Chapter 9 : Microbial Source Tracking

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

Microbial Source Tracking, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555816865/9781555816087_Chap09-1.gif /docserver/preview/fulltext/10.1128/9781555816865/9781555816087_Chap09-2.gif


This chapter uses the term microbial source tracking (MST) to collectively refer to a number of methods developed to specifically determine the sources of fecal contamination and/or fecal indicator bacteria in water, because the chapter focuses on the use of microbial-based assays, rather than analyzing for chemical compounds such as coprostanol or host animal genes (i.e., mitochondrial genes). The chapter outlines the scientific questions and regulatory needs that have led to the burgeoning growth of this area of environmental microbiology. A section discusses some of the new tools and approaches that can be used to examine environmental samples and how they can be used in tracking sources of fecal pollution. Nucleic acid microarrays can be used to screen for the presence of DNA or RNA (i.e., expression arrays) obtained from pure cultures or from complex microbial communities. The power of multilocus sequence typing (MLST) in combination with metagenomic sequencing data was illustrated in recent application in which the presence of -like bacteria was confirmed by comparing typing data with metagenomic sequences from the Sargasso Sea. A promising technology in source tracking and in microbial ecology in general, is called hierarchical oligonucleotide primer extension. This fingerprint technique uses combinations of hierarchical primers to target different bacteria within a phylogenetic group.

Citation: Harwood V, Hodon R, Santo Domingo J. 2011. Microbial Source Tracking, p 189-216. In Sadowsky M, Whitman R (ed), The Fecal Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555816865.ch9
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of FIGURE 1

Some factors that influence the composition of the microbiota of the gastrointestinal tract of host species. Some of these factors are constrained by the host anatomical and physiological conditions and the diet and dietary supplements such as antibiotics, whereas others involve interactions between the different members of the resident microbiota and the host.

Citation: Harwood V, Hodon R, Santo Domingo J. 2011. Microbial Source Tracking, p 189-216. In Sadowsky M, Whitman R (ed), The Fecal Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555816865.ch9
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2

Examples of the fecal sources contributing to the pollution of environmental waters. The sources can range from anthropogenic impacts such as sewage and septic systems to agricultural waste and wild animals. In some cases, multiple sources can impact a given water body, increasing complexity of MST efforts.

Citation: Harwood V, Hodon R, Santo Domingo J. 2011. Microbial Source Tracking, p 189-216. In Sadowsky M, Whitman R (ed), The Fecal Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555816865.ch9
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3

Source tracking methods can be divided into two general groups: library-dependent methods and library-independent methods. Molecular techniques are used in both general methods and, in some of the library-independent methods, the first step involves a culture/enrichment step.

Citation: Harwood V, Hodon R, Santo Domingo J. 2011. Microbial Source Tracking, p 189-216. In Sadowsky M, Whitman R (ed), The Fecal Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555816865.ch9
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 4

MST method development from source material to target identification using emerging technologies, followed by assay development/validation, and eventually field application.

Citation: Harwood V, Hodon R, Santo Domingo J. 2011. Microbial Source Tracking, p 189-216. In Sadowsky M, Whitman R (ed), The Fecal Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555816865.ch9
Permissions and Reprints Request Permissions
Download as Powerpoint


1. American Public Health Association. 1998. Standard Methods for the Examination of Water and Wastewater, 20th ed. American. Public Health Association, Washington, DC.
2. American Water Works Association. 1990. Water Quality and Treatment: A Handbook of Community Water Supplies, 4th ed. McGraw. Hill, New York, NY.
3. Anderson,, M. A.,, J. E. Whitlock, and, V. J. Harwood. 2006. Diversity and distribution of Escherichia coli genotypes and antibiotic resistance phenotypes in feces of humans, cattle, and horses. Appl. Environ. Microbiol. 72: 69146922.
4. Bae, S., and, S. Wuertz. 2009. Rapid decay of host-specific fecal Bacteroidales cells in seawater as measured by quantitative PCR with propidium monoazide. Water Res. 43: 48504859.
5. Baker, K. H., and, D. S. Herson. 1999. Detection and occurrence of indicator organisms and pathogens. Water Environ. Res. 71: 530551.
6. Baker, S., and, G. Dougan. 2007. The genome of Salmonella enterica serovar typhi. Clin. Infect. Dis. 45:S29–S33.
7. Bej, A. K.,, M. H. Mahbubani, and, R. M. Atlas. 1991. Detection of viable Legionella pneumophila in water by polymerase chain reaction and gene probe methods. Appl. Environ. Microbiol. 57: 597600.
8. Bej,, A. K.,, R. J. Steffan,, J. DiCesare,, L. Haff, and, R. M. Atlas. 1990. Detection of coliform bacteria in water by polymerase chain reaction and gene probes. Appl. Environ. Microbiol. 56: 307314.
9. Bell, J. B.,, G. E. Elliott, and, D. W. Smith. 1983. Influence of sewage treatment and urbanization on selection of multiple resistance in fecal coliform populations. Appl. Environ. Microbiol. 46: 227232.
10. Bernhard, A. E., and, K. G. Field. 2000a. Identification of nonpoint sources of fecal pollution in coastal waters by using host-specific 16S ribosomal DNA genetic markers from fecal anaerobes. Appl. Environ. Microbiol. 66: 15871594.
11. Bernhard, A. E., and, K. G. Field. 2000b. A PCR assay to discriminate human and ruminant feces on the basis of host differences in Bacteroides-Prevotella genes encoding 16S rRNA. Appl. Environ. Micro. biol. 66: 45714574.
12. Binnewies,, T. T.,, Y. Motro,, P. F. Hallin,, O. Lund,, D. Dunn., T. La., D. J. Hampson,, M. Bellgard., T. M. Wassenaar, and, D. W. Ussery. 2006. Ten years of bacterial genome sequencing: comparative-genomics-based discoveries. Funct. Integr. Genomics. 6: 165185.
13. Bochner, B. R. 2009. Global phenotypic characterization of bacteria. FEMS Microbiol. Rev. 33: 191205.
14. Bofill-Mas, S.,, S. Pina, and, R. Girones. 2000. Documenting the epidemiologic patterns of polyo-maviruses in human populations by studying their presence in urban sewage. Appl. Environ. Microbiol. 66: 238245.
15. Call, D. R. 2005. Challenges and opportunities for pathogen detection using DNA microarrays. Crit. Rev. Microbiol. 31: 9199.
16. Carson,, C. A.,, B. L. Shear,, M. R. Ellersieck, and, A. Asfaw. 2001. Identification of fecal Escherichia coli from humans and animals by ribotyping. Appl. Environ. Microbiol. 67: 15031507.
17. Caugant, D. A.,, B. R. Levin, and, R. K. Selander. 1981. Genetic diversity and temporal variation in the E. coli population of a human host. Genetics 98: 467490.
18. Center for Disease Control (CDC). 2003. Emerging human infectious diseases: Anthroponoses, Zoonoses, and Sapronoses. Emerg. Infect. Dis. http://www.cdc.gov/ncidod/EID/vol9no3/02-0208.htm.
19. Chapman, R. W. 2001. EcoGenomics—a consilience for comparative immunology? Dev. Comp. Immunol. 25: 549551.
20. Chivian,, D.,, E. L. Brodie,, E. J. Alm,, D. E. Culley,, P. S. Dehal,, T. Z. Desantis,, T. M. Gihring,, A. Lapidus., L. H. Lin,, S. R. Lowry,, D. P. Moser,, P. M. Richardson,, G. Southam., G. Wanger., L. M. Pratt,, G. L. Andersen,, T. C. Hazen,, F. J. Brockman,, A. P. Arkin, and, T. C. Onstott. 2008. Environmental genomics reveals a single-species ecosystem deep within Earth. Science 322: 275278.
21. Cho, J. C., and, S. J. Kim. 2000. Increase in bacterial community diversity in subsurface aquifers receiving livestock wastewater input. Appl. Environ. Microbiol. 66: 956965.
22. Cossins, A. R., and, D. L. Crawford. 2005. Opinion—fish as models for environmental genomics. Nat. Rev. Genet. 6: 324333.
23. Courtney,, S.,, M. E. Mossoba,, T. S. Hammack,, C. Keys, and, S. F. Al-Khaldi. 2006. Using PCR amplification to increase the confidence level of Salmonella typhimurium DNA microarray chip hybridization. Mol. Cell. Probes. 20: 163171.
24. Craun,, G. F.,, R. L. Calderon, and, M. F. Craun. 2004. Waterborne outbreaks caused by zoonotic pathogens in the USA, p. 120–135. In J. A. Cotruvo,, A. Dufour., G. Rees., J. Bartram., R. Carr., D. O. Cliver,, G. F. Craun,, R. Fayer. and, V. P., G. Gannon.(eds.), Waterborne Zoonoses: Identification, Causes, and Control. World Health Organization, IWA Publishing, London, United Kingdom.
25. Denef,, V. J.,, J. Park,, J. L. Rodrigues,, T. V. Tsoi,, S. A. Hashsham, and, J. M. Tiedje. 2003. Validation of a more sensitive method for using spotted oligonucleotide DNA microarrays for functional genomics studies on bacterial communities. Environ. Microbiol. 5: 933943.
26. Dick,, L. K.,, A. E. Bernhard,, T. J. Brodeur,, J. W. Santo Domingo,, J. M. Simpson,, S. P. Walters, and, K. G. Field. 2005. Host distributions of uncultivated fecal Bacteroidales bacteria reveal genetic markers for fecal source identification. Appl. Environ. Microbiol. 71: 31843191.
27. Dombek,, P. E.,, L. K. Johnson,, S. T. Zimmerley, and, M. J. Sadowsky. 2000. Use of repetitive DNA sequences and the PCR to differentiate Escherichia coli isolates from human and animal sources. Appl. Environ. Microbiol. 66: 25722577.
28. Doran, J. W., and, D. M. Linn. 1979. Bacteroilogical quality of runoff water from pastureland. Appl. Environ. Microbiol. 37: 985991.
29. Dorries, K. 1998. Molecular biology and pathogen-esis of human polyomavirus infections. Dev. Biol. Stand. 94: 7179.
30. Edge, T. A., and, S. Hill. 2007. Multiple lines of evidence to identify the sources of fecal pollution at a freshwater beach in Hamilton Harbour, Lake Ontario. Water Res. 41: 35853594.
31. Elliott, R. P., and, H. D. Michener. 1961. Microbiological standards and handling codes for chilled and frozen foods. A. review. Appl. Microbiol. 9: 452468.
32. Elliott, S. D., and, E. M. Barnes. 1959. Changes in serological type and antibiotic resistance of Lancefield group D streptococci in chickens receiving dietary chlortetracycline. J. Gen. Microbiol. 20: 426433.
33. Enriquez,, V.,, J. B. Rose,, C. E. Enriquez, and, C. P. Gerba. 1995. Occurrence of Cryptosporidium and Giardia in secondary and tertiary wastewater effluents, p. 84–86. In W. B. Betts,, D. Casemore., C. Fricker., H. Smith. and, J. Watkins. (eds.), Protozoan Parasites and Water. Royal Society of Chemistry, Cambridge, UK.
34. Escherich, T. 1885. Die darmbakterien des neuge-borenen und säuglings. Fortschr. Med. 3: 515522.
35. Field, K., and, M. Samadpour. 2007. Fecal source tracking, the indicator paradigm, and managing water quality. Water Res. 41: 35173538.
36. Fleischmann,, R. D.,, M. D. Adams,, O. White,, R. A. Clayton,, E. F. Kirkness,, A. R. Kerlavage,, J. Bult., J.-F. Tomb,, B. Dougherty., J. M. Merrick,, G. Sutton., W. FitzHugh., C. Fields., J. Gocayne., J. Scott., R. Shirley., L.-I. Liu,, A. Glodek., J. M. Kelley,, J. F. Weidman,, C. A. Phillips,, T. Spriggs., E. Hedblom., M. D. Cotton,, T. R. Utterback,, M. C. Hanna,, D. T. Nguyen,, D. M. Saudek,, R. C. Brandon,, L. D. Fine,, J. L. Fritchman,, J. L. Fuhrmann,, N. S. M. Geoghagen,, L. C. Gnehm,, L. A. McDonald,, K. V. Small,, C. M. Fraser,, H. O. Smith, and, J. C. Venter. 1995. Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science 269: 496512.
37. Fong, T. T., and, E. K. Lipp. 2005. Enteric viruses of humans and animals in aquatic environments: health risks, detection, and potential water quality assessment tools. Microbiol. Mol. Biol. Rev. 69: 357371.
38. Franke-Whittle,, I. H.,, B. A. Knapp,, J. Fuchs,, R. Kaufmann, and, H. Insam. 2009. Application of COMPOCHIP microarray to investigate the bacterial communities of different composts. Microb. Ecol. 57: 510521.
39. Fremaux, B.,, J. Gritzfeld., T. Boa., and, C. K. Yost. 2009. Evaluation of host-specific Bacteroidales 16S rRNA gene markers as a complementary tool for detecting fecal pollution in a prairie watershed. Water Res. 43: 48384849.
40. Galbraith, E. A.,, D. A. Antonopoulos, and, B. A. White. 2004. Suppressive subtractive hybridization as a tool for identifying genetic diversity in an environmental metagenome: the rumen as a model. Environ. Microbiol. 6: 928937.
41. Geldreich, E. E. 1976. Fecal coliform and fecal streptococcus density relationships in waste discharges and receiving waters. CRC Crit. Rev. Environ. Contr. 6: 349369.
42. Geldreich, E. E., and, B. A. Kenner. 1969. Concepts of fecal streptococci in stream pollution. J. Water Pollut. Control. Fed. 41: R336R352.
43. Gill,, S. R.,, M. Pop,, R. T. Deboy,, P. B. Eckburg,, P. J. Turnbaugh,, B. S. Samuel,, J. I. Gordon,, D. A. Relman,, C. M. Fraser-Liggett, and, K. E. Nelson. 2006. Metagenomic analysis of the human distal gut microbiome. Science 312: 13551359.
44. Goldberg, H. S.,, R. N. Goodman, and, B. Lanning. 1958. Low-level, long-term feeding of chlortetracy-cline and the emergence of antibiotic-resistant enteric bacteria. Antibiot. Ann. 6: 930934.
45. Gordon, D. M. 1997. The genetic structure of Escherichia coli populations in feral house mice. Microbiology 143: 20392046.
46. Griffith, J. F.,, S. B. Weisberg, and, C. D. McGee. 2003. Evaluation of microbial source tracking methods using mixed fecal sources in aqueous test samples. J. Water Health 1: 141151.
47. Hacker, J., and, G. Blum-Oehler. 2007. In appreciation of Theodor Escherich. Nat. Rev. Microbiol. 5: 902902.
48. Hagedorn,, C.,, S. L. Robinson,, J. R. Filtz,, S. M. Grubbs,, T. A. Angier, and, R. B. Reneau. 1999. Determining sources of fecal pollution in a rural Virginia watershed with antibiotic resistance patterns in fecal streptococci. Appl. Environ. Microbiol. 65: 55225531.
49. Hamilton, M. J.,, T. Yan., and, M. J. Sadowsky. 2006. Development of goose and duck-specific DNA markers to determine sources of Escherichia coli in waterways. Appl. Environ. Microbiol. 72: 40124019.
50. Handelsman,, J.,, M. R. Rondon,, S. F. Brady,, J. Clardy, and, R. M. Goodman. 1998. Molecular biological access to the chemistry of unknown soil microbes: a new frontier for natural products. Chem. Biol. 5: R245R249.
51. Harris, M. M. 1932. A bacteriological study of decomposing crabs and crab meat. Am. J. Epidemiol. 15: 260275.
52. Harwood, V. J. 2007. Assumptions and limitations of microbial source tracking methods, p. 33–64. In J. Santo. Domingo and, M. Sadowsky. (ed.), Micro-bial Source Tracking. ASM Press, Washington, DC.
53. Harwood,, V. J.,, B. Wiggins,, C. Hagedorn,, R. D. Ellender,, J. Gooch., J. Kern., M. Samadpour., A. C. H. Chapman,, B. J. Robinson, and, B. C. Thompson. 2003. Phenotypic library-based microbial source tracking methods: efficacy in the California collaborative study. J. Water Health 1: 153166.
54. Harwood, V. J.,, J. Whitlock, and, V. Withington. 2000. Classification of antibiotic resistance patterns of indicator bacteria by discriminant analysis: use in predicting the source of fecal contamination in subtropical waters. Appl. Environ. Microbiol. 66: 36983704.
55. Harwood, V. J.,, M. Brownell., S. Wang., J. Lepo., R. D. Ellender,, A. Ajidahun., K. N. Hellein,, E. Kennedy., X. Ye, and, C. Flood. 2009. Validation and field testing of library-independent microbial source tracking methods in the Gulf of Mexico. Water Res. 43: 48124819.
56. Havelaar, A. H., and, W. M. Hogeboom. 1984. A method for the enumeration of male-specific bacteriophages in sewage. J. Appl. Bacteriol. 56: 439447.
57. Havelaar,, A. H.,, W. M. Hogeboom,, K. Furuse., R. Pot, and, M. P. Hormann. 1990. F-specific RNA bacteriophages and sensitive host strains in faeces and wastewater of human and animal origin. J. Appl. Bacteriol. 69: 3037.
58. Hill,, V. R.,, A. L. Polaczyk,, A. M. Kahler,, T. L. Cromeans,, D. Hahn, and, J. E. Amburgey. 2009. Comparison of hollow-fiber ultrafiltration to the USEPA VIRADEL technique and USEPA method 1623. J. Environ. Qual. 38: 822825.
59. Hong, P. Y.,, J. H. Wu, and, W. T. Liu. 2008. Relative abundance of Bacteroides spp. in. stools and wastewaters as determined by hierarchical oligonucleotide primer extension. Appl. Environ. Microbiol. 74: 28822893.
60. Hotopp,, J. C.,, R. Grifantini,, N. Kumar., Y. L. Tzeng,, D. Fouts., E. Frigimelica., M. Draghi., M. M. Giuliani,, R. Rappuoli., D. S. Stephens,, G. Grandi, and, H. Tettelin. 2006. Comparative genomics of Neisseria meningitidis: core genome, islands of horizontal transfer and pathogen-specific genes. Microbiology 152: 37333749.
61. Hsu,, F. C., Y. S. Shieh,, J. van Duin,, M. J. Beekwilder and, M. D. Sobsey. 1995. Geno-typing male-specific RNA coliphages by hybridization with oligonucleotide probes. Appl. Environ. Microbiol. 61: 39603966.
62. Jenkins,, M. B.,, P. G. Hartel,, T. J. Olexa, and, J. A. Stuedemann. 2003. Putative temporal variability of Escherichia coli ribotypes from yearling steers. J. Environ. Qual. 32: 305309.
63. Kaspar,, C. W.,, J. L. Burgess,, I. T. Knight, and, R. R. Colwell. 1990. Antibiotic resistance indexing of Escherichia coli to identify sources of fecal contamination in water. Can. J. Microbiol. 36: 891894.
64. Kerschgens, J.,, T. Egener Kuhn, and, N. Mermod. 2009. Protein-binding microarrays: probing disease markers at the interface of proteomics and genomics. Trends Mol. Med. 15: 352358.
65. Kibbey, H. J.,, C. Hagedorn., and, E. L. McCoy. 1978. Use of fecal streptococci as indicators of pollution in soil. Appl. Environ. Microbiol. 35: 711717.
66. King, E. L.,, D. S. Bachoon, and, K. W. Gates. 2007. Rapid detection of human fecal contamination in estuarine environments by PCR targeting of Bifidobacterium adolescentis. J. Microb. Methods. 68: 7681.
67. Kirs, M., and, D. C. Smith. 2007. Multiplex quantitative real-time reverse transcriptase PCR for F+-specific RNA coliphages: a method for use in microbial source tracking. Appl. Environ. Microbiol. 73: 808814.
68. Kreader, C. A. 1995. Design and evaluation of Bacteroides DNA probes for the specific detection of human fecal pollution. Appl. Environ. Microbiol. 61: 11711179.
69. Kreader,, C. A. 1998 Persistence of PCR-detectable Bacteroides distasonis from human feces in river water. Appl. Environ. Microbiol. 64: 41034105.
70. Krumperman, P. H. 1983. Multiple antibiotic resistance indexing of Escherichia coli to identify high-risk sources of fecal contamination of foods. Appl. Environ. Microbiol. 46: 165170.
71. Kullas, H.,, M. Coles,, J. Rhyan, and, L. Clark. 2002. Prevalence of Escherichia coli serogroups and human virulence factors in faeces of urban Canada geese (Branta canadensis). Int. J. Environ. Health. Res. 12: 153162.
72. Lamendella,, R. J.,, W. Santo Domingo,, A. C. Yannarell,, S. Ghosh,, G. Di. Giovanni,, R. I. Mackie, and, D. B. Oerther. 2009. Evaluation of swine-specific PCR assays used for fecal source tracking and analysis of molecular diversity of Bacteroidales-swine specific populations. Appl. Environ. Microbiol. 75: 57875796.
73. Lamendella, R.,, J. W. Santo Domingo,, D. Oerther,, J. Vogel, and, D. Stoeckel. 2007. Assessment of fecal pollution sources in a small northern-plains watershed using PCR and phylogenetic analyses of Bacteroidetes 16S rDNA. FEMS Microbiol. Ecol. 59: 651660.
74. Lane, S.,, J. Evermann., F. Loge., and, D. R. Call. 2004. Amplicon secondary structure prevents target hybridization to oligonucleotide microarrays. Biosen. Bioelec. 20: 728735.
75. Layton,, A.,, L. McKay., D. Williams,, V. Garrett., R. Gentry, and, G. Sayler. 2006. Development of Bacteroides 16S rRNA gene TaqMan-based realtime PCR assays for estimation of total, human, and bovine fecal pollution in water. Appl. Environ. Microbiol. 72: 42144224.
76. Lee,, D. Y.,, H. Lauder,, H. Cruwys., P. Falletta, and, L. A. Beaudette. 2008. Development and application of an oligonucleotide microarray and real-time quantitative PCR for detection of waste-water bacterial pathogens. Sci. Total Environ. 398: 203211.
77. Lemarchand, K.,, L. Masson, and, R. Brousseau. 2004. Molecular biology and DNA microarray technology for microbial quality monitoring of water. Cri. Rev. Microbiol. 30: 145172.
78. Litsky, W.,, M. I. Rosenbaum, and, R. L. France. 1953. A comparison of the most probable numbers of coliform bacteria and enterococci in raw sewage. Appl. Microbiol. 1: 247250.
79. Litsky, W.,, W. L. Mallmann, and, C. W. Fifield. 1955. Comparison of the most probable numbers of Escherichia coli and enterococci in river waters. Am. J. Public. Health 45: 10491053.
80. Lu, J.,, J. W. Santo Domingo, and, O. C. Shanks. 2007. Identification of chicken-specific fecal microbial sequences using a metagenomic approach. Watter Res. 41: 35613574.
81. Lu, J.,, J. W. Santo Domingo,, S. Hill., and, T. A. Edge. 2009. Microbial diversity and host-specific sequences of Canadian goose feces. Appl. Environ. Microbiol. 75: 59195926.
82. MacLean, D.,, J. D. Jones, and, D. J. Studholme. 2009. Application of ’next-generation’ sequencing technologies to microbial genetics. Nat. Rev. Microbiol. 7: 287296.
83. Mcquaig,, S. M.,, T. M. Scott,, J. O. Lukasik, and, V. J. Harwood. 2009. Development and validation of a sensitive Taqman ® quantitative PCR assay for the specific detection and quantification of two human polyomaviruses (JCV and BKV) in fecal waste. Appl. Environ Microbiol. 75: 33793388.
84. Mcquaig,, S. M.,, T. M. Scott,, V. J. Harwood,, S. R. Farrah, and, J. O. Lukasik. 2006. Novel method for the detection of human-derived fecal pollution in environmental waters using a PCR based human polyomavirus assay. App. Environ. Microbiol. 72: 75677574.
85. Mahenthiralingam,, E.,, A. Baldwin,, P. Drevinek,, E. Vanlaere., P. Vandamme,, J. J. LiPuma, and, C. G. Dowson. 2006. Multilocus sequence typing breathes life into a microbial metagenome. PLoS ONE 1:e17. doi:10.1371/journal.pone.0000017.
86. Maiden,, M. C. J., J. A. Bygraves,, E. Feil,, G. Morelli., J. E. Russell,, R. Urwin., Q. Zhang., J. J. Zhou,, K. Zurth., D. A. Caugant,, I. M. Feavers,, M. Achtman, and, B. G. Spratt. 1998. Multilocus sequence typing: a portable approach to the identification of clones within populations of pathogenic microorganisms. Proc. Nat. Acad. Sci. USA. 95: 31403145.
87. Mara, D. D., and, J. I. Oragui. 1981. Occurrence of Rhodocuccus coprophilus and associated actinomy-cetes in feces, sewage and freshwater. Appl. Environ. Microbiol. 42: 10371042.
88. Martin, C. C. 2008. Environmental Genomics: Methods in Molecular Biology. Springer-Verlag, New York, NY.
89. Maynard,, C.,, F. Berthiaume., K. Lemarchand,, J. Harel., P. Payment,, P. Bayardelle., L. Masson, and, R. Brousseau. 2005. Waterborne pathogen detection by use of oligonucleotide-based microarrays. Appl. Environ. Microbiol. 71: 85488557.
90. McBride,, S. M., V. A. Fischetti,, D. J. Leblanc,, R. C. Moellering, Jr., and, M. S. Gilmore. 2007. Genetic diversity among Enterococcus faecalis. PLoS ONE 2: e582.doi:10.1371/journal.pone.0000582.
91. McFeters,, G. A.,, G. K. Bissonnette,, J. J. Jezeski,, C. A. Thomson, and, D. G. Stuart. 1974. Comparative survival of indicator bacteria and enteric pathogens in well water. Appl. Environ. Microbiol. 27: 823829.
92. Meays, C. L.,, K. Broersma,, R. Nordin, and, A. Mazumder. 2004. Source tracking fecal bacteria in water: a critical review of current methods. J. Environ. Manage. 73: 7179.
93. Mieszkin, S.,, J.-P. Furet,, G. Corthier, and, M. Gourmelon. 2009. Estimation of pig fecal contamination in a river catchment by real-time PCR using two pig-specific Bacteroidales 16S rRNA genetic markers. Appl. Environ. Microbiol. 75: 30453054.
94. Modore,, M. S.,, J. B. Rose,, C. P. Gerba,, M. J. Arrowood, and, C. R. Sterling. 1987. Occurrence of Cryptosporidium in sewage effluents and selected surface waters. J. Parasitol. 73: 702705.
95. Moore,, D. F.,, V. J. Harwood,, D. M. Ferguson,, J. Lukasik., P. Hannah., M. Getrich, and, M. Brownell. 2005. Evaluation of antibiotic resistance analysis and ribotyping for identification of faecal pollution sources in an urban watershed. J. Appl. Microbiol. 99: 618628.
96. Morinaga,, S.,, A. J. Nagano,, S. Miyazaki,, M. Kubo., T. D. H. Fukuda., S. Sakai., M. Hasebe, and, H. Fukuda. 2008. Ecogenomics of cleistogamous and chasmogamous flowering: genome-wide gene expression patterns from cross-species microarray analysis in Cardamine kokaiensis (Brassi-caceae).J. Ecol. 96: 10861097.
97. Moyer,, N. P.,, G. M. Luccini,, L. A. Holcomb,, N. H. Hall, and, M. Altwegg. 1992. Application of ribotyping for differentiating aeromonads isolated from clinical and environmental sources. Appl. Environ. Microbiol. 58: 19401944.
98. Myoda,, S. P.,, C. A. Carson,, J. J. Fuhrmann,, B.-K. Hahm,, P. G. Hartel,, H. Yampara-Iquise,, L. Johnson., R. L. Kuntz,, C. H. Nakatsu,, M. J. Sadowsky, and, M. Samadpour. 2003. Comparison of genotypic-based microbial source tracking methods requiring a host origin database. J. Water Health 1: 167180.
99. Ochman, H.,, T. S. Whittam,, D. A. Caugant, and, R. K. Selander. 1983. Enzyme polymorphism and genetic population structure in Escherichia coli and Shigella. J. Gen. Microbiol. 129: 27152726.
100. Okabe, S.,, N. Okayama,, O. Savichtcheva, and, T. Ito. 2007. Quantification of host-specific Bacteroides-Prevotella 16S rRNA genetic markers for assessment of fecal pollution in freshwater. Appl. Microbiol. Biotechnol. 74: 890901.
101. Ostrolenk, M., and, A. C. Hunter. 1946. The distribution of enteric streptococci. J. Bacteriol. 51: 735741.
102. Ostrolenk, M.,, N. Kramer, and, R.C. Cleverdon. 1947. Comparative studies of enterococci and Escherichia coli as indices of pollution. J. Bacteriol. 53: 197203.
103. Parveen, S.,, K. M. Portier,, K. Robinson., L. Edmiston., and, M. L. Tamplin. 1999. Discriminant analysis of ribotype profiles of Escherichia coli for differentiating human and nonhuman sources of fecal pollution. Appl. Environ. Microbiol. 65: 31423147.
104. Parveen,, S.,, R. L. Murphree,, L. Edmiston,, C. W. Kaspar,, K. M. Portier, and, M. L. Tamplin. 1997. Association of multiple-antibiotic-resistance profiles with point and nonpoint sources of Escherichia coli in Apalachicola Bay. Appl. Environ. Microbiol. 63: 26072612.
105. Perry, C. A., and, M. Bayliss. 1936. Escherichia coli as an indicator of fecal pollution in oysters and oyster waters. Am. J. Public Health 26: 406411.
106. Polaczyk,, A. L.,, J. Narayanan,, T. L. Cromeans,, D. Hahn,, J. M. Roberts,, J. E. Amburgey, and, V. R. Hill. 2008. Ultrafiltration-based techniques for rapid and simultaneous concentration of multiple microbe classes from 100–L tap water samples. J. Microbiol. Methods. 73: 9299.
107. Postal, S. L.,, G. C. Daily, and, P. R. Ehrlich. 1996. Human appropriation of renewable fresh water. Science 271: 785788.
108. Pourcher,, A. M.,, L. A. Devriese,, J. F. Hernandez, and, J. M. Delattre. 1991. Enumeration by a miniaturized method of E. coli, Streptococcus bovis, and enterococci as indicators of the origin of faecal pollution in waters. J. Appl. Bacteriol. 70: 525530.
109. Rasko,, D. A.,, M. J. Rosovitz,, G. S. Myers,, E. F. Mongodin,, W. F. Fricke,, P. Gajer., J. Crabtree., M. Sebaihia., N. R. Thomson,, R. Chaudhuri., I. R. Henderson,, V. Sperandio, and, J. Ravel. 2008. The pangenome structure of Escherichia coli: comparative genomic analysis of E. coli commensal and pathogenic isolates. J. Bacteriol. 190: 68816893.
110. Rasooly, A., and, K. E. Herold. 2008. Food microbial pathogen detection and analysis using DNA microarray technologies. Foodborne Pathog. Dis. 5: 531550.
111. Reischer,, G. H.,, J. M. Haider,, R. Sommer,, H. Stadler., K. M. Keiblinger,, R. Hornek., W. Zerobin., R. L. Mach, and, A. H. Farnleitner. 2008. Quantitative microbial faecal source tracking with sampling guided by hydrological catchment dynamics. Environ. Microbiol. 10: 259825608.
112. Rich, V. I.,, K. Konstantinidis., and, E. F. DeLong. 2008. Design and testing of ’genome-proxy’ microarrays to profile marine microbial communities. Environ. Microbiol. 10: 506521.
113. Rhodes, M. W., and, H. Kator. 1999. Sorbitol-fermenting bifidobacteria as indicators of diffuse human faecal pollution in estuarine watersheds. J. Appl. Microbiol. 87: 528535.
114. Rondon,, M. R.,, P. R. August,, A. D. Bettermann,, S. F. Brady,, T. H. Grossman,, M. R. Liles,, K. A. Loiacono,, B. A. Lynch,, I. A. MacNeil,, C. Minor., C. L. Tiong,, M. Gilman., M. S. Osburne,, J. Clardy., J. Handelsman, and, R. M. Goodman. 2000. Cloning the soil metagenome: a strategy for accessing the genetic and functional diversity of uncultured microorganisms. Appl. Environ. Microbiol. 66: 25412547.
115. Robertson,, L. J.,, H. V. Smith, and, C. A. Paton. 1995. Occurrence of Cryptosporidium and Giardia in sewage influent and six sewage treatment plants in Scotland and prevalence of cryptosporidiosis and gi-ardiasis diagnosed in the communities by those plants, p. 47–49. In W. B. Betts,, D. Casemore., C. Fricker., H. Smith. and, J. Watkins.(eds.), Protozoan Parasites and Water. Royal Society of Chemistry, Cambridge, UK.
116. Rosario,, K.,, C. Nilsson., Y. W. Lim,, Y. Ruan, and, M. Breitbart. 2009. Metagenomic analysis of viruses in reclaimed water. Environ. Microbiol. 11: 28062820.
117. Rotbart, H. A. 1995. Human Enterovirus Infections. ASM Press, Washington, D.C.
118. Sadowsky, M. J.,, D. R. Call, and, J. W. Santo Domingo. 2007. The future of microbial source tracking studies, p. 235–277. In J. W. Santo Domingo and, M. J. Sadowsky (eds.). Microbial Source Tracking. ASM Press, Washington, D.C.
119. Santo Domingo, J. W., and, N. J. Ashbolt. 2008. Fecal pollution of water. In Cutler J. Cleveland. (ed.), Encyclopedia of Earth. Environmental Information Coalition, National Council for Science and the Environment, Washington, D.C.
120. Santo Domingo,, J. W.,, D. G. Bambic,, T. A. Edge, and, S. Wuertz. 2007. Quo vadis source tracking? Towards a strategic framework for environmental monitoring of fecal pollution. Water Res. 41: 35393552.
121. Savill,, M. G.,, S. R. Murray,, P. Scholes,, E. W. Maas,, R. E. McCormick,, E. B. Moore, and, B. J. Gilpin. 2001. Application of polymerase chain reaction (PCR) and TaqMan PCR techniques to the detection and identification of Rhodococcus coprophilus in faecal samples. J. Microbiol. Methods. 47: 355368.
122. Schaper, M.,, A. E. Duran, and, J. Jofre. 2002a. Comparative resistance of phage isolates of four genotypes of F-specific RNA bacteriophages to various inactivation processes. Appl. Environ. Mi. crobiol. 68: 37023707.
123. Schaper, M.,, J. Jofre., M. Uys., and, W. O. K. Grabow. 2002b. Distribution of genotypes of F-specific RNA bacteriophages in human and non-human sources of faecal pollution in South Africa and Spain. J. Appl. Microbiol. 92: 657667.
124. Scott,, T. M.,, T. M. Jenkins,, J. Lukasik, and, J. B. Rose. 2005. Potential use of a host associated molecular marker in Enterococcus faecium as an index of human fecal pollution. Environ. Sci. Technol. 39: 283287.
125. Sears,, H. J.,, H. Janes,, R. Saloum., I. Bownlee, and, L. F. Lamoureaux. 1956. Persistence of individual strains of Escherichia coli in man and dog under varying conditions. J. Bacteriol. 71: 370372.
126. Sears, H. J.,, I. Brownlee., and, J. K. Uchiyama. 1950. Persistence of individual strains of Escherichia coli in the intestinal tract of man. J. Bacteriol. 59: 293301.
127. Selander, R. K., and, B. R. Levin. 1980. Genetic diversity and structure in Escherichia coli populations. Science 210: 545547.
128. Seurinck, S.,, T. Defoirdt., W. Verstraete., and, S. D. Siciliano. 2005. Detection and quantification of the human-specific HF183 Bacteroides 16S rRNA genetic marker with real-time PCR for assessment of human faecal pollution in freshwater. Environ. Microbiol. 7: 249259.
129. Shanks,, O. C.,, J. W. Santo Domingo,, J. Lu,, C. A. Kelty, and, J. E. Graham. 2007. Identification of bacterial DNA markers for the detection of human fecal pollution in water. Appl. Environ. Microbiol. 73: 24162422.
130. Shanks,, O. C.,, J. W. Santo Domingo,, R. Lamendella,, C. A. Kelty, and, J. E. Graham. 2006. Competitive metagenomic DNA hybridization identifies host-specific microbial genetic markers in cow fecal samples. Appl. Environ. Microbiol. 72: 40544060.
131. Simmons, G. M.,, S. A. Herbein, and, C. M.James. 1995. Managing nonpoint fecal coliform sources to tidal inlets. Water Res. Update. 100: 6474.
132. Simpson, J. M.,, J. W. Santo Domingo, and, D. J. Reasoner. 2002. Microbial source tracking: state of the science. Environ. Sci. Technol. 36: 52795288.
133. Snow, J. 1855. On the Mode of Communication of Cholera. John Churchill, London, United Kingdom.
134. Soule, M.,, E. Kuhn., F. Loge., J. Gay., and, D. R. Call. 2006. Using DNA microarrays to identify library-independent markers for bacterial source tracking. Appl. Environ. Microbiol. 72: 18431851.
135. Stoeckel, D. M., and, V. J. Harwood. 2007. Performance, design, and analysis in microbial source tracking studies. Appl. Environ. Microbiol. 73: 24052415.
136. Stoeckel,, D. M.,, M. V. Mathes,, K. E. Hyer,, C. Hagedorn., H. Kator., J. Lukasik., T. L. O’Brien,, T. W. Fenger,, M. Samadpour., K. M. Strickler, and, B. A. Wiggins. 2004. Comparison of seven protocols to identify fecal contamination sources using Escherichia coli. Environ. Sci. Technol. 38: 61096117.
137. Straub, T. M.,, I. L. Pepper, and, C. P. Gerba. 1993. Hazards of pathogenic microorganisms in land disposed sewage sludge. Rev. Environ. Contam. Toxicol. 132: 5591.
138. Straub,, T. M.,, M. D. Quinonez-Diaz,, C. O. Valdez,, D. R. Call, and, D. P. Chandler. 2004. Using DNA microarrays to detect multiple pathogen threats in water. Water Supply 4: 107114.
139. Tap,, J.,, S. Mondot., F. Levenez,, E. Pelletier., C. Caron,, J. P. Furet,, E. Ugarte., R. Muñoz-Tamayo,, D. L. Paslier,, R. Nalin., J. Dore, and, M. Leclerc. 2009. Towards the human intestinal microbiota phylogenetic core. Environ. Microbiol. 11: 25742584.
140. Taroncher-Oldenburg, G., and, B. B. Ward. 2007. Oligonucleotide microarrays for the study of coastal microbial communities. Methods Mol. Biol. 353: 301315.
141. Tettelin, H., and, T. Feldblyum. 2009. Bacterial genome sequencing. Methods Mol. Biol. 551: 231247.
142. Tartera, C.,, F. Lucena, and, J. Jofre. 1989. Human origin of Bacteroides fragilis bacteriophages present in the environment. Appl. Environ. Microbiol. 55: 26962701.
143. Tartera, C., and, J. Jofre. 1987. Bacteriophages active against Bacteroides fragilis in sewage polluted waters. Appl. Environ. Microbiol. 53: 16321637.
144. Till,, D., K.G. Field,, and A. P. Dufour. 2004. Managing risk of waterborne zoonotic disease through water quality surveillance, p. 338–348. In J. A. Cotruvo,, A. Dufour., G. Rees., J. Bartram., R. Carr., D. O. Cliver,, G. F. Craun,, R. Fayer. and, V. P., G. Gannon.(eds.), Waterborne Zoonoses: Identification, Causes, and Control. World Health Organization, IWA Publishing, London, United Kingdom.
145. Turnbaugh, P. J., and, J. I. Gordon. 2009. The core gut microbiome, energy balance and obesity. J. Physiol. 587: 41534158.
146. Turnbaugh,, P. J.,, R. E. Ley,, M. A. Mahowald,, V. Mabrini., E. R. Mardis, and, J. I. Gordon. 2006. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444: 10271031.
147. Ufnar,, J. A.,, S. Y. Wang,, D. F. Ufnar, and, R. D. Ellender. 2007. Methanobrevibacter ruminantium as an indicator of domesticated-ruminant fecal pollution in surface waters. Appl. Environ. Microbiol. 73: 71187121.
148. Ufnar,, J. A.,, S. Y. Wang,, J. M. Christiansen,, H. Yampara. Iquise,, C. A. Carson, and, R. D. Ellender. 2006. Detection of the nifH gene of Methanobrevibacter smithii: a potential tool to identify sewage pollution in recreational waters. J. Appl. Microbiol. 101: 4452.
149. U.S. Environmental Protection Agency. 1986. Ambient Water Quality Criteria for Bacteria. EPA/440/5– 84/002. Criteria and Standards Division, U.S. Environmental Protection Agency, Washington, DC.
150. U.S. Environmental Protection Agency. 2001. Protocol for Developing Pathogen TMDL’s. EPA/841/R-00/002. Office of Water, U.S. Environmental Protection Agency, Washington, DC.
151. U.S. Environmental Protection Agency. 2005. Microbial Source Tracking Guide Document. EPA/600/R-05/064. U.S. Environmental Protection Agency, Washington, DC.
152. U.S. Environmental Protection Agency. 2008. Drinking Water Contaminant Candidate List 3. http://www.epa.gov/ogwdw/ccl/ccl3.html.
153. Varga, S., and, G. W. Anderson. 1968. Significance of coliforms and enterococci in fish products. Appl. Microbiol. 16: 193196.
154. Vasanthakumar,, A.,, J. Handelsman., P. D. Schloss,, L. S. Bauer, and, K. F. Raffa. 2008. Gut microbiota of an invasive subcortical beetle, Agrilus planipennis Fairmaire, across various life stages. Environ. Entomol. 37: 13441353.
155. Venter,, J. C.,, K. Remington,, J. F. Heidelberg,, A. L. Halpern,, D. Rusch., J. A. Eisen,, D. Wu., I. Paulsen., K. E. Nelson,, W. Nelson., D. E. Fouts,, S. Levy., A. H. Knap,, M. W. Lomas,, K. Nealson., O. White., J. Peterson., J. Hoffman., R. Parsons., H. Baden. Tillson,, C. Pfannkoch., Y. H. Rogers, and, H. O. Smith. 2004. Environmental genome shotgun sequencing of the Sargasso Sea. Science 304: 6674.
156. Vinjé,, J.,, S. J. Oudejans,, J. R. Stewart,, M. D. Sobsey, and, S. C. Long. 2004. Molecular detection and genotyping of male-specific coliphages by reverse transcription-PCR and reverse line blot hybridization. Appl. Environ. Microbiol. 70: 59966004.
157. Vogel,, T. M.,, P. Simonet,, J. Jansson., P. R. Hirsch,, J. M. Tiedje,, J. D. Van Elsas,, M. J. Bailey,, R. Nalin, and, L. Philippot. 2009. TerraGenome: a consortium for the sequencing of a soil metagenome. Nat. Rev. Microbiol. 7: 252.
158. Vorosmarty, C. J.,, P. Green., J. Salisbury., and, R. B. Lammers. 2000. Global water resources: vulnerability from climate change acid population growth. Science 289: 284288.
159. Wagner, M.,, H. Smidt., A. Loy., J. Zhou. 2007. Unravelling microbial communities with DNA-microarrays: challenges and future directions. Microb. Ecol. 53: 498506.
160. Waldenstrom,, J.,, T. Broman., I. Carlsson,, D. Hasselquist., R. P. Achterberg,, J. A. Wagenaar, and, B. Olsen. 2002. Prevalence of Campylobacter jejuni, Campylobacter lari, and Campylobacter coli in different ecological guilds and taxa of migrating birds. Appl. Environ. Microbiol. 68: 59115917.
161. Wallick, H., and, C. A. Stuart. 1943 Antigenic relationships of Escherichia coli isolated from one individual. J. Bacteriol. 45: 121126.
162. Wang,, X. W.,, L. Zhang,, L. Q. Jin,, M. Jin,, Z. Q. Shen,, S. An., F. H. Chao, and, J. W. Li. 2007. Development and application of an oligonucleotide microarray for the detection of food-borne bacterial pathogens. Appl. Microbiol. Biotechnol. 76: 225233.
163. Warnecke,, F.,, P. Luginbuhl,, N. Ivanova,, M. Ghassemian., T. H. Richardson,, J. T. Stege,, M. Cayouette., A. C. McHardy,, G. Djordjevic., N. Aboushadi., R. Sorek., S. G. Tringe,, M. Podar., H. G. Martin,, V. Kunin., D. Dalevi., J. Madejska., E. Kirton., D. Platt., E. Szeto., A. Salamov., K. Barry., N. Mikhailova., N. C. Kyrpides,, E. G. Matson,, E. A. Ottesen,, X. Zhang., M. Hernandez,, C. Murillo., L. G. Acosta,, I. Rigoutsos., G. Tamayo., B. D. Green,, C. Chang., E. M. Rubin,, E. J. Mathur,, D. E. Robertson,, P. Hugenholtz, and, J. R. Leadbetter. 2007. Metagenomic and functional analysis of hindgut microbiota of a wood-feeding higher termite. Nature 450: 560565.
164. Whitlock, J. E.,, D. T. Jones, and, V. J. Harwood. 2002. Identification of the sources of fecal coli-forms in an urban watershed using antibiotic resistance analysis. Water Res. 36: 42734282.
165. Wiggins, B. A. 1996. Discriminant analysis of antibiotic resistance patterns in fecal streptococci, a method to differentiate human and animal sources of fecal pollution in natural waters. Appl. Environ. Microbiol. 62: 39974002.
166. Wiggins,, B. A.,, P. W. Cash,, W. S. Creamer,, S. E. Dart,, P. P. Garcia,, T. M. Gerecke,, J. Han., B. L., Henry,, K. B. Hoover,, E. L. Johnson,, K. C. Jones,, J. G. McCarthy,, J. A. McDonough,, S. A. Mercer,, M. J. Noto,, H. Park., M. S. Phillips,, S. M. Purner,, B. M. Smith,, E. N. Stevens, and, A. K. Varner. 2003. Use of antibiotic resistance analysis for representativeness testing of multiwatershed libraries. Appl. Environ. Microbiol. 69: 33993405.
167. Wiggins,, B. A.,, R. W. Andrews,, R. A. Conway,, C. L. Corr,, E. J. Dobratz,, D. P. Dougherty,, J. R. Eppard,, S. R. Knupp,, M. C. Limjoco,, J. M. Mettenburg,, J. M. Rinehardt,, J. Sonsino., R. L. Torrijos, and, M. E. Zimmerman. 1999. Use of antibiotic resistance analysis to identify nonpoint sources of fecal pollution. Appl. Environ. Microbiol. 65: 34833486.
168. Wolf, H. W. 1972. The coliform count as a measure of water quality, p. 333–345. In R. Mitchell. (ed.), Water Quality Microbiology. Wiley-Interscience, New York, NY.
169. Wu, J. H., and, W. T. Liu. 2007. Quantitative multiplexing analysis of PCR-amplified ribosomal RNA genes by hierarchical oligonucleotide primer extension reaction. Nucleic Acids Res. 35: e82.
170. Yan, T., and, M. J. Sadowsky. 2007. Determining sources of fecal bacteria in waterways Environ. Monit. Assess. 129: 97106.
171. Yan, T.,, M. J. Hamilton, and, M. J. Sadowsky. 2007. High-throughput and quantitative procedure for determining sources of Escherichia coli in waterways by using host-specific DNA marker genes. Appl. Environ. Microbiol. 73: 890896.
172. Yang,, W.,, P. Chen., E. N. Villegas,, R. B. Landy,, C. Kanetsky., V. Cama., T. Dearen., C. L. Schultz, and, K. G. Orndorff. 2008. Cryptospo-ridium source tracking in the Potomac River watershed. Appl. Environ. Microbiol. 74: 64956504.
173. Yates, M. V. 1994. Monitoring concerns and procedures for human health effects, p. 143–171. In M. P. Kenna (ed.), Wastewater Reuse for Golf Course Irrigation. CRC Press, Boca Raton, FL.
174. Zhou, L.,, H. Kassa., M. L. Tischler, and, L. H. Xiao. 2004. Host-adapted Cryptosporidium spp. in. Canada geese (Branta canadensis). Appl. Environ. Microbiol. 70: 42114215.


Generic image for table

Examples of fecal pathogens and their fecal sources

Citation: Harwood V, Hodon R, Santo Domingo J. 2011. Microbial Source Tracking, p 189-216. In Sadowsky M, Whitman R (ed), The Fecal Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555816865.ch9

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error