Chapter 2 : Taxonomy, Phylogeny, and Physiology of Fecal Indicator Bacteria

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

Taxonomy, Phylogeny, and Physiology of Fecal Indicator Bacteria, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555816865/9781555816087_Chap02-1.gif /docserver/preview/fulltext/10.1128/9781555816865/9781555816087_Chap02-2.gif


In studies of environmental quality, there are several different groups of bacteria frequently used as fecal indicators. The most widely applied approach is to use the group represented by the family (coliforms and fecal coliforms). Fecal indicators other than , include members of the genus (formally fecal ) and the anaerobic bacteria , , and some members of the genus . Due to their widespread use as indictors of the quality of water and other environments, this chapter covers the phylogeny, taxonomy, and physiology of the key fecal indicator bacteria. and are specifically classified as fecal coliforms. The major set of phenotypic characteristics defining the family include the following: small gram-negative rods, facultative but preferring aerobic metabolism, oxidase negative, catalase positive, can reduce nitrates to nitrites, do not require Na for growth, can ferment D-glucose, and contain enterobacterial common antigens. Originally, classification of coliform bacteria was based on fermentation of sucrose and dulcitol, production of indole and acetylmethylcarbinol, and gelatin liquefaction. Functionally, enterococci are divided into five groups based on their ability to produce acid from mannitol and sorbose, and hydrolyze arginine. spp. are present in much greater numbers than , and can account for up to 30% of the total fecal isolates, with the most common species being , , and .

Citation: Carrero-Colón M, Wickham G, Turco R. 2011. Taxonomy, Phylogeny, and Physiology of Fecal Indicator Bacteria, p 23-38. In Sadowsky M, Whitman R (ed), The Fecal Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555816865.ch2
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of FIGURE 1

Evolutionary relationships of fecal bacteria. The small-subunit, or 16S, rRNA-based evolutionary relationships of representative fecal bacteria are shown. A total of 36 (35 fecal bacteria sequences and 1 outgroup sequence) nearly full-length 16S rRNA sequences from the Ribosomal Database Project ( ) and/or the SILVA database ( ) were aligned in ARB ( ). A modified version of the Lane mask ( ) was used to define 1344 unambiguously aligned nucleotide positions for comparative analysis by quartet puzzling (Strimmer and ). Each sequence is denoted as an indicator (I), pathogen (P), or both (P/I). R1 was used to root the tree. The scale bar represents 0.4 fixed mutations per nucleotide position. Whenever available, sequences from type strains were used. In instances where sequences from non-type strains were not available, non-type strain sequences were chosen based on their length and quality. The accession identifier for each sequence is shown in parentheses below. Type strains: (X60408), (X83935), (M58729), (M38018), (D86183), (L14630), (AJ233408), A (L37585), (M59103), (AB004750), (AJ251469), (AF133535), (AJ420801), (AJ276355), (X80725), (Y17656), (X56153), subsp. serovar Typhi (Z47544), (AB002482), (X58318), (X74677), and (M59157). Non-type strains: (X74684), (AF025372), (AJ301831), (AF039898), (AY292868), (AJ131120), (EU118104), subsp. serovar Gallinarum (EU073018), (X96966), (EU009199), (D83357), (M59292), and (AF366383).

Citation: Carrero-Colón M, Wickham G, Turco R. 2011. Taxonomy, Phylogeny, and Physiology of Fecal Indicator Bacteria, p 23-38. In Sadowsky M, Whitman R (ed), The Fecal Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555816865.ch2
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Ahmed, W.,, M. Hargreaves, A. Goonetilleke,, and M. Katouli. 2008. Population similarity analysis of indicator bacteria for source prediction of fecal pollution in a coastal lake. Mar. Pollut. Bull. 56: 14691475.
2. Armon, R.,, and Y. Kott. 1996. Bacteriophages as indicators of pollution. Crit. Revs. Environ. Sci. Technol. 26: 299335.
3. Barrett, E. C.,, M. D. Sobsey, C. H. House,, and K.D. White. 2001. Microbial indicator removal in onsite constructed wetlands for wastewater treatment in the southeastern U.S. Water Sci. Technol. 44: 177182.
4. Beerens, H. 1998. Bifidobacteria as indicators of fecal contamination in meat and meat products: detection, determination of origin and comparison with Escherichia coli. Int. J. Food Micro. 40: 203207.
5. Bell, A.,, A.C. Layton,, L. McKay,, D. Williams,, R. Gentry,, and G.S. Sayler. 2009. Factors influencing the persistence of fecal bacteroides in stream water. J. Environ. Qual. 38: 12241232.
6. Bergey, D. H.,, and S.J. Deehan. 1908. The colon-aerogenes group of bacteria. J. Med. Res. 19: 175200.
7. Berthe, T.,, A. Touron, J. Leloup, J. Deloffre,, and F. Petit. 2008. Fecal-indicator bacteria and sedimentary processes in estuarine mudflats (Seine, France). Mar. Pollut. Bull. 57: 5967.
8. Biavati, B.,, M. Vescovo, S. Torriani,, and V. Bottazzi. 2000. Bifidobacteria: history, ecology, physiology and applications. Ann. Microbiol. 50: 117131.
9. Bisson, J. W.,, and V.J. Cabelli. 1980. Clostridium perfringens as a water pollution indicator. J. Water Pollut. Control Fed. 52: 241248.
10. Bitton, G. 2005. Microbial indicators of fecal contamination, p. 153–171. In G. Bitton (ed.), Wastewater Microbiology. John Wiley & Sons, Inc., Hoboken, NJ.
11. Blanch, A. R.,, L. Belanche-Munoz,, X. Bonjoch,, J. Ebdon,, C. Gantzer,, F. Lucena,, J. Ottoson,, C. Kourtis,, A. Iversen,, I. Kuhn,, L. Moce,, M. Muniesa,, J. Schwartzbrod,, S. Skraber,, G. Papageorgiou,, H.D. Taylor, J. Wallis,, and J. Jofre. 2004. Tracking the origin of fecal pollution in surface water: an ongoing project within the European Union research program. J. Water Health 2: 249260.
12. Bonjoch, X., E. Balleste,, and A. R. Blanch. 2004. Multiplex PCR with 16S rRNA gene-targeted primers of Bifidobacterium spp. to identify sources of fecal pollution. Appl. Environ. Microbiol. 70: 31713175.
13. Bonjoch, X., E. Balleste,, and A.R. Blanch. 2005. Enumeration of bifidobacterial populations with selective media to determine the source of water-borne fecal pollution. Water Res. 39: 16211627.
14. Brookes, J. D.,, M. R. Hipsey, M. D. Burch,, R.H. Regel, L.G. Linden, C. M. Ferguson,, and J.P. Antenucci. 2005. Relative value of surrogate indicators for detecting pathogens in lakes and reservoirs. Environ. Sci. Technol. 39: 86148621.
15. Byappanahalli, M. N., K. Przybyla-Kelly, D. A. Shively,, and R.L. Whitman. 2008. Environmental occurrence of the enterococcal surface protein (esp) gene is an unreliable indicator of human fecal contamination. Environ. Sci. Technol. 42: 80148020.
16. Canard, B., T. Garnier, B. Lafay, R. Christen,, and S.T. Cole. 1992. Phylogenetic analysis of the pathogenic anaerobe Clostridium perfringens using the 16S rRNA nucleotide sequence. Int. J. Syst. Bacteriol. 42: 312314.
17. Cizek, A. R.,, G.W. Characklis,, L.A. Krometis,, J.A. Hayes, O.D. Simmons III,, L.S. Di, K. A. Alderisio,, and M.D. Sobsey. 2008. Comparing the partitioning behavior of Giardia and Cryptosporidium with that of indicator organisms in stormwater runoff. Water Res. 42: 44214438.
18. Cole, J. R.,, Q. Wang, E. Cardenas, J. Fish,, B. Chai,, R.J. Farris, A. S. Kulam-Syed-Mohideen,, D.M. McGarrell, T. Marsh,, G. M. Garrity,, and J.M. Tiedje. 2009. The Ribosomal Database Project: improved alignments and new tools for rRNA analysis. Nucleic Acids Res. 37:D141-D145.
19. Delcenserie, V.,, D. Loncaric,, C. Bonaparte,, M. Upmann,, B. China,, G. Daube,, and F. Gavini. 2008. Bifidobacteria as indicators of fecal contamination along a sheep meat production chain. J. Appl. Microbiol. 104: 276284.
20. Desmarais, T. R., H. M. Solo-Gabriele,, and C.J. Palmer. 2002. Influence of soil on fecal indicator organisms in a tidally influenced subtropical environment. Appl. Environ. Microbiol. 68: 11651172.
21. Devriese, L. A., B. Pot,, and M.D. Collins. 1993. Phenotypic identification of the genus Enterococcus and differentiation of phylogenetically distinct enterococcal species and species groups. J. Appl. Bacteriol. 75: 399408.
22. Domig, K. J.,, H. K. Mayer, and, W. Kneifel. 2003. Methods used for the isolation, enumeration, characterisation and identification of Enterococcus spp. 2. Pheno-and genotypic criteria. Int. J. Food Microbiol. 88: 165188.
23. Dorner, S. M.,, W. B. Anderson, T. Gaulin,, H.L. Candon, R.M. Slawson, P. Payment,, and P.M. Huck. 2007. Pathogen and indicator variability in a heavily impacted watershed. J. Water Health 5: 241257.
24. Duerden, B. I. 1980. The isolation and identification of Bacteroides spp. from the normal human fecal flora. J. Med. Microbiol. 13: 6978.
25. Edberg, S. C.,, H. Leclerc, and, J. Robertson. 1997. Natural protection of spring and well drinking water against surface microbial contamination. II. Indicators and monitoring parameters for parasites. Crit. Rev. Microbiol. 23: 179206.
26. Edberg, S. C.,, E. W. Rice, R. J. Karlin,, and M.J. Allen. 2000. Escherichia coli: the best biological drinking water indicator for public health protection. J. Appl. Microbiol. 88:106S-116S.
27. Efstratiou, M. A.,, A. Mavridou, and, C. Richardson. 2009. Prediction of Salmonella in seawater by total and fecal coliforms and Enterococci. Mar. Pollut. Bull. 58: 201205.
28. Facklam, R. R.,, M.S. Carvalho,, and L.M Teixeira. 2002. History, taxonomy, biochemical characteristics, and antibiotic susceptibility testing of Enterococci, p. 154. In M. S. Gilmore (ed.), The Enterococci: Pathogenesis, Molecular Biology, and Antibiotic Resistance. ASM Press, Washington, DC.
29. Fiksdal, L.,, J.S. Maki, S. J. LaCroix,, and J.T. Staley. 1985. Survival and detection of Bacteroides spp., prospective indicator bacteria. Appl. Environ. Microbiol. 49: 148150.
30. Fisher, K.,, and C. Philips. 2009. The ecology, epidemiology and virulence of Enterococcus. Microbiol. 155: 17491757.
31. Fujioka, R. S. 2001. Monitoring coastal marine waters for spore-forming bacteria of fecal and soil origin to determine point from non-point source pollution. Water Sci. Technol. 44: 181188.
32. Gauthier, F.,, and F. Archibald. 2001. The ecology of “fecal indicator” bacteria commonly found in pulp and paper mill water systems. Water Res. 35: 22072218.
33. Gawler, A. H.,, J. E. Beecher, J. Brandao,, N.M. Carroll, L. Falcao,, M. Gourmelon,, B. Masterson,, B. Nunes,, J. Porter,, A. Rince,, R. Rodrigues,, M. Thorp,, J. M. Walters,, and W.G. Meijer. 2007. Validation of host-specific Bacteriodales 16S rRNA genes as markers to determine the origin of fecal pollution in Atlantic Rim countries of the European Union. Water Res. 41: 37803784.
34. Geldreich, E. E.,, and N.A. Clarke. 1966. Bacterial pollution indicators in the intestinal tract of freshwater fish. Appl. Microbiol. 14: 429437.
35. Geldreich, E. E.,, H. F. Clark, P. W. Kabler, C. R. Huff,, and R.H. Bordner. 1958. The coli-form group II. Reactions in EC medium at 45. C. Appl. Microbiol. 6: 347348.
36. Godfree, A. F., D. Kay,, and M.D. Wyer. 1997. Fecal streptococci as indicators of fecal contamination in water. J. Appl. Microbiol. 83:110S-119S.
37. Gronewold, A. D.,, M. E. Borsuk, R. L. Wolpert,, and K.H. Reckhow. 2008. An assessment of fecal indicator bacteria-based water quality standards. Environ. Sci. Technol. 42: 46764682.
38. Haack, S. K.,, J.W. Duris, L.R. Fogarty,, D.W. Kolpin, M.J. Focazio, E. T. Furlong,, and M.T. Meyer. 2009. Comparing wastewater chemicals, indicator bacteria concentrations, and bacterial pathogen genes as fecal pollution indicators. J. Environ. Qual. 38: 248258.
39. Hardie, J. M.,, and R.A. Whiley. 1997. Classification and overview of the genera Streptococcus and Enterococcus. J. Appl. Microbiol. 83:1S-11S.
40. Hartman, P. A., G. W. Reinbold,, and D.S. Saraswat. 1966. Media and methods for isolation and enumeration of the Enterococci. Adv. Appl. Microbiol. 8: 253289.
41. Harwood, V. J.,, A.D. Levine,, T.M. Scott,, V. Chivukula,, J. Lukasik,, S. R. Farrah,, and J.B. Rose. 2005. Validity of the indicator organism paradigm for pathogen reduction in reclaimed water and public health protection. Appl. Environ. Microbiol. 71: 31633170.
42. Holzapfel, W. H.,, P. Haberer,, R. Geisen,, J. Bjorkroth,, and U. Schillinger. 2001. Taxonomy and important features of probiotic microorganisms in food and nutrition. Am. J. Clin. Nutr. 73: 365S- 373S.
43. Horman, A., R. Rimhanen-Finne,, L. Maunula, C. H. von Bonsdorff, N. Torvela, A. Heikin-heimo,, and M.L. Hanninen. 2004. Campylobacter spp., Giardia spp., Cryptosporidium spp., noroviruses, and indicator organisms in surface water in southwestern Finland, 2000–2001. Appl. Environ. Microbiol. 70: 8795.
44. Huycke, M. M. 2002. Physiology of Enterococci, p. 133175. In M. S. Gilmore (ed.), The Entero-cocci: Pathogenesis, Molecular Biology, and Antibiotic Resistance. ASM Press, Washington, DC.
45. Ibekwe, A. M.,, and S.R. Lyon. 2008. Microbiological evaluation of fecal bacterial composition from surface water through aquifer sand material. J. Water Health 6: 411421.
46. Janda, J. M.,, and S. L Abbott. 2006. Historical perspectives on the family Enterobacteriaceae, p. 15. In J. M. Janda, and S. L. Abbott (ed.), The Enterobacteria. ASM Press, Washington, DC.
47. Jiang, S. C.,, W. Chu, B. H. Olson, J. W. He, S. Choi, J. Zhang, J. Y. Le,, and P.B. Gedalanga. 2007. Microbial source tracking in a small southern California urban watershed indicates wild animals and growth as the source of fecal bacteria. Appl. Microbiol. Biotechnol. 76: 927934.
48. Kabler, P. W., H. F. Clark,, and E.E. Geldreich. 1964. Sanitary significance of coliform and fecal coliform organisms in surface water. Public Health Rep. 79: 5860.
49. Kildare, B. J.,, C. M. Leutenegger,, B.S. Mc-Swain,, D.G. Bambic, V. B. Rajal,, and S. Wuertz. 2007. 16S rRNA-based assays for quantitative detection of universal, human-, cow-, and dog-specific fecal Bacteroidales: a Bayesian approach. Water Res. 41: 37013715.
50. King, E. L., D. S. Bachoon,, and K.W. Gates. 2007. Rapid detection of human fecal contamination in estuarine environments by PCR targeting of Bifidobacterium adolescentis. J. Microbiol. Methods 68: 7681.
51. Korajkic, A.,, B.D. Badgley, M. J. Brownell,, and V.J. Harwood. 2009. Application of microbial source tracking methods in a Gulf of Mexico field setting. J. Appl. Microbiol. 107: 15181527.
52. LaBelle, R. L.,, C. P. Gerba, S. M. Goyal,, J.L. Melnick, I. Cech,, and G.F. Bogdan. 1980. Relationships between environmental factors, bacterial indicators, and the occurrence of enteric viruses in estuarine sediments. Appl. Environ. Microbiol. 39: 588596.
53. Lamendella, R., J. W. Santo Domingo, C. Kelty,, and D.B. Oerther. 2008. Bifidobacteria in feces and environmental waters. Appl. Environ. Microbiol. 74: 575584.
54. Lane, D. J. 1991. 16S/23S rRNA sequencing, p. 115–175. In E. Stackebrandt, and M. Goodfellow (ed.), Nucleic Acid Techniques in Bacterial Systematics. John Wiley & Sons, New York, NY.
55. Larsen, N.,, G. J. Olsen,, B. L. Maidak,, M. J. Mc-Caughey,, R. Overbeek,, T.J. Macke, T. L. Marsh,, and C.R. Woese. 1993. The ribosomal database project. Nucleic Acids Res. 21: 30213023.
56. Lavoie, M. C. 1983. Identification of strains isolated as total and fecal coliforms and comparison of both groups as indicators of fecal pollution in tropical climates. Can. J. Microbiol. 29: 689693.
57. Leclerc, H., L. A. Devriese,, and D.A. Mossel. 1996. Taxonomical changes in intestinal (fecal) Enterococci and Streptococci: consequences on their use as indicators of faecal contamination in drinking water. J. Appl. Bacteriol. 81: 459466.
58. Leclerc, H.,, D.A. Mossel, S. C. Edberg,, and C.B. Struijk. 2001. Advances in the bacteriology of the coliform group: their suitability as markers of microbial water safety. Annu. Rev. Microbiol. 55: 201234.
59. Leskinen, S. D.,, and D.V. Lim. 2008. Rapid ultrafiltration concentration and biosensor detection of Enterococci from large volumes of Florida recreational water. Appl. Environ. Microbiol. 74: 47924798.
60. Lisle, J. T.,, J. J. Smith,, D. D. Edwards,, and G.A. McFeters. 2004. Occurrence of microbial indicators and Clostridium perfringens in wastewater, water column samples, sediments, drinking water, and Weddell seal feces collected at McMurdo Station, Antarctica. Appl. Environ. Microbiol. 70: 72697276.
61. Lleo, M. M.,, B. Bonato, D. Benedetti,, and P. Canepari. 2005. Survival of enterococcal species in aquatic environments. FEMS Microbiol. Ecol. 54: 189196.
62. Long, S. C., P. C. Arango,, and J.D. Plummer. 2005. An optimized enumeration method for sorbitol-fermenting Bifidobacteria in water samples. Can. J. Microbiol. 51: 413422.
63. Ludwig, W., O., Strunk, R., Westram,, L. Richter,, H. Meier,, Yadhukumar, A., Buchner, T., Lai,, S. Steppi,, G. Jobb,, W. Forster,, I. Brettske,, S. Gerber,, A.W. Ginhart, O. Gross,, S. Grumann,, S. Hermann,, R. Jost,, A. Konig,, T. Liss,, R. Lussmann,, M. May,, B. Nonhoff,, B. Reichel,, R. Strehlow,, A. Stamatakis,, N. Stuckmann,, A. Vilbig,, M. Lenke,, T. Ludwig,, A. Bode,, and K.H. Schleifer. 2004. ARB: a software environment for sequence data. Nucleic Acids Res. 32: 13631371.
64. Lynch, P. A.,, B. J. Gilpin, L. W. Sinton,, and M.G. Savill. 2002. The detection of Bifidobacterium adolescentis by colony hybridization as an indicator of human faecal pollution. J. Appl. Microbiol. 92: 526533.
65. Meyer, M.,, and J.L. Tholozan. 1999. A new growth and in vitro sporulation medium for Clostridium perfringens. Lett. Appl. Microbiol. 28: 98102.
66. Morrison, C. R., D. S. Bachoon,, and K.W. Gates. 2008. Quantification of Enterococci and Bifidobacteria in Georgia estuaries using conventional and molecular methods. Water Res. 42: 40014009.
67. Morrison, D., N. Woodford,, and B. Cookson. 1997. Enterococci as emerging pathogens of humans. J. Appl. Microbiol. 83: 89S- 99S.
68. Muniain-Mujika, I.,, M. Calvo, F. Lucena,, and R. Girones. 2003. Comparative analysis of viral pathogens and potential indicators in shellfish. Int. J. Food Microbiol. 83: 7585.
69. Murray, P. R., K. S. Rosenthal,, and M.A. Pfaller (ed.). 2009. Enterobacteriaceae, p. 301–317. In Medical Microbiology, 6th ed. Mosby Elsevier, Philadelphia, PA.
70. Nakamura, M.,, and J.A. Schulze. 1970. Clostridium perfringens food poisoning. Annu. Rev. Microbiol. 24: 359372.
71. Nebra, Y., X. Bonjoch,, and A.R. Blanch. 2003. Use of Bifidobacterium dentium as an indicator of the origin of fecal water pollution. Appl. Environ. Microbiol. 69: 26512656.
72. Noble, R. T.,, M.K. Leecaster,, C. D. McGee,, S. B. Weisberg,, and K. Ritter. 2004. Comparison of bacterial indicator analysis methods in stormwater-affected coastal waters. Water Res. 38: 11831188.
73. Okabe, S.,, and Y. Shimazu. 2007. Persistence of host-specific Bacteroides-Prevotella 16S rRNA genetic markers in environmental waters: effects of temperature and salinity. Appl. Microbiol. Biotechnol. 76: 935944.
74. Parr, L. W. 1939. Coliform bacteria. Bact. Revs. 3: 147.
75. Park, J. E.,, T. S. Ahn, H. J. Lee,, and Y.O. Lee. 2006. Comparison of total and fecal coliforms as fecal indicator in eutrophicated surface water. Water Sci. Technol. 54: 185190.
76. Paul, J. H.,, J. B. Rose, S. Jiang, C. Kellogg,, and E.A. Shinn. 1995. Occurrence of fecal indicator bacteria in surface waters and the subsurface aquifer in Key Largo, Florida. Appl. Environ. Microbiol. 61: 22352241.
77. Plancherel, Y.,, and J.P. Cowen. 2007. Towards measuring particle-associated fecal indicator bacteria in tropical streams. Water Res. 41: 15011515.
78. Plummer, J. D.,, and S.C. Long. 2007. Monitoring source water for microbial contamination: evaluation of water quality measures. Water Res. 41: 37163728.
79. Pruesse, E., C. Quast,, K. Knittel, B. M. Fuchs, W. Ludwig, J. Peplies,, and F.O. Glockner. 2007. SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Res. 35: 71887196.
80. Raj, H.,, W. J. Wiebe, and, J. Liston. 1961. Detection and enumeration of fecal indicator organisms in frozen sea foods. II. Enterococci. Appl. Microbiol. 9: 295303.
81. Rappe, M. S.,, and S.J. Giovannoni. 2003. The uncultured microbial majority. Annu. Rev. Microbiol. 57: 369394.
82. Resnick, I. G.,, and M.A. Levin. 1981. Assessment of Bifidobacteria as indicators of human fecal pollution. Appl. Environ. Microbiol. 42: 433438.
83. Rompré, A.,, P. Servais, J. Baudart, M. R. de-Roubin,, and P. Laurent. 2002. Detection and enumeration of coliforms in drinking water: current methods and emerging approaches. J. Microbiol. Methods 49: 3154.
84. Rood, J. I.,, and S.T. Cole. 1991. Molecular genetics and pathogenesis of Clostridium perfringens. Microbiol. Rev. 55: 621648.
85. Salyers, A. A. 1984. Bacteroides of the human lower intestinal tract. Annu. Rev. Microbiol. 38: 293313.
86. Scott, T. M.,, J.B. Rose,, T.M. Jenkins,, S. R. Farrah,, and J. Lukasik. 2002. Microbial source tracking: current methodology and future directions. Appl. Environ. Microbiol. 68: 57965803.
87. Shibata, T.,, H. M. Solo-Gabriele, L. E. Fleming,, and S. Elmir. 2004. Monitoring marine recreational water quality using multiple microbial indicators in an urban tropical environment. Water Res. 38: 31193131.
88. Simpson, J. M., J. W. Santo Domingo,, and D.J. Reasoner. 2002. Microbial source tracking: state of the science. Environ. Sci. Technol. 36: 52795288.
89. Slanetz, L. W.,, and C.H. Bartley. 1964. Detection and sanitary significance of fecal Streptococci in water. Am. J. Public Health Nations. Health 54: 609614.
90. Song, Z. W.,, L. Wu, G. Yang, M. Xu,, and S.P. Wen. 2008. Indicator microorganisms and pathogens removal function performed by copepods in constructed wetlands. Bull. Environ. Contam. Toxicol. 81: 459463.
91. Stewart, J. R.,, J.W. Santo Domingo, and T.J Wade. 2007. Fecal pollution, public health, and microbial source tracking, p. 132. In J. W. Santo Domingo, and M. J. Sadowsky (ed.), Microbial Source Tracking. ASM Press, Washington, DC.
92. Straub, T. M.,, and D.P. Chandler. 2003. Towards a unified system for detecting waterborne pathogens. J. Microbiol. Methods 53: 185197.
93. Strimmer, K.,, and A. vonHaeseler. 1996. Quartet puzzling: A quartet maximum-likelihood method for reconstructing tree topologies. Molecular Biol. Evol. 13: 964969.
94. Tandon, P., S. Chhibber,, and R.H. Reed. 2007. Survival and detection of the fecal indicator bacterium Enterococcus faecalis in water stored in traditional vessels. Indian J. Med. Res. 125: 557566.
95. Toranzos, G. A.,, and G.A McFeters. 1997. Detection of indicator microorganism environmental fresh-waters and drinking waters, p. 185. In C.J. Hurst, G.R. Knudsen, M.J. McInerney, L. D. Stetzenbach,, and M. V. Walter (ed.), Manual of Environmental Microbiology. ASM Press, Washington, DC.
96. Tendolkar, P. M.,, A. S. Baghdayan, and, N. Shankar. 2003. Pathogenic Enterococci: new developments in the 21st century. Cell Mol. Life Sci. 60: 26222636.
97. Turco, R. F. 1994. Coliform bacteria, p. 145158. In R. W. Weaver,, S. Angel,, P. Bottomley,, D. Bezdiecek,, S. Smith,, A. Tabatabai,, A. Wollum,, S. H. Mickelson,, and J. M. Bigham (ed.), Methods of Soil Analysis, Part 2. Microbiological and Biochemical Properties. Soil Science Society of America, Madison, WI.
98. van Lieverloo, J. H.,, E. J. Blokker, and, G. Medema. 2007. Quantitative microbial risk assessment of distributed drinking water using faecal indicator incidence and concentrations. J. Water Health Suppl 5. 1: 131149.
99. Ventura, M.,, S. D. van, G. F. Fitzgerald,, and R. Zink. 2004. Insights into the taxonomy, genetics and physiology of bifidobacteria. Antonie Van Leeuwen. 86: 205223.
100. Wade, T. J.,, R. L. Calderon, K. P. Brenner, E. Sams, M. Beach, R. Haugland, L. Wymer,, and A.P. Dufour. 2008. High sensitivity of children to swimming-associated gastrointestinal illness: results using a rapid assay of recreational water quality. Epidemiology 19: 375383.
101. Walters, S. P., V. P. Gannon,, and K.G. Field. 2007. Detection of Bacteroidales fecal indicators and the zoonotic pathogens E. coli 0157:H7, Salmonella, and Campylobacter in river water. Environ. Sci. Technol. 41: 18561862.
102. Wheeler, A. L.,, P. G. Hartel, D. G. Godfrey, J. L. Hill,, and W.I. Segars. 2002. Potential of Enterococcus faecalis as a human fecal indicator for microbial source tracking. J. Environ. Qual. 31: 12861293.
103. Wiedenmann, A.,, P. Kruger,, K. Dietz,, J. M. Lopez-Pila,, R. Szewzyk,, and K. Botzenhart. 2006. A randomized controlled trial assessing infectious disease risks from bathing in fresh recreational waters in relation to the concentration of Escherichia coli, intestinal Enterococci, Clostridium perfringens, and somatic coliphages. Environ. Health Perspect. 114: 228236.
104. Wilkes, G., T. Edge,, V. Gannon, C. Jokinen, E. Lyautey, D. Medeiros, N. Neumann, N. Ruecker, E. Topp,, and D.R. Lapen. 2009. Seasonal relationships among indicator bacteria, pathogenic bacteria, Cryptosporidium oocysts, Giardia cysts, and hydrological indices for surface waters within an agricultural landscape. Water Res. 43: 22092223.
105. Wong, M., L. Kumar,, T. M. Jenkins, I. Xagoraraki, M. S. Phanikumar,, and J.B. Rose. 2009. Evaluation of public health risks at recreational beaches in Lake Michigan via detection of enteric viruses and a human-specific bacteriological marker. Water Res. 43: 11371149.


Generic image for table
Table 1

Key fecal indicator bacteria used in determining fecal contamination in different environments

Citation: Carrero-Colón M, Wickham G, Turco R. 2011. Taxonomy, Phylogeny, and Physiology of Fecal Indicator Bacteria, p 23-38. In Sadowsky M, Whitman R (ed), The Fecal Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555816865.ch2

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error