997. Idiopathic hypoparathyroidism with fungal seminal vesiculitis. Intern. Med. 36: 113117.
68. McCann,, F. E.,, B. Vanherberghen,, K. Eleme,, L. M. Carlin,, R. J. Newsam,, D. Goulding, and, D. M. Davis. 2003. The size of the synaptic cleft and distinct distributions of filamentous actin, ezrin, CD43, and CD45 at activating and inhibitory human NK cell immune synapses. J. Immunol. 170: 28622870.
69. Miller,, M. F.,, T. G. Mitchell,, W. J. Storkus, and, J. R. Dawson. 1990. Human natural killer cells do not inhibit growth of Cryptococcus neoformans in the absence of antibody. Infect. Immun. 58: 639645.
70. Mody,, C. H.,, C. J. Wood,, R. M. Syme, and, J. C. Spurrell. 1999. The cell wall and membrane of Cryptococcus neoformans possess a mitogen for human T lymphocytes. Infect. Immun. 67: 936941.
71. Murphy, J. W.,, M. R. Hidore, and, N. Nabavi. 1991. Binding interactions of murine natural killer cells with the fungal target Cryptococcus neoformans. Infect. Immun. 59: 14761488.
72. Murphy, J. W.,, M. R. Hidore, and, S. C. Wong. 1993. Direct interactions of human lymphocytes with the yeast-like organism, Cryptococcus neoformans. J. Clin. Invest. 91: 15531566.
73. Murphy, J. W., and, D. O. McDaniel. 1982. In vitro reactivity of natural killer (NK) cells against Cryptococcus neoformans. J. Immunol. 128: 15771583.
74. Nabavi, N., and, J. W. Murphy. 1986. Antibody-dependent natural killer cell-mediated growth inhibition of Cryptococcus neoformans. Infect. Immun. 51: 556562.
75. Nabavi, N., and, J. W. Murphy. 1985. In vitro binding of natural killer cells to Cryptococcus neoformans targets. Infect. Immun. 50: 5057.
76. Nakamura,, K.,, T. Kinjo,, S. Saijo,, A. Miyazato,, Y. Adachi,, N. Ohno,, J. Fujita,, M. Kaku,, Y. Iwakura, and, K. Kawakami. 2007. Dectin-1 is not required for the host defense to Cryptococcus neoformans. Microbiol. Immunol. 51: 11151119.
77. Nieuwenhuis,, E. E.,, T. Matsumoto,, M. Exley,, R. A. Schleipman,, J. Glickman,, D. T. Bailey,, N. Corazza,, S. P. Colgan,, A. B. Onderdonk, and, R. S. Blumberg. 2002. CD1d-dependent macrophage-mediated clearance of Pseudomonas aeruginosa from lung. Nat. Med. 8: 588593.
78. Ochoa,, M. T.,, S. Stenger,, P. A. Sieling,, S. Thoma-Uszynski,, S. Sabet,, S. Cho,, A. M. Krensky,, M. Rollinghoff,, E. Nunes Sarno,, A. E. Burdick,, T. H. Rea, and, R. L. Modlin. 2001. T-cell release of granulysin contributes to host defense in leprosy. Nat. Med. 7: 174179.
79. Orange,, J. S.,, K. E. Harris,, M. M. Andzelm,, M. M. Valter,, R. S. Geha, and, J. L. Strominger. 2003. The mature activating natural killer cell immunologic synapse is formed in distinct stages. Proc. Natl. Acad. Sci. USA 100: 1415114156.
80. Palma,, A. S.,, T. Feizi,, Y. Zhang,, M. S. Stoll,, A. M. Lawson,, E. Diaz-Rodriguez,, M. A. Campanero-Rhodes,, J. Costa,, S. Gordon,, G. D. Brown, and, W. Chai. 2006. Ligands for the beta-glucan receptor, Dectin-1, assigned using “designer” microarrays of oligosaccharide probes (neoglycolipids) generated from glucan polysaccharides. J. Biol. Chem. 281: 57715779.
81. Paul, W. E. 2003. Fundamental Immunology, 5th ed. Lippincott Williams & Wilkins, Philadelphia, PA.
82. Petkus, A. F., and, L. L. Baum. 1987. Natural killer cell inhibition of young spherules and endospores of Coccidioides immitis. J. Immunol. 139: 31073111.
83. Robertson, M. J., and, J. Ritz. 1990. Biology and clinical relevance of human natural killer cells. Blood 76: 24212438.
84. Roder, J. C. 1979. The beige mutation in the mouse. I. A stem cell predetermined impairment in natural killer cell function. J. Immunol. 123: 21682173.
85. Roder, J. C.,, R. Kiessling,, P. Biberfeld, and, B. Andersson. 1978. Target-effector interaction in the natural killer (NK) cell system. II. The isolation of NK cells and studies on the mechanism of killing. J. Immunol. 121: 25092517.
86. Roder,, J. C.,, M. L. Lohmann-Matthes,, W. Domzig, and, H. Wigzell. 1979. The beige mutation in the mouse. II. Selectivity of the natural killer (NK) cell defect. J. Immunol. 123: 21742181.
87. Salata, R. A.,, J. G. Cox, and, J. I. Ravdin. 1987. The interaction of human T-lymphocytes and Entamoeba histolytica: killing of virulent amoebae by lectin-dependent lymphocytes. Parasite Immunol. 9: 249261.
88. Salkowski, C. A., and, E. Balish. 1991. A monoclonal antibody to gamma interferon blocks augmentation of natural killer cell activity induced during systemic cryptococcosis. Infect. Immun. 59: 486493.
89. Salkowski, C. A., and, E. Balish. 1991. Role of natural killer cells in resistance to systemic cryptococcosis. J. Leukoc. Biol. 50: 151159.
90. Schlievert, P. M.,, D. J. Schoettle, and, D. W. Watson. 1979. Nonspecific T-lymphocyte mitogenesis by pyrogenic exotoxins from group A streptococci and Staphylococcus aureus. Infect. Immun. 25: 10751077.
91. Sewald,, X.,, B. Gebert-Vogl,, S. Prassl,, I. Barwig,, E. Weiss,, M. Fabbri,, R. Osicka,, M. Schiemann,, D. H. Busch,, M. Semmrich,, B. Holzmann,, P. Sebo, and, R. Haas. 2008. Integrin subunit CD18 Is the T-lymphocyte receptor for the Helicobacter pylori vacuolating cytotoxin. Cell Host Microbe 3: 2029.
92. Shoham,, S.,, C. Huang,, J. M. Chen,, D. T. Golenbock, and, S. M. Levitz. 2001. Toll-like receptor 4 mediates intracellular signaling without TNF-alpha release in response to Cryptococcus neoformans polysaccharide capsule. J. Immunol. 166: 46204626.
93. Smyth,, M. J.,, E. Cretney, J. M. Kelly,, J. A. Westwood,, S. E. Street,, H. Yagita,, K. Takeda,, S. L. van Dommelen,, M. A. Degli-Esposti, and, Y. Hayakawa. 2005. Activation of NK cell cytotoxicity. Mol. Immunol. 42: 501510.
94. Sugie, K.,, Y. Minami,, T. Kawakami, and, A. Uchida. 1995. Stimulation of NK-like YT cells via leukocyte function-associated antigen (LFA)-1. Possible involvement of LFA-1-associated tyrosine kinase in signal transduction after recognition of NK target cells. J. Immunol. 154: 16911698.
95. Syme,, R. M.,, J. C. Spurrell,, E. K. Amankwah,, F. H. Green, and, C. H. Mody. 2002. Primary dendritic cells phagocytose Cryptococcus neoformans via mannose receptors and Fcgamma receptor II for presentation to T lymphocytes. Infect. Immun. 70: 59725981.
96. Syme,, R. M.,, J. C. Spurrell,, L. L. Ma,, F. H. Green, and, C. H. Mody. 2000. Phagocytosis and protein processing are required for presentation of Cryptococcus neoformans mitogen to T lymphocytes. Infect. Immun. 68: 61476153.
97. Taborda, C. P., and, A. Casadevall. 2002. CR3 (CD11b/CD18) and CR4 (CD11c/CD18) are involved in complement-independent antibody-mediated phagocytosis of Cryptococcus neoformans. Immunity 16: 791802.
98. Tewari, R. P., and, L. A. Von Behren. 2000. Immune responses in histoplasmosis, a prototype of respiratory mycoses. Indian J. Chest Dis. Allied Sci. 42: 265269.
99. Timonen, T.,, C. W. Reynolds,, J. R. Ortaldo, and, R. B. Herberman. 1982. Isolation of human and rat natural killer cells. J. Immunol. Methods 51: 269277.
100. Vaccaro,, A. M.,, M. Tatti,, F. Ciaffoni,, R. Salvioli,, A. Barca, and, C. Scerch. 1997. Effect of saposins A and C on the enzymatic hydrolysis of liposomal glucosylceramide. J. Biol. Chem. 272: 1686216867.
101. Vig, M., and, J. P. Kinet. 2009. Calcium signaling in immune cells. Nat. Immunol. 10: 2127.
102. Vyas, Y. M.,, H. Maniar, and, B. Dupont. 2002. Visualization of signaling pathways and cortical cytoskeleton in cytolytic and noncytolytic natural killer cell immune synapses. Immunol. Rev. 189: 161178.
103. Werfel,, T.,, P. Uciechowski,, P. A. Tetteroo,, R. Kurrle,, H. Deicher, and, R. E. Schmidt. 1989. Activation of cloned human natural killer cells via Fc gamma RIII. J. Immunol. 142: 11021106.
104. Wilson,, M. T.,, C. Johansson,, D. Olivares-Villagomez,, A. K. Singh,, A. K. Stanic,, C. R. Wang,, S. Joyce,, M. J. Wick, and, L. Van Kaer. 2003. The response of natural killer T cells to glycolipid antigens is characterized by surface receptor down-modulation and expansion. Proc. Natl. Acad. Sci. USA 100: 1091310918.
105. Wiseman,, J. C.,, L. L. Ma,, K. J. Marr,, G. J. Jones, and, C. H. Mody. 2007. Perforin-dependent cryptococcal microbicidal activity in NK cells requires PI3K-dependent ERK1/2 signaling. J. Immunol. 178: 64566464.
106. Yauch, L. E.,, M. K. Mansour, and, S. M. Levitz. 2005. Receptor-mediated clearance of Cryptococcus neoformans capsular polysaccharide in vivo. Infect. Immun. 73: 84298432.
107. Yauch,, L. E.,, M. K. Mansour,, S. Shoham, J. B. Rottman, and, S. M. Levitz. 2004. Involvement of CD14, Toll-like receptors 2 and 4, and MyD88 in the host response to the fungal pathogen Cryptococcus neoformans in vivo. Infect. Immun. 72: 53735382.
108. Zheng,, C. F.,, G. J. Jones,, M. Shi, J. C. Wiseman,, K. J. Marr,, B. M. Berenger,, S. M. Huston,, M. J. Gill,, A. M. Krensky,, P. Kubes, and, C. H. Mody. 2008. Late expression of granulysin by microbicidal CD4+ T cells requires PI3K- and STAT5-dependent expression of IL-2Rbeta that is defective in HIV-infected patients. J. Immunol. 180: 72217229.
109. Zheng,, C. F.,, L. L. Ma,, G. J. Jones,, M. J. Gill,, A. M. Krensky,, P. Kubes, and, C. H. Mody. 2007. Cytotoxic CD4+ T cells use granulysin to kill Cryptococcus neoformans, and activation of this pathway is defective in HIV patients. Blood 109: 20492057.
110. Zlotnik, A.,, D. I. Godfrey,, M. Fischer, and, T. Suda. 1992. Cytokine production by mature and immature CD4-CD8- T cells. Alpha beta-T cell receptor+ CD4-CD8- T cells produce IL-4. J. Immunol. 149: 12111215.


Generic image for table

Microorganisms directly or indirectly killed by innate cytotoxic lymphocytes

Citation: Huston S, Mody C. 2011. Interactions with Innate Cytotoxic Lymphocytes, p 417-427. In Heitman J, Kozel T, Kwon-Chung K, Perfect J, Casadevall A (ed), . ASM Press, Washington, DC. doi: 10.1128/9781555816858.ch30

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error