Chapter 13 : Conclusions and Future Use of Fecal Indicator Bacteria for Monitoring Water Quality and Protecting Human Health

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

Conclusions and Future Use of Fecal Indicator Bacteria for Monitoring Water Quality and Protecting Human Health, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555816865/9781555816087_Chap13-1.gif /docserver/preview/fulltext/10.1128/9781555816865/9781555816087_Chap13-2.gif


This chapter focuses on the future use of fecal indicator bacteria for monitoring water quality and protecting human health. The mammalian gastrointestinal (GI) tract is dominated by microorganisms from the following phyla , , , , , and , in a host-specific manner. The fecal indicator bacteria in the water column physically adsorb and desorb from particles and eventually make their way into soils, sediments, and sand. The negative impact of these pathogens on human health is likely to worsen in the future as many bacteria have been shown to have resistance to multiple antibiotics. Future applications of array-based technology to water quality monitoring will likely become more routine in the future and may soon obviate the use of fecal indicator bacteria as surrogates for pathogens. Deterministic modeling of fecal indicator bacteria in surface waters also needs more research, particularly on pathogen-particle interactions, bacterial inactivation and regrowth, and model validation. More research is also needed to better understand bacterial flux and patterns for modeling water quality at beaches and waterways impacted by nonpoint sources of bacteria. As the access to clean water is fundamental around the world, it is important to have suitable techniques for rapid and accurate detection and quantification of fecal indicator bacteria to protect water quality for drinking, recreational use, and food production.

Citation: Sadowsky M, Whitman R. 2011. Conclusions and Future Use of Fecal Indicator Bacteria for Monitoring Water Quality and Protecting Human Health, p 295-302. In Sadowsky M, Whitman R (ed), The Fecal Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555816865.ch13
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


1. Blanch,, A.R.,, L. Belanche. Munoz,, X. Bonjoch,, J. Ebdon., C. Gantzer,, F. Lucena., J. Ottoson., C. Kourtis., A. Iverson., I. Kuhn., L. Moce., M. Muniesa., J. Schwartzbrod., S. Skraber., G.T. Papageorgiou,, H. Taylor., J. Wallis, and, J. Jofre. 2006. Integrated analysis of established and novel microbial and chemical methods for microbial source tracking. Appl. Environ. Microbiol. 72: 59155926.
2. Brodie,, E. L.,, T. Z. DeSantis,, D. C. Joyner,, S. M. Baek,, J. T. Larsen,, G. L. Andersen,, T. C. Hazen,, P. M. Richardson,, D. J. Herman,, T. K. Tokunaga,, J. M. Wan, and, M. K. Firestone. 2006. Application of a high-density oligonucleotide microarray approach to study bacterial population dynamics during uranium reduction and reoxidation. Appl. Environ. Microbiol. 72: 62886298.
3. Byappanahalli, M., and, R. Fujioka. 2004. Indigenous soil bacteria and low moisture may limit but allow faecal bacteria to multiply and become a minor population in tropical soils. Water Sci. Technol. 50: 2732..
4. Byappanahalli,, M. N.,, R. L. Whitman,, D. A. Shively,, M. J. Sadowsky, and, S. Ishii. 2006. Population structure, persistence, and seasonality of autochthonous Escherichia coli in temperate, coastal forest soil from a Great Lakes watershed. Environ. Microbiol. 8: 504513.
5. Cabelli,, V. J.,, A. P. Dufour,, L. J. McCabe, and, M. A. Levin. 1983. A marine recreational water quality criterion consistent with indicator concepts and risk analysis. J. Water Pollut. Control. Fed. 55: 13061314.
6. Cabelli,, V. J.,, A. P. Dufour,, M. A. Levin,, L. J. McCabe, and, P. W. Haberman. 1979. Relationship of microbial indicators to health effects at marine bathing beaches. Am. J. Public. Health. 69: 690696.
7. Call, D. R. 2005. Challenges and opportunities for pathogen detection using DNA microarrays. Crit. Rev. Microbiol. 31: 9199.
8. Call, D. R.,, M. K. Borucki, and, F. J. Loge. 2003. Detection of bacterial pathogens in environmental samples using DNA microarrays. J. Microbiol. Meth. 53: 235243.
9. Carroll, I. M.,, D. W. Threadgill, and, D. S. Threadgill. 2009. The gastrointestinal micro-biome: a malleable, third genome of mammals. Mammalian Genome. 20: 395403.
10. DeSantis,, T. Z.,, E. L. Brodie,, J. P. Moberg,, I. X. Zubieta,, Y. M. Piceno, and, G. L. Andersen. 2007. High-density universal 16S rRNA microarray analysis reveals broader diversity than typical clone library when sampling the environment. Microb. Ecol. 53: 371383.
11. Dumonceaux,, T. J.,, J. E. Hill,, S. M. Hemmingsen, and, A. G. Van Kesse. 2006. Characterization of intestinal microbiota and response to dietary vir-giniamycin supplementation in the broiler chicken. Appl. Environ. Microbiol. 72: 28152823..
12. Easley,, C. J.,, J. M. Karlinsey,, J. M. Bienvenue,, L. A. Legendre,, M. G. Roper,, S. H. Feldman,, M. A. Hughes,, E. L. Hewlett,, T. J. Merkel,, J. P. Ferrance, and, J. P. Landers. 2006. A fully integrated microfluidic genetic analysis system with sample-in-answer-out capability. Proc. Natl. Acad. Sci. USA. 103: 1927219277.
13. Eckburg,, P. B.,, E. M. Bik,, C. N. Bernstein,, E. Purdom., L. Dethlefsen., M. Sargent., S. R. Gill,, K. E. Nelson, and, D. A. Relman. 2005. Diversity of the human intestinal microbial flora. Science. 308: 16351638.
14. Fujioka, R., C. Sian-Denton,, M. Borja,, J. Castro, and, K. Morphew. 1999. Soil: the environmental source of Escherichia coli and enterococci in Guam’s streams. J. Appl. Microbiol. Symp. Suppl. 85: 83S89S.
15. Fujioka,, R. S, and, M. N. Byappanahalli. 2003. Proceedings and Report: Tropical Water Quality Indicator Workshop, SR-2004–01, p. 1–95. University of Hawaii, Water Resources Research Center, Honolulu, HI.
16. Gilbride, K. A., D.-Y. Lee, and, L. A. Beaudette. 2006. Molecular techniques in wastewater: understanding microbial communities, detecting pathogens, and real-time process control. J. Microbiol. Meth. 66: 120.
17. Hardina,, C. M, and, R. S. Fujioka. 1991. Soil: The environmental source of Escherichia coli and enterococci in Hawaii’s streams. Environ. Toxicol. Water. Qual. 6: 185195.
18. Hill,, J.E.,, S. M. Hemmingsen,, B. G. Goldade,, T. J. Dumonceaux,, J. Klassen., R. T. Zijlstra,, S. H. Goh, and, A. G. Van Kessel. 2005. Comparison of ileum microflora of pigs fed corn-, wheat-, or barley-based diets by chaperonin-60 sequencing and quantitative PCR. Appl. Environ. Microbiol. 71: 867875.
19. Ishii, S., and, M. J. Sadowsky. 2008. Escherichia coli in the environment: implications for water quality and human health. Microbes Environ. 23: 101108.
20. Ishii, S.,, W. B. Ksoll,, R. E. Hicks, and, M. J. Sadowsky. 2006. Presence and growth of naturalized Escherichia coli in temperate soils from Lake Superior watersheds. Appl. Environ. Microbiol. 72: 612621.
21. Jansson,, J.,, B. Willing., M. Lucio,, A. Fekete., J. Dicksved,, J. Halfvarson., C. Tysk, and, P. Schmitt-Kopplin. 2009. Metabolomics reveals metabolic biomarkers of Crohn’s disease. PLoS ONE 4: e6386.
22. Jin,, L-Q., J.-W. Li,, S.-Q. Wang,, F.-H. Chao,, X.-W. Wang, and, Z.-Q. Yuan. 2005. Detection and identification of intestinal pathogenic bacteria by hybridization to oligonucleotide mi-croarrays. W. J. Gastroenterol. 11: 76157619.
23. Khoruts, A.,, J. Dicksved., J. K. Jansson, and, M. J. Sadowsky. 2010. Changes in the composition of the human fecal microbiome following bacterio-therapy for recurrent Clostridium difficile-associated diarrhea. J. Clin. Gastro. 44: 354360.
24. Kinross,, J. M.,, A. C. von Roon,, E. Holmes,, A. Darzi, and, J. K. Nicholson. 2008. The human gut microbiome: Implications for future health care. J. Curr. Gastroenterol. Rep. 10: 396403.
25. Lasalde, C.,, R. Rodriguez., G. A. Toranzos, and, H. H. Smith. 2005. Heterogeneity of uidA gene in environmental Escherichia coli populations. J. Water Health. 3: 297304.
26. Ley,, R. E.,, M. Hamady,, C. Lozupone., P. J. Turnbaugh,, R. R. Ramey,, J. S. Bircher,, M. L. Schlegel,, T. A. Tucker,, M. D. Schrenzel,, R. Knight, and, J. I. Gordon. 2008. Evolution of mammals and their gut microbes. Science. 320: 16471651.
27. Metfies, K., and, L. Medlin. 2008. Feasibility of transferring fluorescent in situ hybridization probes to an 18s rRNA gene phylochip and mapping of signal intensities. Appl. Environ. Microbiol. 74: 28142821.
28. npr. 2009. NASA discovers a ring around the Solar System. National Public Radio. http://www.npr.org/templates/story/story.php?storyId=113914677.
29. Obiri-Danso, K., and, K. Jones. 2000. Intertidal sediments as reservoirs for hippurate negative campylobacters, salmonellae and faecal indicators in three EU recognised bathing waters in north west England. Water Res. 34: 519527.
30. Paliy, O., H. Kenche,, F. Abernathy, and, S. Michail. 2009. High-throughput quantitative analysis of the human intestinal microbiota with a phylogenetic mi-croarray. Appl. Environ. Microbiol. 75: 35723579..
31. Riesenfeld, C. S.,, P. D. Schloss, and, J. Handelsman. 2004. METAGENOMICS: ge-nomic analysis of microbial communities. Annu. Rev. Genet. 38: 525552.
32. Sadowsky, M. J.,, D. R. Call, and, J. W. Santo Domingo. 2007. The future of microbial source tracking studies, p. 235–277. In J. W. Santo Domingo and, M. J. Sadowsky (ed.), Microbial Source Tracking. ASM Press, Washington, D.C.
33. Santo Domingo,, J. W.,, D. G. Bambic,, T. A. Edge, and, S. Wuertz. 2007. Quo vadis source tracking? Towards a strategic framework for environmental monitoring of fecal pollution. Water Res. 41: 35393552.
34. Shanks, O.C.,, J. W. Santo Domingo,, R. Lamendella., C. A. Kelty, and, J. E. Graham. 2006. Competitive metagenomic DNA hybridization identifies host-specific microbial genetic markers in cow fecal samples. Appl. Environ. Microbiol. 72: 40544060.
35. Shiaris,, M. P.,, A. C. Rex,, G. W. Pettibone,, K. Keay., P. McManus., M. A. Rex,, J. Ebersole, and, E. Gallagher. 1987. Distribution of indicator bacteria and Vibrio parahaemolyticus in sewage-polluted intertidal sediments. Appl. Environ. Microbiol. 53: 17561761.
36. Stoeckel, D. M., and, V. J. Harwood. 2007. Performance, design, and analysis in microbial source tracking studies. Appl. Environ. Microbiol. 73: 24052415.
37. U.S. Environmental Protection Agency. 2007. Report of the Experts Scientific Workshop on Critical Research Needs for the Development of New or Revised Recreational Water Quality Criteria. EPA 823–R-07–006. U.S. EPA Offices of Water and Research and Development, Washington, D.C.
38. Van Hal,, N. L. W., O. Vorst,, A. M., M. L. van Houwelingen,, E. J. Kok,, A. Peijnenburg., A. Aharoni,, A. J. van Tunen, and, J. Keijer. 2000. The application of DNA microarrays in gene expression analysis. J. Biotechnol. 78: 271280.
39. Whitman, R. L., and, M. B. Nevers. 2003. Foreshore sand as a source of Escherichia coli in nearshore water of a Lake Michigan beach. Appl. Environ. Microbiol. 69: 55555562.
40. Whitman,, R. L.,, D. A. Shively,, H. Pawlik,, M. B. Nevers, and, M. N. Byappanahalli. 2003. Occurrence of Escherichia coli and enterococci in Cladophora (Chlorophyta) in nearshore water and beach sand of Lake Michigan. Appl. Environ. Micro. biol. 69: 47144719.
41. Willing,, B.,, A. V. ouml;rös,, S. Roos,, C. Jones., A. Jansson, and, J. E. Lindberg. 2009. Changes in faecal bacteria associated with concentrate and forage-only diets fed to horses in training. Equine Vet. J. 41: 908914.
42. Yan, T., and, M. J. Sadowsky. 2007. Determining sources of fecal bacteria in waterways Environ. Monit. Assess. 129: 97106.
43. Ye, R. W.,, T. Wang., L. Bedzyk., and, K. M. Croker. 2001. Applications of DNA microarrays in microbial systems. J. Microbiol. Meth. 47: 257272.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error