Chapter 5 : Environmental Sources of Fecal Bacteria

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

Environmental Sources of Fecal Bacteria, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555816865/9781555816087_Chap05-1.gif /docserver/preview/fulltext/10.1128/9781555816865/9781555816087_Chap05-2.gif


Despite regulatory requirements for treating wastewater to reduce microbial pollutants prior to release into waterways, frequent beach closures or advisories as a result of elevated fecal indicator bacteria (FIB; e.g., and enterococci) have been a chronic problem at many recreational locations. This chapter provides a review of the research on environmental occurrences of FIB in a variety of terrestrial and aquatic habitats under different geographic and climatic conditions, and discusses how these external sources may affect surface water quality. FIB are usually retained in the upper layer of soil depending on soil type, temperature, rate of water flow, and other environmental variables. Several microbial source tracking studies have identified wildlife as an important nonpoint source of FIB; however, identifying and partitioning these contaminants by source has been challenging. Future research on colonization potential, growth requirements, microbial interactions, and population genetics, can shed more light on FIB occurrence in natural environments. The persistence and potential growth of indicator bacteria in sediments and soils likely have a serious impact on recreational water quality by elevating bacterial counts through resuspension and surface runoff. Since large quantities of wastes generated from animal husbandry activities, such as poultry, dairy, and swine production, are often spread over the land as a fertilizer, these processes may result in an increase of microbial contaminants in the soil that, in turn, could potentially affect the quality of nearby water bodies.

Citation: Byappanahalli M, Ishii S. 2011. Environmental Sources of Fecal Bacteria, p 93-110. In Sadowsky M, Whitman R (ed), The Fecal Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555816865.ch5
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of FIGURE 1

densities (log MPN per g) in soil over time for the six locations within Dunes Creek watershed (northwest Indiana). Samples (n = 66) were collected and analyzed over a period of 8 months (March to October 2003) to determine the ubiquity and persistence of in temperate forest soils. Adapted from Byappanahalli et al. ( ).

Citation: Byappanahalli M, Ishii S. 2011. Environmental Sources of Fecal Bacteria, p 93-110. In Sadowsky M, Whitman R (ed), The Fecal Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555816865.ch5
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2

(A) Multivariate analysis of variance (MANOVA) of horizontal, fluorophore-enhanced rep-PCR DNA fingerprints from strains obtained from soils ( ), deer ( ), and birds (geese [ ], terns [ ], and gulls [ ]). The first two discriminants are represented by the distances along the and axes (adapted from ). (B) Conceptual representation of distribution among humans, animal hosts, and environmental reservoirs. Some level of host specificity can be detected in among but some strains can be found in multiple hosts. Environmentally adapted “naturalized” strains are unique and different from those found in humans and other animal hosts. Pathogenic strains can cause human diseases and can be found in other animal hosts and in the environments. Adapted from Ishii and Sadowsky ( ).

Citation: Byappanahalli M, Ishii S. 2011. Environmental Sources of Fecal Bacteria, p 93-110. In Sadowsky M, Whitman R (ed), The Fecal Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555816865.ch5
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3

Conceptual representation of how various sources may contribute to beach sand, sediment, and water in beachshed ecosystems. Wave action may carry originating from humans, waterfowl, and other sources to beach areas. from waterfowl droppings and naturalized populations in beach sand and sediment may also be released back into water. Thus, sediment and beach sand may act as sinks and sources of this fecal indicator bacterium. Adapted from Ishii et al. ( ).

Citation: Byappanahalli M, Ishii S. 2011. Environmental Sources of Fecal Bacteria, p 93-110. In Sadowsky M, Whitman R (ed), The Fecal Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555816865.ch5
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 4

density in deep, saturated sand at a Southern Lake Michigan beach (Dunbar, northwest Indiana) as a function of distance from the shoreline. Error bars represent + /— 1 standard error. Adapted from Byappanahalli et al. ( ).

Citation: Byappanahalli M, Ishii S. 2011. Environmental Sources of Fecal Bacteria, p 93-110. In Sadowsky M, Whitman R (ed), The Fecal Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555816865.ch5
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 5

Log mean densities (+ 1 standard error) of and enterococci in collected from 10 Lake Michigan beaches in Wisconsin (WI), Illinois (IL), Indiana (IN), and Michigan (MI). Adapted from Whitman et al. ( ).

Citation: Byappanahalli M, Ishii S. 2011. Environmental Sources of Fecal Bacteria, p 93-110. In Sadowsky M, Whitman R (ed), The Fecal Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555816865.ch5
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 6

Conceptual diagram of within and between stream and beach watersheds (left and right triangles, respectively). For streams, the model partitions stream inputs as human or nonhuman; the latter might include bacterial inputs originating from growth within riparian soils or long-term storage. Within the stream, major processes include (i) inactivation and reactivation, (ii) deposition (temporary or permanent loss) and resuspension, and (iii) death and direct input (e.g., animal defecation and multiplication). Culturable bacteria are delivered from the stream to the beachshed as surface water or groundwater. Internal inputs of into the lake include foreshore bacteria resuspension (from storage, defecates, and growth) and wastewater releases. Within the lake, there are dynamic interactions between inactivation/reactivation, deposition/resuspension, and offshore importation/exportation of bacteria. The whole beachshed system eventually yields the net culturable densities (enumerated) monitored by managers at a targeted beach location. Reprinted from Whitman et al. ( ).

Citation: Byappanahalli M, Ishii S. 2011. Environmental Sources of Fecal Bacteria, p 93-110. In Sadowsky M, Whitman R (ed), The Fecal Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555816865.ch5
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Akasura, H.,, S. Makino,, T. Shirahata,, T. Tsuka-moto,, H. Kurazono,, T. Ikeda,, and K. Takeshi. 1998. Detection and genetical characterization of Shiga toxin-producing Escherichia coli from wild deer. Microbiol. Immunol. 42: 815822.
2. Alam, M.,, M. Sultana,, G.B. Nair,, R.B. Sack,, D.A. Sack, A.K. Siddique, A. Ali,, A. Huq,, and R.R. Colwell. 2006. Toxigenic Vibrio cholerae in the aquatic environment of Mathbaria, Bangladesh. Appl. Environ. Microbiol. 72: 28492855.
3. Alderisio, K. A.,, and N. DeLuca. 1999. Seasonal enumeration of fecal coliform bacteria from the feces of ring-billed gulls (Larus delawarensis) and Canada geese (Branta canadensis). Appl. Environ. Microbiol. 65: 56285630.
4. Alm, E. W.,, J. Burke, and, A. Spain. 2003. Fecal indicator bacteria are abundant in wet sand at freshwater beaches. Water Res. 37: 39783982.
5. Altekruse, S. F.,, N. Stern,, J., P. I. Fields,, and D.L. Swerdlow. 1999. Campylobacter jejuni - An emerging foodborne pathogen. Emerg. Infect. Dis. 5:28.
6. An, Y.-J.,, D. H. Kampbell,, and G.P. Breidenbach. 2002. Escherichia coli and total coliforms in water and sediments at lake marinas. Environ. Pollut. 120: 771778.
7. Anderson, S. A.,, S. J. Turner,, and G.D. Lewis. 1997. Enterococci in the New Zealand environment: implications for water quality monitoring. Water Sci. Technol. 35: 325331.
8. Arias, C. A.,, A. Cabello, H. Brix,, and N.-H. Johansen. 2003. Removal of indicator bacteria from municipal wastewater in an experimental two-stage vertical flow constructed wetland system. Water Sci. Technol. 48: 3541.
9. Avery, L. M.,, P. Hill,, K. Killham,, and D.L. Jones. 2004. Escherichia coli O157 survival following the surface and sub-surface application of human pathogen contaminated organic waste to soil. Soil Biol. Biochem. 36: 21012103.
10. Barcina, I.,, I. Arana, J. Iriberri,, and L. Egea. 1986. Influence of light and natural microbiota of the Burton River on E. coli survival. Antonie van Leeuwenhoek 52: 555566.
11. Bermudez, M.,, and T.C. Hazen. 1988. Phenotypic and genotypic comparison of Escherichia coli from pristine tropical waters. Appl. Environ. Microbiol. 54: 979983.
12. Berry, E. D.,, and D.N. Miller. 2005. Cattle feedlot soil moisture and manure content: II. Impact on Escherichia coli O157. J. Environ. Qual. 34: 656663.
13. Bicudo, J. R.,, and S.M. Goyal. 2003. Pathogens and manure management systems: A review. Environ. Technol. 24: 115130.
14. Boehm, A. B.,, S. B. Grant, J. H. Kim,, S.L. Mowbray, C.D. McGee, C.D. Clark, D. M. Foley,, and D.E. Wellman. 2002. Decadal and shorter period variability of surf zone water quality at Huntington Beach, California. Environ. Sci. Technol. 36: 38853892.
15. Bogosian, G.,, L.E. Sammons,, J.L. Morris,, J.P. O’Neil,, M. A. Heitkamp,, and D.B. Weber. 1996. Death of the Escherichia coli K-12 strain W31110 in soil and water. Appl. Environ. Microbiol. 62: 41144120.
16. Bolton, F. J.,, S.B. Surman,, K. Martin,, D. R. Wareing,, and T.J. Humphrey. 1999. Presence of Campylobacter and Salmonella in sand from bathing beaches. Epidemiol. Infect. 122: 713.
17. Bronikowski, A. M., A., F. Bennett,, and R.E. Lenski. 2001. Evolutionary adaptation to temperature. VIII. Effects of temperature on growth rate in natural isolates of Escherichia coli and Salmonella enterica from different thermal environments. Evolution 55: 3340.
18. Burton, G. A., Jr.,, D. Gunnison,, and G.R. Lanza. 1987. Survival of pathogenic bacteria in various freshwater sediments. Appl. Environ. Microbiol. 53: 633638.
19. Byappanahalli, M.,, M. Fowler,, D. Shively,, and R. Whitman. 2003a. Ubiquity and persistence of Escherichia coli in a midwestern coastal stream. Appl. Environ. Microbiol. 69: 45494555.
20. Byappanahalli, M.,, and R. Fujioka. 2004. Indigenous soil bacteria and low moisture may limit but allow faecal bacteria to multiply and become a minor population in tropical soils. Water Sci. Technol. 50: 2732.
21. Byappanahalli, M. N. 2000. Ph.D. dissertation. Assessing the persistence and multiplication of fecal indicator bacteria in Hawaii’s soil environment. University of Hawaii, Honolulu, HI.
22. Byappanahalli, M. N.,, R. Sawdey,, S. Ishii,, D.A. Shively,, J.A. Ferguson, R.L. Whitman,, and M.J. Sadowsky. 2009. Seasonal stability of Cladophora-associated Salmonella in Lake Michigan watersheds. Water Res. 43: 806814.
23. Byappanahalli, M. N.,, D.A. Shively,, M.B. Nevers,, M. J. Sadowsky,, and R.L. Whitman. 2003b. Growth and survival of Escherichia coli and enterococci populations in the macro-alga Cladophora (Chlorophyta). FEMS Microbiol. Ecol. 46: 203211.
24. Byappanahalli, M. N.,, R. L. Whitman, D.A. Shively,, W. T. Evert Ting,, C.C. Tseng,, and M.B. Nevers. 2006a. Seasonal persistence and population characteristics of Escherichia coli and enterococci in deep backshore sand of two freshwater beaches J. Water Health 4: 313320.
25. Byappanahalli, M. N.,, R.L. Whitman,, D.A. Shively,, J. Ferguson,, S. Ishii,, and M. Sadowsky. 2007. Population structure of Cladophora-borne Escherichia coli in nearshore water of Lake Michigan. Water Res. 41: 36493654.
26. Byappanahalli, M. N.,, R.L. Whitman,, D.A. Shively,, M.J. Sadowsky,, and S. Ishii. 2006b. Population structure, persistence, and seasonality of autochthonous Escherichia coli in temperate, coastal forest soil from a Great Lakes watershed. Environ. Microbiol. 8: 504513.
27. Carrillo, M.,, E. Estrada,, and T.C. Hazen. 1985. Survival and enumeration of the fecal indicators Bifidobacterium adolescentis and Escherichia coli in a tropical rain forest watershed. Appl. Environ. Microbiol. 50: 468476.
28. Chandler, D. S.,, and J.A. Craven. 1980. Relationship of soil moisture to survival of Escherichia coli and Salmonella typhimurium in soils. Aust. J. Agric. Res .31: 547555.
29. Chiras, D. D. 1990. Environmental Science: Action for a Sustainable Future, 3rd ed. Benjamin/Cummings Publishing Company, Inc., Redwood City, CA.
30. Cools, D.,, R. Merckx, K. Vlassak,, and J. Verhaegen. 2001. Survival of E. coli and Enterococcus spp. derived from pig slurry in soils of different texture. Appl. Soil Ecol. 17: 5362.
31. Cox, P.,, M. Griffith, M. Angles,, D. Deere,, and C. Ferguson. 2005. Concentrations of pathogens and indicators in animal feces in the Sydney watershed. Appl. Environ. Microbiol. 71: 59295934.
32. Craig, D. L., H., J. Fallowfield,, and N.J. Cromar. 2004. Use of microcosms to determine persistence of Escherichia coli in recreational coastal water and sediment and validation with in situ measurements. J. Appl. Microbiol. 96: 922930.
33. Davies-Colley, R. J., R., G. Bell,, and A.M. Donnison. 1994. Sunlight inactivation of enterococci and faecal coliforms in sewage effluent diluted in seawater. Appl. Environ. Microbiol. 60: 20492058.
34. Desmarais, T. R., H. M. Solo-Gabrielle,, and C.J. Palmer. 2002. Influence of soil on fecal indicator organisms in a tidally influenced subtropical environment. Appl. Environ. Microbiol. 68: 11651172.
35. Doran, J. E.,, and D.M. Linn. 1979. Bacteriological quality of runoff water from pastureland. Appl. Environ. Microbiol. 37: 985991.
36. Doyle, J. D.,, B. Tunnicliff,, R. Kramer,, R. Kuehl,, and S.K. Brickler. 1992. Instability of fecal coliform populations in waters and bottom sediments at recreational beaches in Arizona. Water Res. 26: 979988.
37. Dwight, R. H., D., B. Baker,, and J.C. Semenza. 2002. Association of urban runoff with coastal water quality in Orange County, California. Water Environ. Res. 74: 8290.
38. Elmir, S. M.,, M. E. Wright,, A. Abdelzaher,, H. M. Solo-Gabriele,, L.E. Fleming, G. Miller,, M. Rybolowik,, M.-T. P. Shih,, S.P. Pillai, J. A. Cooper,, and E.A. Quaye. 2007. Quantitative evaluation of bacteria released by bathers in a marine water. Water Res. 41: 310.
39. Englebert, E. T., C. McDermott,, and G.T. Kleheinz. 2008a. Effects of the nuisance algae, Cladophora, on Escherichia coli at recreational beaches in Wisconsin. Sci. Total Environ. 404: 1017.
40. Englebert, E. T., C. McDermott,, and G.T. Kleinheinz. 2008b. Impact of the alga Cladophora on the survival of E. coli, Salmonella, and Shigella in laboratory microcosm. J. Great Lakes Res. 34: 377382.
41. Field, K. G.,, and M. Samadpour. 2007. Fecal source tracking, the indicator paradigm, and managing water quality. Water Res. 41: 35173538.
42. Fischer, J. R.,, T. Zhao,, M. P. Doyle,, M.R. Goldberg,, C.A. Brown, C.T. Sewell, D. M. Kavanaugh,, and C.D. Bauman. 2001. Experimental and field studies of Escherichia coli O157:H7 in white-tailed deer. Appl. Environ. Microbiol. 67: 12181224.
43. Flint, K. P. 1987. The long-term survival of Escherichia coli in river water. J. Appl. Microbiol. 63: 261270.
44. Franz, E.,, and A.H. van Bruggen. 2008. Ecology of E. coli O157:H7 and Salmonella enterica in the primary vegetable production chain. Crit. Rev. Microbiol. 34: 143161.
45. Fremaux, B., C. Prigent-Combaret,, and C. Vernozy-Rozand. 2008. Long-term survival of Shiga toxin-producing Escherichia coli in cattle effluents and environment: an updated review. Vet. Microbiol. 132: 118.
46. Fujioka, R.,, C. Sian-Denton, M. Borja,, J. Castro,, and K. Morphew. 1999. Soil: the environmental source of Escherichia coli and enterococci in Guam’s streams. J. Appl. Microbiol. Symp. Suppl. 85:83S-89S.
47. Fujioka, R. S.,, H. H. Hashimoto, E. B. Siwak,, and R.H. F. Young. 1981. Effect of sunlight on survival of indicator bacteria in seawater. Appl. Environ. Microbiol. 41: 690696.
48. Fujioka, R. S.,, K. Tenno, and, S. Kansako. 1988. Naturally occurring fecal coliforms and fecal streptococci in Hawaii’s freshwater streams. Toxic Assess. 3: 613630.
49. Fujioka, R. S.,, and M.N Byappanahalli. 2001. Microbial ecology controls the establishment of fecal bacteria in tropical soil environment, p. 273283. In T. Matsuo,, K. Hanaki,, S. Takizawa, and H. Satoh (ed.), Advances in water and waste water treatment technology: molecular technology, nutrient removal, sludge reduction and environmental health. Elsevier, Amsterdam, The Netherlands.
50. Fujioka, R. S.,, and M.N. Byappanahalli. 2003. Tropical water quality indicator workshop, SR-2004–01, p. 1–95. Proceedings of the National Beaches Conference, University of Hawaii, Water Resources Research Center, Honolulu, HI.
51. Gabrey, S. W. 1996. Migration and dispersal in Great Lakes ring-billed and herring gulls. J. Field Ornithol. 67: 327339.
52. Gannon, V. P. J.,, G. D. Duke, J.E. Thomas,, J. VanLeeuwen,, J. Byrne,, D. Johnson,, S.W. Kienzle, J. Little,, T. Graham,, and B. Selinger. 2005. Use of instream reservoirs to reduce bacterial contamination of rural watersheds. Sci. Total Environ. 348: 1931.
53. Gary, H. L.,, and J.C. Adams. 1985. Indicator bacteria in water and stream sediments near the snowy range in southern Wyoming. Water Air Soil Pollut. 25: 133144.
54. Gerba, C. P.,, and J.S. McLeod. 1976. Effect of sediments on the survival of Escherichia coli in marine waters. Appl. Environ. Microbiol. 32: 114120.
55. Ghinsberg, R. C.,, P. Leibowitz,, H. Witkin,, A. Mates,, Y. Seinberg,, D.L. Bar, Y. Nitzan,, and M. Rogol. 1994. Monitoring of selected bacteria and fungi in sand and seawater along the Tel Aviv coast. MAP Tech. Rep. Series 87: 6581.
56. Grant, S. B.,, B. F. Sanders, A.B. Boehm,, J.A. Redman, J.H. Kim, R.D. Mrse, A.K. Chu, M. Gouldin,, C.D. McGee, N.A. Gardiner, B.H. Jones, J. Svejkovsky,, G. V. Leipzig,, and A. Brown. 2001. Generation of enterococci bacteria in a costal saltwater marsh and its impact on surf zone water quality. Environ. Sci. Technol. 35: 24072416.
57. Hagler, A. N.,, C. A. Rosa, P.B. Morais,, L. C. Mendonca-Hagler,, G.M. Franco, F. V. Araujo,, and C.A. Soares. 1993. Yeasts and coliform bacteria of water accumulated in bromeliads of mangrove and sand dune ecosystems of southeast Brazil. Can. J. Microbiol. 39: 973977.
58. Hansen, D. L.,, J. J. Clark, S. Ishii,, M.J. Sadowsky,, and R.E. Hicks. 2008. Sources and sinks of Escherichia coli in benthic pelagic fish. J. Great Lakes Res. 34: 228234.
59. Hansen, D. L.,, S. Ishii,, M. J. Sadowsky,, and R.E. Hicks. 2009. Escherichia coli populations in Great Lakes waterfowl exhibit spatial stability and temporal shifting. Appl. Environ. Microbiol. 75: 15461551.
60. Hardina, C. M.,, and R.S. Fujioka. 1991. Soil: the environmental source of Escherichia coli and enterococci in Hawaii’s streams. Environ. Toxicol. Water Qual. 6: 185195.
61. Hazen, T. C. 1988. Fecal coliforms as indicators in tropical waters: a review. Toxic Assess. 3: 461477.
62. Heaney, C. D.,, E. Sams,, S. Wing,, S. Marshall,, K. Brenner,, A. Dufour,, and T.J. Wade. 2009. Contact with beach sand among beachgoers and risk of illness. Am. J. Epidemiol. 170: 164172.
63. Irvine, K. N.,, and G.W. Pettibone. 1993. Dynamics of indicator bacteria populations in sediment and river water near a combined sewer outfall. Environ. Technol. 14: 531542.
64. Ishii, S.,, D.L. Hansen, R. E. Hicks,, and M.J. Sadowsky. 2007a. Beach sand and sediments are temporal sinks and sources of Escherichia coli in Lake Superior. Environ. Sci. Technol. 41: 22032209.
65. Ishii, S.,, K. P. Meyer,, and M.J. Sadowsky. 2007b. Relationship between phylogenetic groups, genotypic clusters, and virulence gene profiles of Escherichia coli strains from diverse human and animal sources. Appl. Environ. Microbiol. 73: 57035710.
66. Ishii, S.,, and M.J. Sadowsky. 2008. Escherichia coli in the environment: implications for water quality and human health. Microbes Environ. 23: 101108.
67. Ishii, S.,, T. Yan,, D. A. Shively, M.N. Byappanahalli,, R. L. Whitman,, and M.J. Sadowsky. 2006b. Cladophora (Chlorophyta) spp. harbor human bacterial pathogens in nearshore water of Lake Michigan. Appl. Environ. Microbiol. 72: 45454553.
68. Ishii, S.,, W.B. Ksoll, R. E. Hicks,, and M.J. Sadowsky. 2006a. Presence and growth of naturalized Escherichia coli in temperate soils from Lake Superior watersheds. Appl. Environ. Microbiol. 72: 612621.
69. Islam, M.,, M.P. Doyle,, S. C. Phatak, P. Millner,, and X. Jiang. 2004. Persistence of entero-hemorrhagic Escherichia coli O157:H7 in soil and on leaf lettuce and parsley grown in fields treated with contaminated manure composts or irrigation water. J. Food Protect. 67: 13651370.
70. Jannasch, H. W. 1968. Competitive elimination of Enterobacteriaceae from seawater. Appl. Microbiol. 16: 16161618.
71. Jawson, M. D.,, L. F. Elliott, K. E. Saxton,, and D.H. Fortier. 1982. The effect of cattle grazing on indicator bacteria in runoff from a Pacific Northwest watershed. J. Environ. Qual. 11: 621627.
72. Jenkins, M.,, D. S. Fisher,, and, D. Endale. 2008. Escherichia coli O157:H7 survives longer than fecal indicator bacteria in a pond in an agricultural watershed. ASA-CSSA-SSSA International Annual Meetings, October 5–9, 2008, Houston, TX.
73. Jiang, X.,, J. Morgan,, and M.P. Doyle. 2002. Fate of Escherichia coli O157:H7 in manure-amem-ded soil. Appl. Environ. Microbiol. 68: 26052609.
74. Johannessen, G. S.,, G. B. Bengtsson, B.T. Heier,, S. Bredholt,, Y. Wasteson,, and L.M. Rorvik. 2005. Potential uptake of Escherichia coli O157:H7 from organic manure into crisphead lettuce. Appl. Environ. Microbiol. 71: 22212225.
75. Kamizoulis, G.,, and L. Saliba. 2004. Development of coastal recreational water quality standards in the Mediterranean. Environ. Int. 30: 841854.
76. Kinzelman, J. L.,, R. L. Whitman,, M. Byappanahalli,, E. Jackson,, and R.C. Bagley. 2003. Evaluation of beach grooming techniques on Escherichia coli density in foreshore sand at North Beach, Racine, WI. Lake Reserv. Manage. 19: 349354.
77. Kon, T.,, S.C. Weir, T. Howell,, H. Lee,, and J.T. Trevors. 2009. Repetitive element (REP)-poly-merase chain reaction (PCR) analysis of Escherichia coli isolates from recreational waters of southeastern Lake Huron. Can. J. Microbiol. 55: 269276.
78. Koop, K.,, R. C. Newell,, and M.I. Lucas. 1982. Microbial regeneration of nutrients from the decomposition of macrophyte debris on the shore. Mar. Ecol. Progr. Ser. 9: 9196.
79. Kourany, M.,, and S.R. Telford. 1981. Lizards in the ecology of salmonellosis in Panama. Appl. Environ. Microbiol. 41: 12481253.
80. Kreader, C. A. 1998. Persistence of PCR-detectable Bacteroides distasonis from human feces in river water. Appl. Environ. Microbiol. 64: 41034105.
81. Lasalde, C.,, R. Rodriguez,, G. A. Toranzos,, and H.H. Smith. 2005. Heterogeneity of uidA gene in environmental Escherichia coli populations. J. Water Health 3: 297304.
82. Levesque, B.,, P. Brousseau, F. Bernier,, E. Dewailly,, and J. Joly. 2000. Study of the bacterial content of ring-billed gull droppings in relation to recreational water quality. Water Res. 34: 10891096.
83. Levesque, B.,, P. Brousseau,, P. Simard, E. Dewailly, M. Meisels,, D. Ramsay,, and J. Joly. 1993. Impact of the ring-billed gull (Larus delawarensis) on the microbiological quality of recreational water. Appl. Environ. Microbiol. 59: 12281230.
84. Maugen, T. L.,, M. Carbone,, M. T. Fera,, G.P. Irrera,, and C. Guliandolo. 2004. Distribution of potentially pathogenic bacteria as free living and plankton associated in a marine coastal zone. J. Appl. Microbiol. 97: 354361.
85. McCambridge, J.,, and T.A. McMeekin. 1981. Effect of solar radiation and predacious microorganisms on survival of fecal and other bacteria. Appl. Environ. Microbiol. 41: 10831087.
86. Meals, D. W.,, and D.C. Braun. 2006. Demonstration of methods to reduce E. coli runoff from dairy manure application sites. J. Environ. Qual. 35: 10881100.
87. Mendes, B.,, P. Urbano,, C. Alves,, N. Lapa,, J. Morais,, J. Nascimento,, and J.F.S. Oliveira. 1997. Sanitary quality of sands from beaches of Azores Islands. Water Sci. Technol. 35: 147150.
88. Mishra, A.,, B. L. Benham, and, S. Mostaghimi. 2008. Bacterial transport from agricultural lands fertilized with animal manure. Water Air Soil Pollut. 189: 127134.
89. Mitchell, R.,, S. Yankofsky,, and H.W. Jannasch. 1967. Lysis of Escherichia coli by marine microorganisms. Nature 215: 891893.
90. Muller, T.,, A. Ulrich, E. M. Ott,, and M. Muller. 2001. Identification of plant-associated enterococci. J. Appl. Microbiol. 91: 268278.
91. Mundt, J. O. 1961. Occurrence of enterococci: bud, blossom, and soil studies. Appl. Microbiol. 9: 541544.
92. Mundt, J. O. 1962. Occurrence of enterococci on plants in a wild environment. Appl. Microbiol. 11: 141144.
93. Natvig, E. E.,, S. C. Ingham, B.H. Ingham,, L.R. Cooperband,, and T.R. Roper. 2002. Salmonella enterica serovar Typhimurium and Escherichia coli contamination of root and leaf vegetables grown in soils with incorporated bovine manure. Appl. Environ. Microbiol. 68: 27372744.
94. Nevers, M. B.,, and R.L. Whitman. 2005. Nowcast modeling of Escherichia coli concentrations at multiple urban beaches of southern Lake Michigan. Water Res. 39: 52505260.
95. Obiri-Danso, K.,, and K. Jones. 2000. Intertidal sediments as reservoirs for hippurate negative campylobacters, salmonellae and faecal indicators in three EU recognised bathing waters in north west England. Water Res. 34: 519527.
96. Okabe, S.,, N. Okayama, O. Savichtcheva,, and T. Ito. 2007. Quantification of host-specific Bacteroides-Prevotella 16S rRNA genetic markers for assessment of fecal pollution in freshwater. Appl. Microbiol. Biotechnol. 74: 890901.
97. Okabe, S.,, and Y. Shimazu. 2007. Persistence of host-specific Bacteroides-Prevotella 16S rRNA genetic markers in environmental waters: effects of temperature and salinity. Appl. Microbiol. Biotechnol. 76: 935944.
98. Olyphant, G. A.,, and R.L. Whitman. 2004. Elements of a predictive model for determining beach closures on a real time basis: The case for 63rd Street beach Chicago. Environ. Monit. Assess. 98: 175190.
99. Oshiro, R.,, and R.S. Fujioka. 1995. Sand, soil, and pigeon droppings: sources of indicator bacteria in the waters of Hanauma Bay, Oahu, Hawaii. Water Sci. Technol. 31: 251254.
100. Ott, E. M.,, T. Muller,, M. Muller,, C.M.A.P. Franz, A. Ulrich,, M. Gabel,, and W. Seyfarth. 2001. Population dynamics and antagonistic potential of enterococci colonizing the phyllosphere of grasses. J. Appl. Microbiol. 91: 5466.
101. Papadakis, J. A.,, A. Mavridou,, S. C. Richardson,, M. Lampiri,, and U. Marcelou. 1997. Bather-related microbial and yeast populations in sand and seawater. Water Res. 31: 799804.
102. Ricca, D. M.,, and J.J. Cooney. 1998. Coliphages and indicator bacteria in birds around Boston Harbor. J. Ind. Microbiol. Biotechnol. 21: 2830.
103. Rivera, S. C.,, T. C. Hazen,, and G.A. Toranzos. 1988. Isolation of fecal coliforms from pristine sites in a tropical rainforest. Appl. Environ. Microbiol. 54: 513517.
104. Roll, B. M.,, and R.S. Fujioka. 1997. Sources of faecal indicator bacteria in a brackish, tropical stream and their impact on recreational water quality. Water Sci. Technol. 35: 179186.
105. Sanchez, P. S.,, E. G. Agudo, F.G. Castro,, M. N. Alves,, and M.T. Martins. 1986. Evaluation of the sanitary quality of marine recreational waters and sands from beaches of the Sao Paulo State, Brazil. Water Sci. Technol. 18: 6172.
106. Sanchez, S.,, A. Garcia-Sanchez,, R. Martinez,, J. Blanco,, J.E. Blanco,, M. Blanco,, G. Dahbi,, A. Mora,, J. Hermoso de Mendoza,, J.M. Alono,, and J. Rey. 2009. Detection and characterization of shiga toxin-producing Escherichia coli other than Escherichia coli O157:H7 in wild ruminants. Vet. J. 180: 384388.
107. Scott, T. M.,, J.B. Rose, T.M. Jenkins,, S.R. Farrah,, and J. Lukasik. 2002. Microbial source tracking: current methodology and future directions. Appl. Environ. Microbiol. 68: 57965803.
108. Shiaris, M. P.,, A.C. Rex,, G.W. Pettibone,, K. Keay,, P. McManus,, M.A. Rex, J. Ebersole,, and E. Gallagher. 1987. Distribution of indicator bacteria and Vibrio parahaemolyticus in sewage-polluted intertidal sediments. Appl. Environ. Microbiol. 53: 17561761.
109. Signoretto, C.,, G. Burlacchini, C. Pruzzo,, and P. Canepari. 2005. Persistence of Enterococcus faecalis in aquatic environments via surface interactions with copepods. Appl. Environ. Microbiol. 71: 27562761.
110. Signoretto, C.,, G. Burlacchini,, M. M. Lleo, C. Pruzzo,, M. Zampini,, L. Pane,, G. Franzini,, and P. Canepari. 2004. Adhesion of Enterococcus faecalis in the nonculturable state to plankton is the main mechanism responsible for persistence of this bacterium in both lake and seawater. Appl. Environ. Microbiol. 70: 68926896.
111. Sinton, L. W.,, R. R. Braithwaite, C. H. Hall,, and M.L. Mackenzie. 2007. Survival of indicator and pathogenic bacteria in bovine feces on pasture. Appl. Environ. Microbiol. 73: 79177925.
112. Sinton, L. W.,, C. H. Hall, P. A. Lynch,, and R.J. Davies-Colley. 2002. Sunlight inactivation of fecal indicator bacteria and bacteriophages from waste stabilization pond effluent in fresh and saline waters. Appl. Environ. Microbiol. 68: 11221131.
113. Sjogren, R. E. 1994. Prolonged survival of an environmental Escherichia coli in laboratory soil microcosms. Water Air Soil Pollut. 75: 389403.
114. Skinner, Q. D.,, J. E. Speck, M. Smith,, and J.C. Adams. 1984. Stream water quality as influenced by beaver within grazing systems in Wyoming. J. Range Manage. 37: 142146.
115. Solo-Gabriele, H. M.,, M. A. Wolfert, T. R. Desmarais,, and C.J. Palmer. 2000. Sources of Escherichia coli in a coastal subtropical environment. Appl. Environ. Microbiol. 66: 230237.
116. Standridge, J. H.,, J. J. Delfino, L. B. Kleppe,, and R. Butler. 1979. Effect of waterfowl (Anas platyrhynchos) on indicator bacteria populations in a recreational lake in Madison, Wisconsin. Appl. Environ. Microbiol. 38: 547550.
117. Steets, B. M.,, and P.A. Holden. 2003. A mechanistic model of runoff-associated fecal coliform fate and transport through a coastal lagoon. Water Res. 37: 589608.
118. Stenstrom, T. A.,, and A. Carlander. 2001. Occurrence and die-off of indicator organisms in the sediment in two constructed wetlands. Water Sci. Technol. 44: 223230.
119. Stephenson, G. R.,, and L.U. Street. 1978. Bacterial variations in streams from a southwest Idaho rangeland watershed. J. Environ. Qual. 7: 150157.
120. Stoeckel, D. M.,, M. V. Mathes, K.E. Hyer,, C. Hagedorn,, H. Kator,, J. Lukasik,, T. L. O’Brien,, T.W. Fenger, M. Samadpour,, K. M. Strickler,, and B.A. Wiggins. 2004. Comparison of seven protocols to identify fecal contamination sources using Escherichia coli. Environ. Sci. Technol. 38: 61096117.
121. Taft, C. E. 1975. History of Cladophora in the Great Lakes, p. 5–16. In H. Shear and D. E. Konasewich (ed.), Cladophora in the Great Lakes. Great Lakes Research Advisory Board, International Joint Commission Regional Office, Windsor, Ontario.
122. Topp, E.,, M. Welsh,, Y. C. Tien, A. Dang,, G. Lazarovits,, K. Conn,, and H. Zhu. 2003. Strain-dependent variability in growth and survival of Escherichia coli in agricultural soil. FEMS Microbiol. Ecol. 44: 303308.
123. Unc, A.,, and M.J. Goss. 2004. Transport of bacteria from manure and protection of water resources. J. Appl. Ecol. 25: 118.
124. USEPA. 1999. EPA action plan for beaches and recreational waters. Office of Research and Development and Office of Water, U.S. Environmental Protection Agency, Washington, DC.
125. USEPA. 2005. Microbial source tracking guide document. EPA/600–R-05–064. Office of Research and Development and Office of Water, U.S. Environmental Protection Agency, Washington, DC.
126. Vanden-Heuvel, A.,, C. McDermott,, R. Pills-bury,, A. Sandrin,, J. Kinzelman,, J.A. Ferguson, M.J. Sadowsky, M. Byappanahalli,, R. Whitman,, and G.T. Kleinheinz. 2009. The green alga, Cladophora, promotes Escherichia coli growth and contamination of recreational waters in Lake Michigan. J. Environ. Qual. 39: 333344.
127. Vital, M.,, F. Hammes,, and T. Egli. 2008. Escherichia coli O157 can grow in natural freshwater at low carbon concentrations. Environ. Microbiol. 10: 23872396.
128. Vogel, J. R.,, D. M. Stoeckel, R. Lamendella,, R.B. Zelt, J. W. Santo Domingo,, S. R. Walker,, and D.B. Oerther. 2007. Identifying fecal sources in a selected catchment reach using multiple source-tracking tools. J. Environ. Qual. 36: 718729.
129. Weiskel, P. K., B., L. Howes,, and G.R. Heufelder. 1996. Coliform contamination of a coastal embayment: sources and transport pathways. Environ. Sci. Technol. 30: 18721881.
130. Whitman, R. L.,, D. A. Shively, H. Pawlik,, M. B. Nevers,, and M.N. Byappanahalli. 2003. Occurrence of Escherichia coli and enterococci in Cladophora (Chlorophyta) in nearshore water and beach sand of Lake Michigan. Appl. Environ. Microbiol. 69: 47144719.
131. Whitman, R. L.,, K. Przybyla-Kelly,, D.A. Shively,, M. B. Nevers,, and M.N. Byappanahalli. 2008. Sunlight, season, snowmelt, storm, and source affect E. coli populations in an artificially ponded stream. Sci. Total Environ. 390: 448455.
132. Whitman, R. L.,, K. Przybyla-Kelly,, D.A. Shively,, M. B. Nevers,, and M.N. Byappanahalli. 2009. Hand-mouth transfer and potential for exposure to E. coli and F+ coliphage in beach sand, Chicago, Illinois. J. Water Health 7: 623629.
133. Whitman, R. L.,, and M.B. Nevers. 2003. Foreshore sand as a source of Escherichia coli in nearshore water of a Lake Michigan beach. Appl. Environ. Microbiol. 69: 55555562.
134. Whitman, R. L.,, M. B. Nevers, G. C. Korinek,, and M.N. Byappanahalli. 2004. Solar and temporal effects on Escherichia coli concentration at a Lake Michigan swimming beach. Appl. Environ. Microbiol. 70: 42764285.
135. Whitman, R. L.,, M. B. Nevers,, and M.N. Byappanahalli. 2006. Examination of the watershed-wide distribution of Escherichia coli along southern Lake Michigan: an integrated approach Appl. Environ. Microbiol. 72: 73017310.
136. Whitman, R. L.,, S. E. Byers, D.A. Shively,, D. M. Ferguson,, and M. Byappanahalli. 2005. Occurrence and growth characteristics of Escherichia coli and enterococci within the accumulated fluid of the northern pitcher plant (Sarracenia purpurea L.). Can. J. Microbiol. 51: 10271037.
137. Whittam, T. S.,, and T.M. Bergholz. 2007. Molecular subtyping, source tracking, and food safety, p. 93–136. In J. W. Santo-Domingo, and M. J. Sadowsky (ed.), Microbial Source Tracking. ASM Press, Washington, DC.
138. WHO. 2003a. Microbial aspects of beach sand quality. In Guidelines for Safe Recreational Water Environments. Volume 1, Coastal and Fresh Waters. World Health Organization, Geneva, Switzerland.
139. WHO. 2003b. Guidelines for safe recreational water environments. In Guidelines for Safe Recreational Water Environments. Volume 1, Coastal and Fresh Waters. World Health Organization, Geneva, Switzerland.
140. Winfield, M. D.,, and E.A. Groisman. 2003. Role of nonhost environments in the lifestyles of Salmonella and Escherichia coli. Appl. Environ. Microbiol. 69: 36873694.
141. Wyer, M. D.,, D. Kay,, G. F. Jackson,, H.M. Dawson,, J. Yeo,, and L. Tanguy. 1995. Indicator organism sources and coastal water quality: a catchment study on the Island of Jersey. J. Appl. Bacteriol. 78: 290296.
142. Yamahara, K. M.,, B. A. Layton, A. E. Santoro,, and A.B. Boehm. 2008. Beach sands along the California coast are diffuse sources of fecal bacteria to coastal waters. Environ. Sci. Technol. 41: 45154521.
143. Yamahara, K. M.,, S. P. Walters,, and A.B. Boehm. 2009. Growth of enterococci in unaltered, unseeded sands subjected to tidal wetting. Appl. Environ. Microbiol. 75: 15171524.


Generic image for table
Table 1

Competition for available nutrients (carbon and energy sources) may limit multiplication in natural soil

Citation: Byappanahalli M, Ishii S. 2011. Environmental Sources of Fecal Bacteria, p 93-110. In Sadowsky M, Whitman R (ed), The Fecal Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555816865.ch5

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error