Chapter 3 : The Gut Microbiota: Ecology and Function

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

The Gut Microbiota: Ecology and Function, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555816865/9781555816087_Chap03-1.gif /docserver/preview/fulltext/10.1128/9781555816865/9781555816087_Chap03-2.gif


This chapter focuses on the microbial ecology of the gut, with emphasis on information gleaned from recent molecular studies. Most attention has been devoted to bacterial components of the gut microbiota and, thus, they are the focus of this chapter. The first metagenomic study of the human gut resulted in 78 million base pairs of DNA sequences from two American individuals. This study cataloged the combined gene complement of the microbiome, including functional genes. A section discusses some dramatic differences that have been observed in the gut microbiota of infants that are fed formula compared to infants that are breast-fed. An interesting example of the importance of host physiology in shaping the composition of the microbiota was shown in reciprocal transplantations of gut microbiota between mice and zebrafish. The chapter primarily discusses Crohn's disease (CD) because of the large number of recent reports that have focused on the correlation of the gut microbiota to this particular disease. Therefore, the increased production of butyrate resulted in greater host responses to colonization. Although this model gave some new insights into the complex ecology of the gut microbiota, it is yet unclear whether the interactions observed between and are representative of common interactions between and . The study of genetically matched twins and defined model systems are examples of approaches that have promise to help define diagnostic targets and disease biomarkers.

Citation: Willing B, Jansson J. 2011. The Gut Microbiota: Ecology and Function, p 39-65. In Sadowsky M, Whitman R (ed), The Fecal Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555816865.ch3
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of FIGURE 1

Overview of “omics” approaches to study the gut microbiota.

Citation: Willing B, Jansson J. 2011. The Gut Microbiota: Ecology and Function, p 39-65. In Sadowsky M, Whitman R (ed), The Fecal Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555816865.ch3
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2

Functional redundancy of the gut microbiota suggested by large variations in community composition between individuals: (a) compared to community functions or (b) categories of gene function. Reprinted from Turnbaugh et al. ( ), with permission.

Citation: Willing B, Jansson J. 2011. The Gut Microbiota: Ecology and Function, p 39-65. In Sadowsky M, Whitman R (ed), The Fecal Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555816865.ch3
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3

Bacterial colonization of the GI tract. Bacterial numbers increase in abundance from proximal to distal regions. Bacteria reside in close proximity to the intestinal epithelium. A firmly adherent layer of mucous keeps bacteria at a safe distance so as to prevent continual mucosal stimulation and inflammation and a loosely adherent layer provides a habitat for abundant microbial colonization.

Citation: Willing B, Jansson J. 2011. The Gut Microbiota: Ecology and Function, p 39-65. In Sadowsky M, Whitman R (ed), The Fecal Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555816865.ch3
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 4

Synergistic action of bacteria in degradation of carbohydrates. Different bacterial species work together in the metabolism of dietary carbohydrate, each contributing to the process.

Citation: Willing B, Jansson J. 2011. The Gut Microbiota: Ecology and Function, p 39-65. In Sadowsky M, Whitman R (ed), The Fecal Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555816865.ch3
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 5

A representation of and colonizing the gastrointestinal tract of the mouse alone (A, B) or together (C). Interactions between bacteria result in changes in bacterial physiology and how they affect the host. Competition with for nutrients causes to stimulate the production of glycans from the host that it, but not can utilize. utilizes acetylCoA produced by resulting in an increased production of butyrate. The interactions between bacteria, including competition and synergistic interactions, result in an amplified host response. Adapted from Willing and Finlay ( ).

Citation: Willing B, Jansson J. 2011. The Gut Microbiota: Ecology and Function, p 39-65. In Sadowsky M, Whitman R (ed), The Fecal Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555816865.ch3
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Andersson, A. F.,, M. Lindberg,, H. Jakobsson,, F. Backhed,, P. Nyren,, and L Engstrand. 2008. Comparative analysis of human gut microbiota by barcoded pyrosequencing. PLoS One 3:e2836.
2. Apajalahti, J. H. A.,, A. Kettunen, M. R. Bedford,, and W E. Holben. 2001. Percent G1C profiling accurately reveals diet-related differences in the gastrointestinal microbial community of broiler chickens. Appl. Environ. Microbiol. 67: 56565667.
3. Awati, A.,, B. Williams, M. Bosch,, W. Gerrits,, and M. Verstegen. 2006. Effect of inclusion of fermentable carbohydrates in the diet on fermentation end-product profile in feces of weanling piglets. J. Anim. Sci. 84: 21332140.
4. Ayabe, T.,, D. P. Satchell,, C. L. Wilson, W. C. Parks, M. E. Selsted,, and A.J. Ouellette. 2000. Secretion of microbicidal alpha-defensins by intestinal Paneth cells in response to bacteria. Nature Immunol. 1: 113118.
5. Backhed, F.,, R. E. Ley,, J. L. Sonnenburg, D. A. Peterson,, and J.I. Gordon. 2005. Host-bacterial mutualism in the human intestine. Science 307: 19151920.
6. Bakke, O. M.,, and T. Midtvedt. 1970. Influence of germ-free status on excretion of simple phenols of possible significance in tumour promotion. Ex-perientia 26:519.
7. Balmer, S., L. Hanvey,, and B. Wharton. 1994. Diet and fecal flora in the newborn - Nucleotides. Arch. Dis. Child. 70:F137–F140.
8. Baumgart, M.,, B. Dogan,, M. Rishniw,, G. Weitzman,, B. Bosworth,, R. Yantiss,, R.H. Orsi, M. Wiedmann,, P. McDonough,, S.G. Kim, D. Berg,, Y. Schukken,, E. Scherl,, and K.W. Simpson. 2007. Culture independent analysis of ileal mucosa reveals a selective increase in invasive Escherichia coli of novel phylogeny relative to depletion of Clostridiales in Crohn’s disease involving the ileum. ISME J. 1: 403418.
9. Belenguer, A.,, S. H. Duncan,, A.G. Calder,, G. Holtrop,, P. Louis, G. E. Lobley,, and H.J. Flint. 2006. Two routes of metabolic cross-feeding between Bifidobacterium adolescentis and butyrate-producing anaerobes from the human gut. Appl. Environ. Microbiol. 72: 35933599.
10. Berg, R. D. 1996. The indigenous gastrointestinal microflora. Trends Microbiol. 4: 430435.
11. Bergman, E. N. 1990. Energy contributions of volatile fatty acids from the gastrointestinal tract in various species. Physiol. Rev. 70: 567590.
12. Brandl, K.,, G. Plitas,, C.N. Mihu,, C. Ubeda,, T. Jia,, M. Fleisher,, B. Schnabl,, R. P. DeMatteo,, and E.G. Pamer. 2008. Vancomycin-resistant enterococci exploit antibiotic-induced innate immune deficits. Nature 455:804–U808.
13. Bryant, M. P. 1974. Nutritional features and ecology of predominant anaerobic bacteria of intestinal-tract. Am. J. Clin. Nutr. 27: 13131319.
14. Cash, H. L.,, C. V. Whitham, C. L. Behrendt,, and L.V. Hooper. 2006. Symbiotic bacteria direct expression of an intestinal bactericidal lectin. Science 313: 11261130.
15. Castillo, M.,, S.M. Martin-Orue,, M. Roca,, E. G. Manzanilla,, I. Badiola,, J. F. Perez,, and J. Gasa. 2006. The response of gastrointestinal microbiota to avilamycin, butyrate, and plant extracts in early-weaned pigs. J. Anim. Sci. 84: 27252734.
16. Christl, S. U.,, P. R. Murgatroyd, G. R. Gibson,, and J.H. Cummings. 1992. Production, metabolism, and excretion of hydrogen in the large-intestine. Gastroenterology 102: 12691277.
17. Claus, S. P.,, T.M. Tsang,, Y.L. Wang,, O. Cloarec,, E. Skordi,, F.P. Martin, S. Rezzi,, A. Ross,, S. Kochhar,, E. Holmes,, and J.K. Nicholson. 2008. Systemic multicompartmental effects of the gut microbiome on mouse metabolic phenotypes. Mol. Syst. Biol. 4:219.
18. Cummings, J. H.,, and G.T. Macfarlane. 1991. The control and consequences of bacterial fermentation in the human colon. J. Appl. Bacteriol. 70: 443459.
19. Danielsen, M.,, H. Hornshoj,, R. H. Siggers, B.B. Jensen,, A. G. van Kessel,, and E. Bendixen. 2007. Effects of bacterial colonization on the porcine intestinal proteome. J. Proteome Res. 6: 25962604.
20. Darfeuille-Michaud, A.,, J. Boudeau,, P. Bulois,, C. Neut,, A. L. Glasser,, N. Barnich,, M.A. Bringer, A. Swidsinski,, L. Beaugerie,, and J.F. Colombel. 2004. High prevalence of adherent-invasive Escherichia coli associated with ileal mucosa in Crohn’s disease. Gastroenterology 127: 412421.
21. Dean, P.,, and B. Kenny. 2009. The effector repertoire of enteropathogenic E. coli: ganging up on the host cell. Curr. Opin. Microbiol. 12: 101109.
22. Dethlefsen, L.,, S. Huse,, M. L. Sogin,, and D.A. Relman. 2008. The pervasive effects of an antibiotic on the human gut microbiota, as revealed by deep 16S rRNA sequencing. PLoS Biol. 6: 23832400.
23. Dicksved, J.,, H. Floistrup,, A. Bergstrom,, M. Rosenquist,, G. Pershagen,, A. Scheynius,, S. Roos,, J.S. Alm, L. Engstrand,, C. Braun-Fahrlander,, E. von Mutius,, and J.K. Jansson. 2007. Molecular fingerprinting of the fecal microbiota of children raised according to different lifestyles. Appl. Environ. Microbiol. 73: 22842289.
24. Dicksved, J.,, J. Halfvarson,, M. Rosenquist,, G. Jarnerot,, C. Tysk,, J. Apajalahti,, L. Engstrand,, and J.K. Jansson. 2008. Molecular analysis of the gut microbiota of identical twins with Crohn’s disease. ISME J. 2: 716727.
25. Dixit, S.,, D. Gordon,, X. Wu,, T. Chapman,, K. Kailasapathy,, and J. Chin. 2004. Diversity analysis of commensal porcine Escherichia coli - associations between genotypes and habitat in the porcine gastrointestinal tract. Microbiology 150: 17351740.
26. Dossopoulos, T.,, C. Frongakis,, M. Cruz-Correa,, M. V. Talor,, C.L. Burek,, L. Datta,, F. Nouvet,, T. M. Bayless,, and S.R. Brant. 2007. Antibodies to Saccharomyces cerevisiae in Crohn’s disease: higher titers are associated with a greater frequency of mutant NOD2/CARD15 alleles and with a higher probability of complicated disease. Inflamm. Bowel Dis. 13: 143151.
27. Dumonceaux, T. J.,, J. E. Hill, S. M. Hemmingsen,, and A.G. Van Kessel. 2006. Characterization of intestinal microbiota and response to dietary virginiamycin supplementation in the broiler chicken. Appl. Environ. Microbiol. 72: 28152823.
28. Eckburg, P. B.,, E.M. Bik,, C.N. Bernstein,, E. Purdom,, L. Dethlefsen,, M. Sargent,, S.R. Gill, K. E. Nelson,, and D.A. Relman. 2005. Diversity of the human intestinal microbial flora. Science 308: 16351638.
29. Edwards, C.,, A. Parrett, S. Balmer,, and B. Wharton. 1994. Fecal short-chain fatty-acids in breast-fed and formula-fed babies. Acta Paediatr. 83: 459462.
30. Florin, T.,, G. Neale,, G. R. Gibson, S. U. Christl,, and J.H. Cummings. 1991. Metabolism of dietary sulfate - absorption and excretion in humans. Gut 32: 766773.
31. Frece, J.,, B. Kos, J. Beganovic,, S. Vukovic,, and J. Suskovic. 2005. In vivo testing of functional properties of three selected probiotic strains. World J. Microb. Biotechnol. 21: 14011408.
32. Fuller, R. 1989. Probiotics in man and animals. J. Appl. Bacteriol. 66: 365378.
33. Gaskins, H. R. 2001. Intestinal bacteria and their influence on swine growth, p. 1009. In A. J. Lewis, and L. L. Southern (ed.), Swine Nutrition. CRC Press, Boca Raton, FL.
34. Gibson, G. R.,, and M.B. Roberfroid. 1995. Dietary modulation of the human colonic mi-crobiota: introducing the concept of prebiotics. J. Nutr. 125: 14011412.
35. Gill, S. R.,, M. Pop,, R. T. DeBoy,, P.B. Eckburg,, P.J. Turnbaugh, B.S. Samuel, J.I. Gordon, D.A. Relman, C. M. Fraser-Liggett,, and K.E. Nelson. 2006. Metagenomic analysis of the human distal gut microbiome. Science 312: 13551359.
36. Gronlund, M. M.,, O. P. Lehtonen, E. Eerola,, and P. Kero. 1999. Fecal microflora in healthy infants born by different methods of delivery: permanent changes in intestinal flora after cesarean delivery. J. Pediatr. Gastroenterol. Nutr. 28: 1925.
37. Harmsen, H. J.,, A.C. Wildeboer-Veloo,, G.C. Raangs,, A.A. Wagendorp, N. Klijn,, J. G. Bindels,, and G.W. Welling. 2000. Analysis of intestinal flora development in breast-fed and formula-fed infants by using molecular identification and detection methods. J. Pediatr. Gastroenterol. Nutr. 30: 6167.
38. Hernandez, J. D.,, P. T. Scott, R. W. Shephard,, and R.A. Al Jassim. 2008. The characterization of lactic acid producing bacteria from the rumen of dairy cattle grazing on improved pasture supplemented with wheat and barley grain. J. Appl. Microbiol. 104: 17541763.
39. Hill, J. E.,, R.P. Seipp,, M. Betts,, L. Hawkins,, A.G.V. Kessel, W. L. Crosby,, and S.M. Hemmingsen. 2002. Extensive profiling of a complex microbial community by high-throughput sequencing. Appl. Environ. Microb. 68: 30553066.
40. Hill, J. E.,, S. L. Penny, K. G. Crowell, S. H. Goh,, and S.M. Hemmingsen. 2004. cpnDB: a chaperonin sequence database. Genome Res. 14: 16691675.
41. Hill, J. E.,, S.M. Hemmingsen,, B.G. Goldade,, T.J. Dumonceaux, J. Klassen,, R.T. Zijlstra, S. H. Goh,, and A.G. Van Kessel. 2005. Comparison of ileum microflora of pigs fed corn-, wheat-, or barley-based diets by chaperonin-60 sequencing and quantitative PCR. Appl. Environ. Microbiol. 71: 867875.
42. Hook, S. E.,, K. S. Northwood, A. D. Wright,, and B.W. McBride. 2009. Long-term monensin supplementation does not significantly affect the quantity and diversity of methanogens in the rumen of the lactating dairy cow. Appl. Environ. Microb. 75: 374380.
43. Hooper, L. 2004. Bacterial contributions to mammalian gut development. Trends Microbiol. 12: 129134.
44. Hooper, L.,, and J. Gordon. 2001a. Commensal host-bacterial relationships in the gut. Science 292: 11151118.
45. Hooper, L.,, and J. Gordon. 2001b. Glycans as legislators of host-microbial interactions: spanning the spectrum from symbiosis to pathogenicity. Glycobiology 11:1R–10R.
46. Hooper, L.,, L. Bry,, P. G. Falk,, and J.I. Gordon. 1998. Host-microbial symbiosis in the mammalian intestine: exploring an internal ecosystem. Bioessays 20: 336343.
47. Hooper, L.,, M. Wong,, A. Thelin,, L. Hansson,, P. Falk,, and J. Gordon. 2001. Molecular analysis of commensal host-microbial relationships in the intestine. Science 291: 881884.
48. Jakobsson, H. E.,, C. Jernberg, A. F. Andersson, M. Sjölund-Karlsson,, J. K. Jansson,, and L. Engstrand. 2010. Short -term antibiotic treatment has differing long-term impacts on the human throat and gut microbiome. PLoS ONE 5:e9836.
49. Janczyk, P.,, R. Pieper,, H. Smidt,, and W.B. Souffrant. 2007. Changes in the diversity of pig ileal lactobacilli around weaning determined by means of 16S rRNA gene amplification and denaturing gradient gel electrophoresis. FEMS Microbiol. Ecol. 61: 132140.
50. Jansson, J.,, B. Willing,, M. Lucio,, A. Fekete,, J. Dicksved,, J. Halfvarson,, C. Tysk,, and P. Schmitt-Kopplin. 2009. Metabolomics reveals metabolic biomarkers of Crohn’s disease. PLoS One 4:e6386.
51. Jensen, B. B. 1998. The impact of feed additives on the microbial ecology of the gut in young pigs. J. Anim. Feed Sci. 7: 4564.
52. Jernberg, C.,, A. Sullivan,, C. Edlund,, and J.K. Jansson. 2005. Monitoring of antibiotic-induced alterations in the human intestinal microflora and detection of probiotic strains by use of terminal restriction fragment length polymorphism. Appl. Environ. Microbiol. 71: 501506.
53. Jernberg, C.,, S. Lofmark,, C. Edlund,, and J.K. Jansson. 2007. Long-term ecological impacts of antibiotic administration on the human intestinal microbiota. ISME J. 1: 5666.
54. Johansson, M. E. V.,, M. Phillipson,, J. Petersson,, A. Velcich,, L. Holm,, and G.C. Hansson. 2008. The inner of the two Muc2 mucin-dependent mucus layers in colon is devoid of bacteria. Proc. Natl. Acad. Sci. USA 105: 1506415069.
55. Karaki, S.,, R. Mitsui,, H. Hayashi,, I. Kato,, H. Sugiya,, T. Iwanaga,, J. B. Furness,, and A. Kuwahara. 2006. Short-chain fatty acid receptor, GPR43, is expressed by enteroendocrine cells and mucosal mast cells in rat intestine. Cell Tissue Res. 324: 353360.
56. Khoruts, A.,, J. Dicksved, J. K. Jansson,, and M. Sadowsky. 2010. Changes in the composition of the human fecal microbiome after bacteriotherapy for recurrent Clostridium-difficile-associated diarrhea. J. Clin. Gastroenterology 44: 354360.
57. Kirkup, B. C.,, and M.A. Riley. 2004. Antibiotic-mediated antagonism leads to a bacterial game of rock-paper-scissors in vivo. Nature 428: 412414.
58. Kitahara, M.,, S. Sakata, M. Sakamoto,, and Y. Benno. 2004. Comparison among fecal secondary bile acid levels, fecal microbiota and Clostridium scindens cell numbers in Japanese. Microbiol. Immunol. 48: 367375.
59. Knarreborg, A.,, R.M. Engberg, S.K. Jensen,, and B.B. Jensen. 2002a. Quantitative determination of bile salt hydrolase activity in bacteria isolated from the small intestine of chickens. Appl. Environ. Microbiol. 68: 64256428.
60. Knarreborg, A.,, M.A. Simon,, R.M. Engberg,, B.B. Jensen,, and G.W. Tannock. 2002b. Effects of dietary fat source and subtherapeutic levels of antibiotic on the bacterial community in the ileum of broiler chickens at various ages. Appl. Environ. Microbiol. 68: 59185924.
61. Konstantinov, S. R.,, A. Awati,, H. Smidt,, B.A. Williams,, A. D. L. Akkermans,, and W.A. de Vos. 2004. Specific response of a novel and abundant Lactobacillus amylovorus-like phylotype to dietary prebiotics in the guts of weaning piglets. Appl. Environ. Microbiol. 70: 38213830.
62. Kovatcheva-Datchary, P.,, M. Egert,, A. Maathuis,, M. Rajilic-Stojanovic,, A.A. de Graaf,, H. Smidt,, W. M. de Vos,, and K. Venema. 2009. Linking phylogenetic identities of bacteria to starch fermentation in an in vitro model of the large intestine by RNA-based stable isotope probing. Environ. Microbiol. 11: 914926.
63. Kunz, C.,, and S. Rudloff. 1993. Biological functions of oligosaccharides in human milk. Acta Paediatr. 82: 903912.
64. Kurokawa, K.,, T. Itoh,, T. Kuwahara,, K. Oshima,, H. Toh,, A. Toyoda,, H. Takami,, H. Morita,, V.K. Sharma, T.P. Srivastava, T.D. Taylor, H. Noguchi,, H. Mori,, Y. Ogura,, D.S. Ehrlich, K. Itoh,, T. Takagi,, Y. Sakaki,, T. Hayashi,, and M. Hattori. 2007. Comparative metagenomics revealed commonly enriched gene sets in human gut microbiomes. DNA Res. 14: 169181.
65. Leschelle, X.,, M. Goubern,, M. Andriamihaja,, H. Blottiere,, E. Couplan,, M. Gonzalez-Barroso,, C. Petit,, A. Pagniez,, C. Chaumontet,, and B. Mignotte. 2005. Adaptative metabolic response of human colonic epithelial cells to the adverse effects of the luminal compound sulfide. Biochim. Biophys. Acta 1725: 201212.
66. Leser, T. D.,, J.Z. Amenuvor, T.K. Jensen,, R.H. Lindecrona, M. Boye,, and K. Moller. 2002. Culture-independent analysis of gut bacteria: the pig gastrointestinal tract microbiota revisited. Appl. Environ. Microbiol. 68: 673690.
67. Ley, R. E.,, F. Backhed,, P. Turnbaugh,, C.A. Lozupone,, R. D. Knight,, and J.I. Gordon. 2005. Obesity alters gut microbial ecology. Proc. Natl. Acad. Sci. USA 102: 1107011075.
68. Ley, R. E.,, M. Hamady,, C. Lozupone,, P.J. Turnbaugh,, R.R. Ramey, J.S. Bircher, M.L. Schlegel, T.A. Tucker, M.D. Schrenzel, R. Knight,, and J.I. Gordon. 2008. Evolution of mammals and their gut microbes. Science 320: 16471651.
69. Li, M.,, B. Wang,, M. Zhang,, M. Rantalainen,, S. Wang,, H. Zhou,, Y. Zhang,, J. Shen,, X. Pang,, M. Zhang,, H. Wei,, Y. Chen,, H. Lu,, J. Zuo,, M. Su,, Y. Qiu,, W. Jia,, C. Xiao,, L.M. Smith, S. Yang,, E. Holmes,, H. Tang,, G. Zhao,, J.K. Nicholson, L. Li,, and L. Zhao. 2008. Symbiotic gut microbes modulate human metabolic phenotypes. Proc. Natl. Acad. Sci. USA 105: 21172122.
70. Lin, C. Z.,, and T.L. Miller. 1998. Phylogenetic analysis of Methanobrevibacter isolated from feces of humans and other animals. Arch. Microbiol. 169: 397403.
71. Lin, H.,, and W. Visek. 1991. Colon mucosal cell-damage by ammonia in rats. J. Nutr. 121: 887893.
72. Lofmark, S.,, C. Jernberg, J. K. Jansson,, and C. Edlund. 2006. Clindamycin-induced enrichment and long-term persistence of resistant Bacteroides spp. and resistance genes. J. Antimicrob. Chemother. 58: 11601167.
73. Macfarlane, S.,, and G.T. Macfarlane. 1995. Proteolysis and amino acid fermentation. In G. R. Gibson, and G. T. Macfarlane (ed.), Human Colonic Bacteria: Role in Nutrition, Physiology, and Pathology. CRC Press, Boca Raton, FL.
74. Mackie, R.,, A. Sghir,, and H. Gaskins. 1999. Developmental microbial ecology of the neonatal gastrointestinal tract. Am. J. Clin. Nutr. 69:1035S–1045S.
75. Magee, E. A.,, C. J. Richardson, R. Hughes,, and J.H. Cummings. 2000. Contribution of dietary protein to sulfide production in the large intestine: an in vitro and a controlled feeding study in humans. Am. J. Clin. Nutr. 72: 14881494.
76. Mahowald, M. A.,, F.E. Rey,, H. Seedorf,, P.J. Turnbaugh, R.S. Fulton, A. Wollam,, N. Shah,, C.Y. Wang, V. Magrini,, R.K. Wilson, B.L. Cantarel,, P.M. Coutinho, B. Henrissat,, L.W. Crock, A. Russell,, N.C. Verberkmoes, R. L. Hettich,, and J.I. Gordon. 2009. Characterizing a model human gut microbiota composed of members of its two dominant bacterial phyla. Proc. Natl. Acad. Sci. USA 106: 58595864.
77. Mai, V. 2004. Dietary modification of the intestinal microbiota. Nutr. Rev. 62: 235242.
78. Marchesi, J. R.,, E. Holmes,, F. Khan,, S. Kochhar,, P. Scanlan,, F. Shanahan,, I. D. Wilson,, and Y.L. Wang. 2007. Rapid and noninvasive metabonomic characterization of inflammatory bowel disease. J. Proteome Res. 6: 546551.
79. Marchesi, J.,, and F. Shanahan. 2007. The normal intestinal microbiota. Curr. Opin. Infect. Dis. 20: 508513.
80. Martin, F. P.,, N. Sprenger,, I.K. Yap,, Y. Wang,, R. Bibiloni,, F. Rochat,, S. Rezzi,, C. Cherbut,, S. Kochhar,, J.C. Lindon, E. Holmes,, and J.K. Nicholson. 2009. Panorganismal gut microbiome-host metabolic crosstalk. J. Proteome Res. 8: 20902105.
81. Mazmanian, S. K.,, C. H. Liu, A. O. Tzianabos,, and D.L. Kasper. 2005. An immunomodulatory molecule of symbiotic bacteria directs maturation of the host immune system. Cell 122: 107118.
82. Morvan, B.,, F. Bonnemoy, G. Fonty,, and P. Gouet. 1996. Quantitative determination of H-2-utilizing acetogenic and sulfate-reducing bacteria and methanogenic archaea from digestive tract of different mammals. Curr. Microbiol. 32: 129133.
83. Naser, S. A.,, G. Ghobrial,, C. Romero,, and J.F. Valentine. 2004. Culture of Mycobacterium avium subspecies paratuberculosis from the blood of patients with Crohn’s disease. Lancet 364: 10391044.
84. Nicholson, J. K.,, E. Holmes,, and I.D. Wilson. 2005. Gut microorganisms, mammalian metabolism and personalized health care. Nat. Rev. Microbiol. 3: 431438.
85. Ohene-Adjei, S.,, A.V. Chaves,, T.A. McAllister, C. Benchaar,, R. M. Teather,, and R.J. Forster. 2008. Evidence of increased diversity of methanogenic archaea with plant extract supplementation. Microb. Ecol. 56: 234242.
86. Rajilic-Stojanovic, M.,, H. G. H. J. Heilig,, D. Molenaar,, K. Kajander,, A. Surakka,, H. Smidt,, and W.M. de Vos. 2009. Development and application of the human intestinal tract chip, a phylogenetic microarray: analysis of universally conserved phylotypes in the abundant microbiota of young and elderly adults. Environ. Microbiol. 11: 17361751.
87. Rawls, J. F.,, M. A. Mahowald, R. E. Ley,, and J.I. Gordon. 2006. Reciprocal gut microbiota transplants from zebrafish and mice to germ-free recipients reveal host habitat selection. Cell 127: 423433.
88. Richards, J.,, J. Gong,, and C. de Lange. 2005. The gastrointestinal microbiota and its role in monogastric nutrition and health with an emphasis on pigs: current understanding, possible modulations, and new technologies for ecological studies. Can. J. Anim. Sci. 85: 421435.
89. Rieu-Lesme, F.,, C. Delbes,, and L Sollelis. 2005. Recovery of partial 16S rDNA sequences suggests the presence of Crenarchaeota in the human digestive ecosystem. Curr. Microbiol. 51: 317321.
90. Roos, S.,, and H. Jonsson. 2002. A high-molecular-mass cell-surface protein from Lactobacillus reuteri 1063 adheres to mucus components. Microbiology 148:433N442.
91. Rueda, R.,, J. Sabatel, J. Maldonaldo, J. Molina-Font,, and A. Gil. 1998. Addition of gangliosides to an adapted milk formula modifies levels of fecal Escherichia coli in preterm newborn infants. J. Pediatr. 133: 9094.
92. Samuel, B. S.,, E.E. Hansen,, J.K. Manchester,, P.M. Coutinho, B. Henrissat,, R. Fulton,, P. Latreille,, K. Kim,, R. K. Wilson,, and J.I. Gordon. 2007. Genomic and metabolic adaptations of Methanobrevibacter smithii to the human gut. Proc. Natl. Acad. Sci. USA 104: 1064310648.
93. Saxelin, M.,, S. Tynkkynen,, T. Mattila-Sandholm,, and W.M. de Vos. 2005. Probiotic and other functional microbes: from markets to mechanisms. Curr. Opin. Biotechnol. 16: 204211.
94. Scanlan, P. D.,, and J.R. Marchesi. 2008. Micro-eukaryotic diversity of the human distal gut microbiota: qualitative assessment using culture-dependent and -independent analysis of faeces. ISMEJ. 2: 11831193.
95. Schauser, K.,, and L. Larsson. 2005. Programmed cell death and cell extrusion in rat duodenum: a study of expression and activation of caspase-3 in relation to C-jun phosphorylation, DNA fragmentation and apoptotic morphology. Histochem. Cell Biol. 124: 237243.
96. Schwiertz, A.,, B. Gruhl,, M. Lobnitz,, P. Michel,, M. Radke,, and M. Blaut. 2003. Development of the intestinal bacterial composition in hospitalized preterm infants in comparison with breast-fed, full-term infants. Pediatr. Res. 54: 393399.
97. Scupham, A. J.,, L.L. Presley, B. Wei,, E. Bent,, N. Griffith,, M. McPherson,, F.L. Zhu, O. Oluwadara,, N. Rao,, J. Braun,, and J. Borenman. 2006. Abundant and diverse fungal microbi-ota in the murine intestine. Appl. Environ. Microbiol. 72: 793801.
98. Sears, C. 2005. A dynamic partnership: celebrating our gut flora. Anaerobe 11: 247251.
99. Sekirov, I.,, N.M. Tam,, M. Jogova,, M. L. Robertson,, Y.L. Li,, C. Lupp,, and B. B. Finlay. 2008. Antibiotic-induced perturbations of the intestinal microbiota alter host susceptibility to enteric infection. Infect. Immun. 76: 47264736.
100. Seksik, P.,, P. Lepage,, M. F. de la Cochetiere,, A. Bourreille,, M. Sutren,, J.P. Galmiche, J. Dore,, and P. Marteau. 2005. Search for localized dysbiosis in Crohn’s disease ulcerations by temporal temperature gradient gel electrophoresis of 16S rRNA. J. Clin. Microbiol. 43: 46544658.
101. Servin, A. L. 2004. Antagonistic activities of lactoba-cilli and bifidobacteria against microbial pathogens. FEMS Microbiol. Rev. 28: 405440.
102. Shoemaker, N. B.,, H. Vlamakis,, K. Hayes,, and A.A. Salyers. 2001. Evidence for extensive resistance gene transfer among Bacteroides spp. and among Bacteroides and other genera in the human colon. Appl. Environ. Microbiol. 67: 561568.
103. Sillanpaa, J.,, B. Martinez,, J. Antikainen,, T. Toba,, N. Kalkkinen,, S. Tankka,, K. Lounatmaa,, J. Keranen,, M. Hook,, B. Westerlund-Wikstrom,, P. H. Pouwels,, and T.K. Korhonen. 2000. Characterization of the collagen-binding S-layer protein CbsA of Lactobacillus crispatus. J. Bacteriol. 182: 64406450.
104. Sogin, M. L.,, H. G. Morrison,, J.A. Huber,, D. Mark Welch,, S.M. Huse, P.R. Neal, J. M. Arrieta,, and G.J. Herndl. 2006. Microbial diversity in the deep sea and the underexplored “rare biosphere.” Proc. Natl. Acad. Sci. USA 103: 1211512120.
105. Sokol, H.,, B. Pigneur,, L. Watterlot,, O. Lakhdari,, L.G. Bermudez-Humaran,, J.J. Gratadoux, S. Blugeon,, C. Bridonneau,, J.P. Furet, G. Corthier,, C. Grangette,, N. Vasquez,, P. Pochart,, G. Trugnan,, G. Thomas,, H.M. Blottiere, J. Dore,, P. Marteau,, P. Seksik,, and P. Langella. 2008. Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients. Proc. Natl. Acad. Sci. USA 105: 1673116736.
106. Sonnenburg, J. L.,, C. T. Chen,, and J.I. Gordon. 2006. Genomic and metabolic studies of the impact of probiotics on a model gut symbiont and host. PLoS Biol. 4:e413.
107. Sougioultzis, S.,, S. Simeonidis,, K. Bhaskar,, P. Anton,, A. Pan,, M. Warny,, S. Aboudola,, J. Goldsmith,, S. Keates,, and C. Pothoulakis. 2003. Saccharomyces boulardii produces a soluble anti-inflammatory factor that inhibits NF-kappa B-mediated IL-8 gene expression. Gastroenterology 125: 606606.
108. Stark, P. L.,, and A. Lee. (1982). The microbial ecology of the large bowel of breast-fed and formula-fed infants during the first year of life. J. Med. Microbiol. 15: 189203.
109. Strocchi, A.,, J. Furne,, C. Ellis,, and M.D. Levitt. 1994. Methanogens outcompete sulfate-reducing bacteria for H-2 in the human colon. Gut 35: 10981101.
110. Swidsinski, A.,, V. Loening-Baucke, M. Vaneechoutte,, and Y. Doerffel. 2008. Active Crohn’s disease and ulcerative colitis can be specifically diagnosed and monitored based on the biostructure of the fecal flora. Inflamm. Bowel Dis. 14: 147161.
111. Swords, W.,, C. Wu, F. Champlin,, and R. Buddington. 1993. Postnatal changes in selected bacterial groups of the pig colonic microflora. Biol. Neonate 63: 191200.
112. Tamboli, C. P.,, C. Neut,, P. Desreumaux,, and J.F. Colombel. 2004. Dysbiosis in inflammatory bowel disease. Gut 53: 14.
113. Tanida, M.,, T. Yamano,, K. Maeda,, N. Okumura,, Y. Fukushima,, and K. Nagai. 2005. Effects of intraduodenal injection of Lactobacillus johnsonii La1 on renal sympathetic nerve activity and blood pressure in urethane-anesthetized rats. Neurosci. Lett. 389: 109114.
114. Tannock, G.,, R. Fuller,, and K. Pedersen. 1990a. Lactobacillus succession in the piglet digestive-tract demonstrated by plasmid profiling. Appl. Environ. Microbiol. 56: 13101316.
115. Tannock, G.,, R. Fuller,, S. Smith,, and M. Hall. 1990b. Plasmid profiling of members of the family enterobacteriaceae, lactobacilli, and bifidobacteria to study the transmission of bacteria from mother to infant. J. Clin. Microbiol. 28: 12251228.
116. Tap, J.,, S. Mondot,, F. Levenez,, E. Pelletier,, C. Caron,, J.P. Furet, E. Ugarte,, R. Munoz-Tamayo,, D.L. Paslier, R. Nalin,, J. Dore,, and M. Leclerc. 2009. Towards the human intestinal microbiota phylogenetic core. Environ. Microbiol. 11: 25742584.
117. Thoreux, K.,, D. Balas, C. Bouley,, and F. Senegas-Balas. 1998. Diet supplemented with yoghurt or milk fermented by Lactobacillus casei DN-114 001 stimulates growth and brush-border enzyme activities in mouse small intestine. Digestion 59: 349359.
118. Trompette, A.,, J. Claustre,, F. Caillon,, G. Jourdan,, J.A. Chayvialle,, and P. Plaisancie. 2003. Milk bioactive peptides and beta-casomorphins induce mucus release in rat jejunum. J. Nutr. 133: 34993503.
119. Turnbaugh, P. J.,, M. Hamady,, T. Yatsunenko,, B.L. Cantarel,, A. Duncan,, R.E. Ley, M.L. Sogin, W.J. Jones, B.A. Roe, J.P. Affourtit, M. Egholm,, B. Henrissat,, A.C. Heath, R. Knight,, and J.I. Gordon. 2009. A core gut microbiome in obese and lean twins. Nature 457: 480484.
120. Turnbaugh, P. J.,, R. E. Ley, M.A. Mahowald,, V. Magrini,, E. R. Mardis,, and J.I. Gordon. 2006. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444: 10271031.
121. Umesaki, Y.,, Y. Okada, S. Matsumoto,, A. Imaoka,, and H. Setoyama. 1995. Segmented filamentous bacteria are indigenous intestinal bacteria that activate intraepithelial lymphocytes and induce MHC class-II molecules and fucosyl asialo Gm1 glycolipids on the small-intestinal epithelial-cells in the ex-germ-free mouse. Microbiol. Immunol. 39: 555562.
122. van der Wielen, P. W. J. J.,, S. Biesterveld,, S. Notermans,, H. Hofstra,, B. A. P. Urlings,, and F. van Knapen. 2000. Role of volatile fatty acids in development of the cecal microflora in broiler chickens during growth. Appl. Environ. Microbiol. 66: 25362540.
123. Van Loo, J. A. 2004. Prebiotics promote good health: the basis, the potential, and the emerging evidence. J. Clin. Gastroenterol. 38:S 7075.
124. Van Nuenen, M.,, K. Venema, J. Van der Woude,, and E. Kuipers. 2004. The metabolic activity of fecal microbiota from healthy individuals and patients with inflammatory bowel disease. Digest. Dis. Sci. 49: 485491.
125. Verberkmoes, N. C.,, A. L. Russell, M. Shah,, A. Godzik,, M. Rosenquist,, J. Halfvarson,, M.G. Lefsrud, J. Apajalahti,, C. Tysk,, R. L. Hettich,, and J.K. Jansson. 2009. Shotgun metaproteomics of the human distal gut microbiota. ISME J. 3: 179189.
126. Walker, A. 2007. Genome watch - say hello to our little friends. Nat. Rev. Microbiol. 5: 572573.
127. Wanitschke, R.,, and H. Ammon. 1978. Effects of dihydroxy bile-acids and hydroxy fatty-acids on absorption of oleic-acid in human jejunum. J. Clin. Invest. 61: 178186.
128. Wikoff, W. R.,, A.T. Anfora,, J. Liu,, P.G. Schultz, S.A. Lesley, E. C. Peters,, and G. Siuzdak. 2009. Metabolomics analysis reveals large effects of gut microflora on mammalian blood metabolites. Proc. Natl. Acad. Sci. USA 106: 36983703.
129. Willing, B.,, J. Halfvarson,, J. Dicksved,, M. Rosenquist,, G. Jarnerot,, L. Engstrand,, C. Tysk,, and J.K. Jansson. 2009a. Twin studies reveal specific imbalances in the mucosa-associated microbiota of patients with ileal Crohn’s disease. Inflamm. Bowel Dis. 15: 653660.
130. Willing, B.,, A. Vörös,, S. Roos,, C. Jones,, A. Jansson,, and J.E. Lindberg. 2009b. Changes in faecal bacteria associated with concentrate and forage-only diets fed to horses in training. Equine Vet. J. 41: 908915.
131. Willing, B. P.,, and B.B. Finlay. 2009. Gut microbiology: fitting into the intestinal neighbourhood. Curr. Biol. 19:R 457459.
132. Woese, C. R.,, O. Kandler,, and M.L. Wheelis. 1990. Towards a natural system of organisms - proposal for the domains Archaea, Bacteria, and Eucarya. Proc. Natl. Acad. Sci. USA 87: 45764579.
133. Xu, J.,, M.A. Mahowald,, R.E. Ley,, C.A. Lozupone,, M. Hamady,, E.C. Martens, B. Henrissat,, P.M. Coutinho, P. Minx,, P. La-treille,, H. Cordum,, A. Van Brunt,, K. Kim,, R.S. Fulton, L.A. Fulton, S.W. Clifton, R.K. Wilson, R. D. Knight,, and J.I. Gordon. 2007. Evolution of symbiotic bacteria in the distal human intestine. PLoS Biol. 5:e 156.
134. Yap, I. K.,, J. V. Li,, J. Saric,, F.P. Martin, H. Davies,, Y. Wang,, I.D. Wilson, J.K. Nicholson, J. Utzinger,, J. R. Marchesi,, and E. Holmes. 2008. Metabonomic and microbiological analysis of the dynamic effect of vancomycin-induced gut microbiota modification in the mouse. J. Proteome Res. 7: 37183728.
135. Yergeau, E.,, S.A. Schoondermark-Stolk,, E.L. Brodie,, S. Dejean,, T.Z. DeSantis, O. Goncalves,, Y.M. Piceno, G. L. Andersen,, and G.A. Kowalchuk. 2009. Environmental microarray analyses of Antarctic soil microbial communities. ISME J. 3: 340351.
136. Yokoyama, M. T.,, C. Tabori,, E. R. Miller,, and M.G. Hogberg. 1982. The effects of antibiotics in the weanling pig diet on growth and the excretion of volatile phenolic and aromatic bacterial metabolites. Am. J. Clin. Nutr. 35: 14171424.
137. Zoetendal, E. G.,, A. D. L. Akkermans,, W.M. Akkermans-van Vliet,, J. Arjan,, G. M. de Visser,, and W.M. de Vos. 2001. The host genotype affects the bacterial community in the human gastrointestinal tract. Microb. Ecol. 13: 129134.
138. Zoetendal, E. G.,, C. T. Collier, S. Koike,, R.I. Mackie,, and H.R. Gaskins. 2004. Molecular ecological analysis of the gastrointestinal micro-biota: a review. J. Nutr. 134: 465472.
139. Zoghbi, S.,, A. Trompette,, J. Claustre,, M. El Homsi,, J. Garzon,, J. Y. Scoazec,, and P. Plaisancie. 2006. beta-Casomorphin-7 regulates the secretion and expression of gastrointestinal mucins through a muopioid pathway. Am. J. Physiol. Gastrointest. Liver Physiol. 290: G1105G1113.


Generic image for table
Table 1

Representation of classified bacterial phyla from 60 mammalian species

Citation: Willing B, Jansson J. 2011. The Gut Microbiota: Ecology and Function, p 39-65. In Sadowsky M, Whitman R (ed), The Fecal Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555816865.ch3

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error