Chapter 8 : Modeling Fate and Transport of Fecal Bacteria in Surface Water

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

Modeling Fate and Transport of Fecal Bacteria in Surface Water, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555816865/9781555816087_Chap08-1.gif /docserver/preview/fulltext/10.1128/9781555816865/9781555816087_Chap08-2.gif


This chapter provides a basic review of deterministic and empirical statistical modeling and their application for predicting microbiological surface water quality. The key to deterministic model development is the conceptualization of the various processes affecting fate and transport of fecal bacteria in the environment. Several different types of deterministic models have been applied to fecal bacteria in surface waters. A simplified conceptual model for fecal bacteria in surface water is presented. The chapter describes various processes that affect the fate and transport of fecal indicator bacteria (FIB) in surface waters and provide examples of their mathematical parameterization. The movement of bacteria from one water parcel to another occurs because of advection, diffusion, and dispersion. Advection is the movement of bacteria with water. In surface waters, velocities must be measured using flow meters to gain insight into the importance of advection. Kinetic models have been used extensively to model particle aggregation in surface waters, but have not yet been applied to the study of fecal bacteria-particle interactions in surface waters. There are four steps in the development of a statistical model. First, appropriate predictors must be selected to be used as independent variables in the model. Second, the statistical method must be chosen (e.g., multiple linear regression, partial least squares regression, random forests). Third, the model must be trained, or developed. Finally, the model must be validated using an independent data set.

Citation: Nevers M, Boehm A. 2011. Modeling Fate and Transport of Fecal Bacteria in Surface Water, p 165-188. In Sadowsky M, Whitman R (ed), The Fecal Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555816865.ch8
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of FIGURE 1

Illustration of dynamics of indicator bacteria in a parcel of water. After entering the water, free or particle-associated fecal bacteria are affected by numerous processes—all of which contribute to the mass balance—including advection and dispersion, inactivation and growth, predation, adsorption and desorption, and deposition and resuspension. Modified (with permission from .

Citation: Nevers M, Boehm A. 2011. Modeling Fate and Transport of Fecal Bacteria in Surface Water, p 165-188. In Sadowsky M, Whitman R (ed), The Fecal Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555816865.ch8
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Alkan, U., D. J. Elliott, and, L. M. Evison. 1995. Survival of enteric bacteria in relation to simulated solar radiation and other environmental factors in marine waters. Water Res. 29: 20712080.
2. Anderson, S. A., S. J. Turner, and, G. D. Lewis. 1997. Enterococci in the New Zealand environment: implications for water quality monitoring. Water Sci. Technol. 35: 325331.
3. Auer, M. T., and, S. L. Niehaus. 1993. Modeling fecal coliform bacteria - I. Field and laboratory determination of loss kinetics. Water Res. 27: 693701.
4. Bai, S., and, W. S. Lung. 2005. Modeling sediment impact on the transport of fecal bacteria. Water Res. 39: 52325240.
5. Belas, M. R., and, R. R. Colwell. 1982. Adsorption kinetics of laterally and polarly flagellated vibrio. J.Bacteriol. 151: 15681580.
6. Boehm,, A. B.,, D. P. Keymer, and, G. G. Shellen-barger. 2005. An analytical model of enterococci inactivation, grazing, and transport in the surf zone of a marine beach. Water Res. 39: 35653578.
7. Boehm, A. B.,, G. G. Shellenbarger, and, A. Paytan. 2004. Groundwater discharge: potential association with fecal indicator bacteria in the surf zone. Environ. Sci. Technol. 38: 35583566.
8. Boehm,, A. B.,, K. M. Yamahara,, D. C. Love,, B. M. Peterson,, K. McNeill, and, K. L. Nelson. 2009. Covariation and photoinactivation of traditional, rapid, and novel indicator organisms and human viruses at a sewage-impacted marine beach. Environ. Sci. Technol. 43: 80468052.
9. Boehm,, A. B.,, R. L. Whitman,, M. B. Nevers, D. Hou, and, S. B. Weisberg. 2007. Modeling: nowcasting recreational water quality, p. 179–210. In L. J. Wymer (ed.), Statistical Framework for Recreational Water Quality Criteria and Monitoring. Wiley, West Sussex, UK.
10. Boehm, A. B., and, S. B. Grant. 1998. Influence of coagulation, sedimentation, and grazing by zoo-plankton on phytoplankton aggregate distributions in aquatic systems. J. Geophys. Res. C. 103: 1560115612.
11. Boehm,, A. B.,, S. B. Grant,, J. H. Kim, S. L. Mowbray, C. D. McGee, C. D. Clark, D. M. Foley, and, D. E. Wellman. 2002. Decadal and shorter period variability of surf zone water quality at Huntington Beach, California. Environ. Sci. Technol. 36: 38853892.
12. Boehm, A. B., and, S. B. Weisberg. 2005. Tidal forcing of enterococci at marine recreational beaches at fortnightly and semidiurnal frequencies. Environ. Sci. Technol. 39: 55755583.
13. Bradford, S. A., and, S. Torkzaban. 2008. Colloid transport and retention in unsaturated porous media: a review of interface-, collector-, and pore-scale processes and models. Vadose Zone J. 7: 667681.
14. Breiman, L. 2001. Random forests. Mach. Learn. 45: 532.
15. Byappanahalli, M.,, M. Fowler,, D. Shively, and, R. Whitman. 2003. Ubiquity and persistence of Escherichia coli in a midwestern stream. Appl. Environ. Microbiol. 69: 45494555.
16. Characklis,, G. W.,, M. J. Dilts,, O. D. Simmons Iii, C. A. Likirdopulos, L. A. H. Krometis, and, M. D. Sobsey. 2005. Microbial partitioning to settleable particles in stormwater. Water Res. 39: 17731782.
17. Crane, S. R., and, J. A. Moore. 1986. Modeling enteric bacterial die-off: a review. Water Air Soil Pollut. 27: 411439.
18. Crowther, J., D. Kay, and, M. D. Wyer. 2001. Relationships between microbial water quality and environmental conditions in coastal recreational waters: the Fylde coast, UK. Water Res. 35: 40294038..
19. Davies-Colley, R. J., R. G. Bell, and, A. M. Donnison. 1994. Sunlight inactivation of enterococci and fecal coliforms in sewage effluent diluted in seawater. Appl. Environ. Microbiol. 60: 20492058.
20. Deller, S.,, F. Mascher,, S. Platzer, F. F. Reintha-ler, and, E. Marth. 2006. Effect of solar radiation on survival of indicator bacteria in bathing waters. Cent. Eur. J. Public Health 14: 133137.
21. DeNovio, N. M., J. E. Saiers, and, J. N. Ryan. 2004. Colloid movement in unsaturated porous media: Recent advances and future directions. Vadose Zone J. 3: 338351..
22. Dorner,, S. M.,, W. B., Anderson, R. M. Slawson,, N. Kouwen, and, P. M. Huck. 2006. Hydrologic modeling of pathogen fate and transport. Environ. Sci. Technol. 40: 47464753.
23. Dorner,, S. M.,, W. B. Anderson,, T. Gaulin, H. L. Candon, R. M. Slawson, P. Payment, and, P. M. Huck. 2007. Pathogen and indicator variability in a heavily impacted watershed. J. Water Health. 5: 241257.
24. Eleria, A., and, R. M. Vogel. 2005. Predicting fecal coliform bacteria levels in the Charles River, Massachusetts, USA. J. Amer. Water Resour. Ass. 41: 11951209.
25. Epstein, S. S., and, M. P. Shiaris. 1992. Size-selective grazing of coastal bacterioplankton by natural assemblages of pigmented flagellates, colorless flagellates, and ciliates. Microb. Ecol. 23: 211225.
26. Ferguson,, C. M.,, B. F. W. Croke,, P. J. Beatson, N. J. Ashbolt, and, D. A. Deere. 2007. Development of a process-based model to predict pathogen budgets for the Sydney drinking water catchment. J. Water Health. 5: 187208.
27. Ferguson, C. M., K. Charles, and, D. A. Deere. 2009. Quantification of microbial sources in drinking-water catchments. Crit. Rev. Environ. Sci. Technol. 39: 140.
28. Fischer,, H. B.,, E. J. List,, R. C. Y. Koh, J. Im-berger, and, N. H. Brooks. 1979. Missing in Inland and Coastal Waters. Academic Press, San Diego, CA.
29. Francy, D. S. 2009. Use of predictive models and rapid methods to nowcast bacteria levels at coastal beaches. Aquat. Ecosyst. Health Manage. 12: 177182.
30. Francy, D. S., R. A. Darner, and, E. E. Bertke. 2006. Models for predicting recreational water quality at Lake Erie beaches. U.S. Geological Survey, Scientific Investigations Report 2006–5192, Columbus, OH.
31. Frick, W. A., Z. Ge, and, R. G. Zepp. 2008. Nowcasting and forecasting concentrations of biological contaminants at beaches: a feasibility and case study. Environ. Sci. Technol. 42: 42184824.
32. Fries, J. S., G. W. Characklis, and, R. T. Noble. 2006. Attachment of fecal indicator bacteria to particles in the Neuse River Estuary, N.C. J. Environ. Engineer. 132: 13381345.
33. Fries, J. S., G. W. Characklis, and, R. T. Noble. 2008. Sediment-water exchange of Vibrio sp. and fecal indicator bacteria: implications for persistence and transport in the Neuse River Estuary, North Carolina, USA. Water Res. 42: 941950.
34. Fujioka,, R. S.,, H. H. Hashimoto,, E. B. Siwak, and, R. H. F. Young. 1981. Effect of sunlight on survival of indicator bacteria in seawater. Appl. Environ. Microbiol. 41: 690696.
35. Fujioka, R. S.,, K. Tenno, and, S. Kansako. 1988. Naturally occurring fecal coliforms and fecal streptococci in Hawaii’s freshwater streams. Toxic. Assess. 3: 613630.
36. Gannon, J. J., M. K. Busse, and, J. E. Schillinger. 1983. Fecal coliform disappearance in a river impoundment. Water Res. 17: 15951601.
37. Gantzer, C.,, L. Gillerman,, M. Kuznetsov, and, G. Oron. 2001. Adsorption and survival of faecal coliforms, somatic coliphages and F-specific RNA phages in soil irrigated with wastewater. Water Sci. Technol. 43: 117124.
38. Ge, Z., and, W. E. Frick. 2007. Some statistical issues related to multiple linear regression modeling of beach bacteria concentrations. Environ. Res. 103: 358364.
39. Grant,, S. B.,, J. H. Kim,, B. H. Jones,, S. A. Jenkins,, J. Wasyl, and, C. Cudaback. 2005. Surf zone entrainment, along-shore transport, and human health implications of pollution from tidal outlets. J. Geophys. Res. C. 110: 120.
40. Haack,, S. K.,, L. R. Fogarty, and, C. Wright. 2003. Escherichia coli and enterococci at beaches in the Grand Traverse Bay, Lake Michigan: sources, characteristics, and environmental pathways. Environ. Sci. Technol. 37: 32753282..
41. Haas, C. N. 2002. General kinetics of disinfection processes, p. 183–188. In S. Lingireddy. (ed.), Control of Microorganisms in Drinking Water. ASCE, Reston, VA.
42. He, L. M., and, Z. L. He. 2008. Water quality prediction of marine recreational beaches receiving watershed baseflow and stormwater runoff in southern California, USA. Water Res. 42: 25632573.
43. Heberger,, M. G.,, J. L. Durant,, K. A. Oriel,, P. H. Kirshen, and, L. Minardi. 2008. Combining real-time bacteria models and uncertainty analysis for establishing health advisories for recreational waters. J. Water Resour. Plan. Manage. 134: 7382.
44. Hellweger,, F. L.,, V. Bucci,, M. R. Litman,, A. Z. Gu, and, A. Onnis-Hayden. 2009. Biphasic decay kinetics of fecal bacteria in surface water not a density effect. J. Environ. Engineer. 135: 372376.
45. Hipsey, M. R., J. P. Antenucci, and, J. D. Brookes. 2008. A generic, process-based model of microbial pollution in aquatic systems. Water Resour. Res. 44: W07408. doi:10.1029/2007WR006395.
46. Hou, D.,, S. J., M. Rabinovici., and, A. B. Boehm. 2006. Enterococci predictions from partial least squares regression models in conjunction with a single-sample standard improve the efficacy of beach management advisories. Environ. Sci. Technol. 40: 17371743.
47. Ishii, S.,, D. L. Hansen,, R. E. Hicks, and, M. J. Sadowsky. 2007. Beach sand and sediments are temporal sinks and sources of Escherichia coli in Lake Superior. Environ. Sci. Technol. 41: 22032209.
48. Ishii, S.,, W. B. Ksoll,, R. E. Hicks, and, M. J. Sadowsky. 2006. Presence and growth of naturalized Escherichia coli in temperate soils from Lake Superior watersheds. Appl. Environ. Microbiol. 72: 612621..
49. James, A., and, D. L. Elliot. 1993. Models of water quality in estuaries, p. 109–120. In A. James. (ed.), An Introduction to Water Quality Modeling. John Wiley & Sons, New York.
50. Jamieson, R.,, D. M. Joy,, H. Lee., R. Kostaschuk. and, R. Gordon. 2005a. Transport and deposition of sediment-associated Escherichia coli in natural streams. Water Res. 39: 26652675.
51. Jamieson,, R. C.,, D. M. Joy,, H. Lee,, R. Kostaschuk. and, R. J. Gordon. 2005b. Resus-pension of sediment-associated Escherichia coli in a natural stream. J. Environ. Qual. 34: 581589.
52. Jamieson, R.,, R. Gordon,, D. Joy, and, H. Lee. 2004. Assessing microbial pollution of rural surface waters: a review of current watershed scale modeling approaches. Agric. Water Manag. 70: 117..
53. Jeng, H. C.,, A. J. England, and, H. B. Bradford. 2005. Indicator organisms associated with storm-water suspended particles and estuarine sediment. J. Environ. Sci. Health A Tox. Hazard. Subst. Environ. Eng. 40: 779791.
54. John, E. H., and, K. Davidson. 2001. Prey selectivity and the influence of prey carbon:nitrogen ratio on microflagellate grazing. J. Exp. Mar. Biol. Ecol. 260: 93111.
55. Ki, S. J.,, S. Ensari., and, J. H. Kim. 2007. Solar and tidal modulations of fecal indicator bacteria in coastal waters at Huntington Beach, California. Environ. Manag. 39: 867875.
56. Ksoll, W. B.,, S. Ishii., M. J. Sadowsky, and, R. E. Hicks. 2007. Presence and sources of fecal coliform bacteria in epilithic periphyton communities of Lake Superior. Appl. Environ. Microbiol.x 73: 37713778.
57. Landry, M. R., and, R. P. Hassett. 1982. Estimating the grazing impact of marine micro-zooplankton. Mar. Biol. 67: 283288.
58. Le Fevre, N. M., and, G. D. Lewis. 2003. The role of resuspension in enterococci distribution in water at an urban beach. Water Sci. Technol. 47: 205210.
59. Lévesque,, B.,, P. Brousseau., P. Simard,, E. De. wailly,, M. Meisels,, D. Ramsay. and, J. Joly. 1993. Impact of the ring-billed gull (Larus delawarensis) on the microbiological quality of recreational water. Appl. Environ. Microbiol. 59: 12281230.
60. Ling,, T. Y.,, E. C. Achberger,, C. M. Drapcho, and, R. L. Bengtson. 2002. Quantifying adsorption of an indicator bacteria in a soil-water system. Trans. Am. Soc. Agri. Eng. 45: 669674.
61. Liu,, L.,, M. S. Phanikumar,, S. L. Molloy,, R. L. Whitman,, D. A. Shively,, M. B. Nevers,, D. J. Schwab, and, J. B. Rose. 2006. Modeling the transport and inactivation of E. coli and enterococci in the near-shore region of Lake Michigan. Environ. Sci. Technol. 40: 50225028.
62. Liu, W. J., and, Y. J. Zhang. 2006. Effects of UV intensity and water turbidity on microbial indicator inactivation. J. Environ. Sci. 18: 650653.
63. Lung, W. S. 2001. Water Quality Modeling for Waste-load Allocations and TMDLs. John Wiley & Sons, New York.
64. Maier, R. M.,, I. L. Pepper, and, C. P. Gerba. 2000. Environmental Microbiology. Academic Press, San Diego, CA.
65. Martin, J. L., and, S. C. McCutheon. 1999. Hydrodynamics and Transport for Water Quality Monitoring. Lewis Publishers, New York.
66. Mas, D. M. L., and, D. P. Ahlfeld. 2007. Comparing artificial neural networks and regression models for predicting faecal coliform concentrations. Hydrolog. Sci. J. 52: 713731.
67. McCambridge, J., and, T. A. McMeekin. 1981. Effect of solar radiation and predacious microorganisms on survival of fecal and other bacteria. Appl. Environ. Microbiol. 41: 10831087.
68. McPhail, C. D., and, R. T. Stidson. 2009. Bathing water signage and predictive water quality models in Scotland. Aquat. Ecosyst. Health. Manage. 12: 183186.
69. Menon, P.,, G. Billen. and, P. Servais. 2003. Mortality rates of autochthonous and fecal bacteria in natural aquatic ecosystems. Water Res. 37: 41514158.
70. Muela, A.,, J. M. Garcfía-Bringas,, I. Arana, and, I. Barcina. 2000a. The effect of simulated solar radiation on Escherichia coli: the relative roles of UV-B, UV-A, and photosynthetically active radiation. Microb. Ecol. 39: 6571.
71. Muela, A.,, J. M. Garcfa-Bringas,, I. Arana. and, I. Barcina. 2000b. Humic materials offer photoprotective effect to Escherichia coli exposed to damaging luminous radiation. Microb. Ecol. 40: 336344.
72. Nazaroff, W. W., and, L. Alvarez-Cohen. 2001. Environmental Engineering Science. Wiley, New York.
73. Nevers,, M. B.,, D. A. Shively,, G. T. Klein-heinz,, C. M. McDermott,, W. Schuster., V. Chomeau. and, R. L. Whitman. 2009. Geographic relatedness and predictability of E. coli along a peninsular beach complex of Lake Michigan. J. Environ. Qual. 38: 23572364.
74. Nevers, M. B., and, R. L. Whitman. 2005. Now-cast modeling of Escherichia coli concentrations at multiple urban beaches of southern Lake Michigan. Water Res. 39: 52505260.
75. Nevers, M. B., and, R. L. Whitman. 2008. Coastal strategies to predict Escherichia coli concentrations for beaches along a 35 km stretch of southern Lake Michigan. Environ. Sci. Technol. 42: 44544460.
76. Nevers,, M. B.,, R. L. Whitman,, W. A. Frick, and, Z. Ge. 2007. Interaction and influence of two creeks on E. coli concentrations of nearby beaches: exploration of predictability and mechanisms. J. Environ. Qual. 36: 13381345.
77. Nielson, P. 2005. Coastal Bottom Boundary Layers and Sediment Transport. World Scientific Publishing Co., Hackensack, NJ.
78. Nyström, T. 2004. Stationary-phase physiology. Annu. Rev. Microbiol. 58: 161181.
79. Obiri-Danso, K., and, K. Jones. 2001. The effects of UVB and temperature on the survival of populations and pure cultures of Campylobacter jejuni, Camp. coli, Camp. lari. and urease-positive thermo-philic campylobacters (UPTC) in surface waters. J. Appl. Microbiol. 90: 256267.
80. Oliver, J. D. 2005. The viable but nonculturable state in bacteria. J. Microbiol. 43: 93100..
81. Olivieri,, A. W.,, A. B. Boehm,, C. A. Sommers,, J. A. Soller,, J. N. S. Eisenberg, and, R. Danielson. 2007. Development of a protocol for risk assessment of separate stormwater system microorganisms. Water Environment Research Foundation, Project 03-SW, 2.
82. Olyphant, G. A. 2005. Statistical basis for predicting the need for bacterially induced beach closures: emergence of a paradigm? Water Res. 39: 49534960.
83. Palmateer, G.,, D. McLean,, W. Kutas, and, S. Meissner. 1993. Suspended particulate/bacterial interaction in agricultural drains, p. 1–40. In S. S. Rao (ed.), Particulate Matter and Aquatic Contaminants. Lewis Publishers, Boca Raton, FL.
84. Parkhurst,, D. F.,, K. P. Brenner,, A. P. Dufour, and, L. J. Wymer. 2005. Indicator bacteria at five swimming beaches—analysis using random forests. Water Res. 39: 13541360.
85. Peterson, T. W. 1986. Similarity solutions for the population balance equation describing particle fragmentation. Aerosol Sci. Tech. 5: 93101.
86. Reddy, K. R.,, R. Khaleel., and, M. R. Overcash. 1981. Behavior and transport of microbial pathogens and indicator organisms in soils treated with organic wastes. J. Environ. Qual. 10: 255266.
87. Rosenfeld,, L. K.,, C. D. McGee,, G. L. Robertson,, M. A. Noble, and, B. H. Jones. 2006. Temporal and spatial variability of fecal indicator bacteria in the surf zone off Huntington Beach, CA. Mar. Environ. Res. 61: 471493.
88. Roslev, P.,, S. Bastholm. and, N. Iversen. 2008. Relationship between fecal indicators in sediment and recreational waters in a Danish estuary. Water Air Soil Pollut. 194: 1321.
89. Sanders, B. F.,, F. Arega, and, M. Sutula. 2005. Modeling the dry-weather tidal cycling of fecal indicator bacteria in surface waters of an intertidal wetland. Water Res. 39: 33943408.
90. Shibata, T.,, H. M. Solo-Gabriele,, L. E. Fleming, and, S. Elmir. 2004. Monitoring marine recreational water quality using multiple microbial indicators in an urban tropical environment. Water Res. 38: 31193131..
91. Smith,, P.,, C. Carroll., B. Wilkins,, P. Johnson., S. Nic Gabhainn, and, L. P. Smith. 1999. The effect of wind speed and direction on the distribution of sewage-associated bacteria. Lett. Appl. Mi. crobiol. 28: 184188.
92. Solo-Gabriele,, H. M.,, M. A. Wolfert,, T. R. Desmarais, and, C. J. Palmer. 2000. Sources of Escherichia coli in a coastal subtropical environment. Appl. Environ. Microbiol. 66: 230237.
93. Steets, B. M., and, P. A. Holden. 2003. A mechanistic model of runoff-associated fecal coliform fate and transport through a coastal lagoon. Water Res. 37: 589608.
94. Thormann, R. V., and, J. A. Mueller. 1987. Principles of Surface Water Quality Modeling and Control. Harper & Row, New York.
95. Thurston-Enriquez,, J. A.,, C. N. Haas,, J. Jacangelo,, K. Riley. and, C. P. Gerba. 2003. Inactivation of feline calcivirus and adenovirus type 40 by UV radiation. Appl. Environ. Microbiol. 69: 577582.
96. Touron,, A.,, T. Berthe., G. Gargala,, M. Fournier., M. Ratajczak,, P. Servais. and, F. Petit. 2007. Assessment of faecal contamination and the relationship between pathogens and faecal bacterial indicators in an estuarine environment (Seine, France). Mar. Pollut. Bull. 54: 14411450..
97. Tufenkji, N. 2007. Modeling microbial transport in porous media: traditional approaches and recent developments. Adv. Water Resour. 30: 14551469.
98. USEPA. 1999. Review of Potential Modeling Tools and Approaches to Support the BEACH Program. EPA-823–R-99–002. U.S. EPA, Washington D.C.
99. USEPA. 2002. National Beach Guidance and Required Criteria for Grants. EPA-823–B-02–004. U.S. EPA, Washington D.C.
100. Vital, M.,, F. Hammes, and, T. Egli. 2008. Escherichia coli O157 can grow in natural freshwater at low carbon concentrations. Environ. Microbiol. 10: 23872396.
101. Walker, S. L. 2005. The role of nutrient presence on the adhesion kinetics of Burkholderia cepacia G4g and ENV435g. Colloid. Surface. B 45: 181188.
102. Walters, S. P.,, K. M. Yamahara, and, A. B. Boehm. 2009. Persistence of nucleic acid markers of health-relevant organisms in seawater microcosms: implications for their use in assessing risk in recreational waters. Water Res. 43: 49294939.
103. Whitman,, R. L.,, D. A. Shively,, H. Pawlik,, M. B. Nevers, and, M. N. Byappanahalli. 2003. Occurrence of Escherichia coli and enterococci in Cladophora (Chlorophyta) in nearshore water and beach sand of Lake Michigan. Appl. Environ. Microbiol. 69: 47144719.
104. Whitman, R. L., and, M. B. Nevers. 2003. Foreshore sand as a source of Escherichia coli in nearshore water of a Lake Michigan beach. Appl. Environ. Microbiol. 69: 55555562.
105. Whitman, R. L., and, M. B. Nevers. 2008. Summer E. coli patterns and responses along 23 Chicago beaches. Environ. Sci. Technol. 42: 92179224.
106. Whitman,, R. L.,, M. B. Nevers,, G. C. Korinek, and, M. N. Byappanahalli. 2004. Solar and temporal effects on Escherichia coli concentration at a Great Lakes swimming beach. Appl. Environ. Microbiol. 70: 42764285.
107. Wilkinson, J.,, A. Jenkins,, M. D. Wyer, and, D. Kay. 1995. Modelling faecal coliform dynamics in streams and rivers. Water Res. 29: 847855.
108. Wu, J.,, P. Rees,, S. Storrer,, K. Alderisio, and, S. Dorner. 2009. Fate and transport modeling of potential pathogens: the contribution from sediments. J. Amer. Water. Resour. Ass. 45: 3544.
109. Yamahara,, K. M.,, B. A. Layton,, A. E. Santoro, and, A. B. Boehm. 2007. Beach sands along the California coast are diffuse sources of fecal bacteria to coastal waters. Environ. Sci. Technol. 41: 45154521.
110. Yamahara, K. M.,, S. P. Walters, and, A. B. Boehm. 2009. Growth of enterococci in unaltered, unseeded beach sands subjected to tidal wetting. Appl. Environ. Microbiol. 75: 15171524..
111. Yates, M. V.,, S. R. Yates, and, C. P. Gerba. 1988. Modeling microbial fate in the subsurface environment. Crit. Rev. Environ. Sci. Technol. 17: 307344.


Generic image for table

Common predictors used in empirical models, their presumed association with mechanistic processes, and typical relationships with FIB concentrations in surface water.

Citation: Nevers M, Boehm A. 2011. Modeling Fate and Transport of Fecal Bacteria in Surface Water, p 165-188. In Sadowsky M, Whitman R (ed), The Fecal Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555816865.ch8

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error