Chapter 9 : Memory and Infection

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

Memory and Infection, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555816872/9781555815141_Chap09-1.gif /docserver/preview/fulltext/10.1128/9781555816872/9781555815141_Chap09-2.gif


This chapter reviews the basic principles of adaptive immunological memory. It first discusses the dynamics of T-cell responses, and commitment to memory lineage. Large numbers of memory T cells were located within nonlymphoid tissues. The chapter then focuses on maintenance and longevity of memory T cells. Development of antigen-specific antibody responses can be either T-cell-independent or T-cell-dependent. The majority of vaccines and viral infections trigger high affinity, antigen-specific B-cell responses that are CD4 T-cell-dependent. The differential migration of memory B cells (MBCs) and plasma cells (PCs)/plasmablasts is most likely accomplished by changes in the expression pattern of different chemokine receptors and other adhesion molecules. Induction of a durable neutralizing antibody response represents the basis of many successful vaccines and is important to the maintenance of protective immunity against a wide range of pathogens. Analysis of humoral immunity against tetanus and diphtheria toxins revealed that not all antibody responses last a lifetime. Humoral immunity is maintained by two types of B cells—MBCs and PCs. The duration of the PC response is most commonly measured indirectly by quantitation of antigen-specific serum antibody levels or directly through the use of the ELISPOT assay. Finally, the chapter focuses on models explaining long-lived humoral immunity. Antibody responses to antigens result in slowly declining antibody responses that last for decades, whereas immunity against viral infections such as measles, mumps, and rubella will often last a lifetime.

Citation: Masopust D, Slifka M. 2011. Memory and Infection, p 121-130. In Kaufmann S, Rouse B, Sacks D (ed), The Immune Response to Infection. ASM Press, Washington, DC. doi: 10.1128/9781555816872.ch9
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of FIGURE 1

Dynamics of primary versus secondary T-cell response. Primary T-cell responses are slow to develop, result in the selective expansion of pathogen specific clones, and establish a long-lived increase in the frequency of pathogen specific T cells (memory). Secondary (recall) responses are faster, larger, and more efficacious, and induce a long-lived boost in the number of memory T cells.

Citation: Masopust D, Slifka M. 2011. Memory and Infection, p 121-130. In Kaufmann S, Rouse B, Sacks D (ed), The Immune Response to Infection. ASM Press, Washington, DC. doi: 10.1128/9781555816872.ch9
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2

Duration of serological memory is dictated largely by the antigen under study. In this illustration (adapted from ), the durability of antigen-specific antibody responses following infection or vaccination are compared over time. Antibody responses to EBV, measles, mumps, rubella, and vaccinia last a lifetime with little to no decrease in titer. Antibody responses to VZV decline more rapidly than antibody responses to other viral infections but remain more durable than the antibody responses to protein antigens such as tetanus or diphtheria. In general, the durability of serum antibody responses differ greatly depending on the antigen under study, and if the underlying mechanisms involved with determining the persistence of antibody can be elucidated, this will have important implications in terms of optimizing future vaccine design.

Citation: Masopust D, Slifka M. 2011. Memory and Infection, p 121-130. In Kaufmann S, Rouse B, Sacks D (ed), The Immune Response to Infection. ASM Press, Washington, DC. doi: 10.1128/9781555816872.ch9
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Ahuja, A.,, S. M. Anderson,, A. Khalil, and, M. J. Shlomchik. 2008. Maintenance of the plasma cell pool is independent of memory B cells. Proc. Natl. Acad. Sci. USA 105: 48024807.
2. Allen, C. D.,, T. Okada,, H. L. Tang, and, J. G. Cyster. 2007. Imaging of germinal center selection events during affinity maturation. Science 315: 528531.
3. Amanna, I. J., and, M. K. Slifka. 2006. Quantitation of rare memory B cell populations by two independent and complementary approaches. J. Immunol. Methods 317: 175185.
4. Amanna, I. J.,, N. E. Carlson, and, M. K. Slifka. 2007. Duration of humoral immunity to common viral and vaccine antigens. N. Engl. J. Med. 357: 19031915.
5. Bachmann, M. F.,, P. Wolint,, K. Schwarz, and, A. Oxenius. 2005. Recall proliferation potential of memory CD8+ T cells and antiviral protection. J. Immunol. 175: 46774685.
6. Bannard, O.,, M. Kraman, and, D. T. Fearon. 2009. Secondary replicative function of CD8+ T cells that had developed an effector phenotype. Science 323: 505509.
7. Bernasconi,, N. L.,, E. Traggiai, and, A. Lanzavecchia. 2002. Maintenance of serological memory by polyclonal activation of human memory B cells. Science 298: 21992202.
8. Blattman, J. N.,, J. M. Grayson,, E. J. Wherry,, S. M. Kaech,, K. A. Smith, and, R. Ahmed. 2003. Therapeutic use of IL-2 to enhance antiviral T-cell responses in vivo. Nat. Med. 9: 540547.
9. Butcher, E. C., and, L. J. Picker. 1996. Lymphocyte homing and homeostasis. Science 272: 6066.
10. Cambridge, G.,, M. J. Leandro,, J. C. Edwards,, M. R. Ehrenstein,, M. Salden,, M. Bodman-Smith, and, A. D. Webster. 2003. Serologic changes following B lymphocyte depletion therapy for rheumatoid arthritis. Arthritis Rheum. 48: 21462154.
11. Champagne, P.,, G. S. Ogg,, A. S. King,, C. Knabenhans,, K. Ellefsen,, M. Nobile,, V. Appay,, G. P. Rizzardi,, S. Fleury,, M. Lipp,, R. Forster,, S. Rowland-Jones,, R. P. Sekaly,, A. J. McMichael, and, G. Pantaleo. 2001. Skewed maturation of memory HIV-specific CD8 T lymphocytes. Nature 410: 106111.
12. Chang, J. T.,, V. R. Palanivel,, I. Kinjyo,, F. Schambach,, A. M. Intlekofer,, A. Banerjee,, S. A. Longworth,, K. E. Vinup,, P. Mrass,, J. Oliaro,, N. Killeen,, J. S. Orange,, S. M. Russell,, W. Weninger, and, S. L. Reiner. 2007. Asymmetric T lymphocyte division in the initiation of adaptive immune responses. Science 315: 16871691.
13. Claflin, A. J., and, O. Smithies. 1967. Antibody-producing cells in division. Science 157: 15611562.
14. Crotty, S.,, R. D. Aubert,, J. Glidewell, and, R. Ahmed. 2004. Tracking human antigen-specific memory B cells: a sensitive and generalized ELISPOT system. J. Immunol. Methods 286: 111122.
15. Crotty, S.,, P. Felgner,, H. Davies,, J. Glidewell,, L. Villarreal, and, R. Ahmed. 2003. Cutting edge: long-term B cell memory in humans after smallpox vaccination. J. Immunol. 171: 49694973.
16. DiLillo, D. J.,, Y. Hamaguchi,, Y. Ueda,, K. Yang,, J. Uchida,, K. M. Haas,, G. Kelsoe, and, T. F. Tedder. 2008. Maintenance of long-lived plasma cells and serological memory despite mature and memory B cell depletion during CD20 immunotherapy in mice. J. Immunol. 180: 361371.
17. Dilosa, R. M.,, K. Maeda,, A. Masuda,, A. K. Szakal, and, J. G. Tew. 1991. Germinal center B cells and antibody production in the bone marrow. J. Immunol. 146: 40714077.
18. Edwards, J. C.,, L. Szczepanski,, J. Szechinski,, A. Filipowicz-Sosnowska,, P. Emery,, D. R. Close,, R. M. Stevens, and, T. Shaw. 2004. Efficacy of B-cell-targeted therapy with rituximab in patients with rheumatoid arthritis. N. Engl. J. Med. 350: 25722581.
19. Fairfax, K. A.,, A. Kallies,, S. L. Nutt, and, D. M. Tarlinton. 2008. Plasma cell development: from B-cell subsets to long-term survival niches. Semin. Immunol. 20: 4958.
20. Hammarlund, E.,, M. W. Lewis,, S. G. Hansen,, L. I. Strelow,, J. A. Nelson,, G. J. Sexton,, J. M. Hanifin, and, M. K. Slifka. 2003. Duration of antiviral immunity after smallpox vaccination. Nature Medicine 9: 11311137.
21. Hand, T. W., and, S. M. Kaech. 2009. Intrinsic and extrinsic control of effector T cell survival and memory T cell development. Immunol. Res. 45: 4661.
22. Hannum, L. G.,, A. M. Haberman,, S. M. Anderson, and, M. J. Shlomchik. 2000. Germinal center initiation, variable gene region hypermutation, and mutant B cell selection without detectable immune complexes on follicular dendritic cells. J. Exp. Med. 192: 931942.
23. Harrington, L. E.,, K. M. Janowski,, J. R. Oliver,, A. J. Zajac, and, C. T. Weaver. 2008. Memory CD4 T cells emerge from effector T-cell progenitors. Nature 452: 356360.
24. Harty, J. T., and, V. P. Badovinac. 2008. Shaping and reshaping CD8+ T-cell memory. Nat. Rev. Immunol. 8: 107119.
25. Homann, D.,, L. Teyton, and, M. B. Oldstone. 2001. Differential regulation of antiviral T-cell immunity results in stable CD8+ but declining CD4+ T-cell memory. Nat. Med. 7: 913919.
26. Homann, D.,, A. Tishon,, D. P. Berger,, W. O. Weigle,, M. G. von Herrath, and, M. B. Oldstone. 1998. Evidence for an underlying CD4 helper and CD8 T-cell defect in B-cell- deficient mice: failure to clear persistent virus infection after adoptive immunotherapy with virus-specific memory cells from muMT/muMT mice. J. Virol. 72: 92089216.
27. Leyendeckers, H.,, M. Odendahl,, A. Lohndorf,, J. Irsch,, M. Spangfort,, S. Miltenyi,, N. Hunzelmann,, M. Assenmacher,, A. Radbruch, and, J. Schmitz. 1999. Correlation analysis between frequencies of circulating antigen- specific IgG-bearing memory B cells and serum titers of antigen- specific IgG. Eur. J. Immunol. 29: 14061417.
28. Lohning, M.,, A. N. Hegazy,, D. D. Pinschewer,, D. Busse,, K. S. Lang,, T. Hofer,, A. Radbruch,, R. M. Zinkernagel, and, H. Hengartner. 2008. Long-lived virus-reactive memory T cells generated from purified cytokine-secreting T helper type 1 and type 2 effectors. J. Exp. Med. 205: 5361.
29. MacLennan, I. C. 1994. Germinal centers. Annu. Rev. Immunol. 12: 117139.
30. Manz, R. A.,, A. Thiel, and, A. Radbruch. 1997. Lifetime of plasma cells in the bone marrow. Nature 388: 133134.
31. Masopust, D.,, S. M. Kaech,, E. J. Wherry, and, R. Ahmed. 2004. The role of programming in memory T-cell development. Curr. Opin. Immunol. 16: 217225.
32. Masopust, D.,, V. Vezys,, A. L. Marzo, and, L. Lefrançois. 2001. Preferential localization of effector memory cells in nonlymphoid tissue. Science 291: 24132417.
33. Masopust, D.,, V. Vezys,, E. J. Wherry,, D. L. Barber, and, R. Ahmed. 2006. Cutting edge: gut microenvironment promotes differentiation of a unique memory CD8 T cell population. J. Immunol. 176: 20792083.
34. Murali-Krishna, K.,, L. L. Lau,, S. Sambhara,, F. Lemonnier,, J. Altman, and, R. Ahmed. 1999. Persistence of memory CD8 T cells in MHC class I-deficient mice. Science 286: 13771381.
35. Nanan, R.,, D. Heinrich,, M. Frosch, and, H. W. Kreth. 2001. Acute and long-term effects of booster immunisation on frequencies of antigen-specific memory B-lymphocytes. Vaccine 20: 498504.
36. Nanan, R.,, A. Rauch,, E. Kampgen,, S. Niewiesk, and, H. W. Kreth. 2000. A novel sensitive approach for frequency analysis of measles virus-specific memory T-lymphocytes in healthy adults with a childhood history of natural measles. J. Gen. Virol. 81: 13131319.
37. Pinna, D.,, D. Corti,, D. Jarrossay,, F. Sallusto, and, A. Lanzavecchia. 2009. Clonal dissection of the human memory B-cell repertoire following infection and vaccination. Eur. J. Immunol. 39: 12601270.
38. Prlic, M., and, M. J. Bevan. 2008. Exploring regulatory mechanisms of CD8+ T cell contraction. Proc. Natl. Acad. Sci. USA 105: 1668916694.
39. Prlic, M.,, M. A. Williams, and, M. J. Bevan. 2007. Requirements for CD8 T-cell priming, memory generation and maintenance. Curr. Opin. Immunol. 19: 315319.
40. Radbruch, A.,, G. Muehlinghaus,, E. O. Luger,, A. Inamine,, K. G. Smith,, T. Dorner, and, F. Hiepe. 2006. Competence and competition: the challenge of becoming a long-lived plasma cell. Nat. Rev. Immunol. 6: 741750.
41. Reinhardt, R. L.,, A. Khoruts,, R. Merica,, T. Zell, and, M. K. Jenkins. 2001. Visualizing the generation of memory CD4 T cells in the whole body. Nature 410: 101105.
42. Reinhardt, R. L.,, H. E. Liang, and, R. M. Locksley. 2009. Cytokine-secreting follicular T cells shape the antibody repertoire. Nat. Immunol. 10: 385393.
43. Sallusto, F.,, J. Geginat, and, A. Lanzavecchia. 2004. Central memory and effector memory T cell subsets: function, generation, and maintenance. Annu. Rev. Immunol. 22: 745763.
44. Sallusto, F.,, D. Lenig,, R. Forster,, M. Lipp, and, A. Lanzavecchia. 1999. Two subsets of memory T lymphocytes with distinct homing potentials and effector functions. Nature 401: 708712.
45. Sanz, I.,, C. Wei,, F. E. Lee, and, J. Anolik. 2008. Phenotypic and functional heterogeneity of human memory B cells. Semin. Immunol. 20: 6782.
46. Schwickert, T. A.,, R. L. Lindquist,, G. Shakhar,, G. Livshits,, D. Skokos,, M. H. Kosco-Vilbois,, M. L. Dustin, and, M. C. Nussenzweig. 2007. In vivo imaging of germinal centres reveals a dynamic open structure. Nature 446: 8387.
47. Scibelli, A.,, R. G. van der Most,, J. A. Turkstra,, M. P. Ariaans,, G. Arkesteijn,, E. J. Hensen, and, R. H. Meloen. 2005. Fast track selection of immunogens for novel vaccines through visualisation of the early onset of the B-cell response. Vaccine 23: 19001909.
48. Selin, L. K., and, R. M. Welsh. 2004. Plasticity of T cell memory responses to viruses. Immunity 20: 516.
49. Slifka, M. K., and, R. Ahmed. 1996a. Limiting dilution analysis of virus-specific memory B cells by an ELISPOT assay. J. Immunol. Methods 199: 3746.
50. Slifka, M. K., and, R. Ahmed. 1996b. Long-term humoral immunity against viruses: revisiting the issue of plasma cell longevity. Trends Microbiol. 4: 394400.
51. Slifka, M. K., and, R. Ahmed. 1998a. B cell responses and immune memory. Dev. Biol. Stand. 95: 105115.
52. Slifka, M. K., and, R. Ahmed. 1998b. Long-lived plasma cells: a mechanism for maintaining persistent antibody production. Curr. Opin. Immunol. 10: 252258.
53. Slifka, M. K.,, R. Antia,, J. K. Whitmire, and, R. Ahmed. 1998. Humoral immunity due to long-lived plasma cells. Immunity 8: 363372.
54. Stemberger, C.,, K. M. Huster,, M. Koffler,, F. Anderl,, M. Schiemann,, H. Wagner, and, D. H. Busch. 2007. A single naive CD8 + T cell precursor can develop into diverse effector and memory subsets. Immunity 27: 985997.
55. Surh, C. D., and, J. Sprent. 2008. Homeostasis of naive and memory T cells. Immunity 29: 848862.
56. Swain, S. L.,, H. Hu, and, G. Huston. 1999. Class II-independent generation of CD4 memory T cells from effectors. Science 286: 13811383.
57. Tarlinton, D.,, A. Radbruch,, F. Hiepe, and, T. Dorner. 2008. Plasma cell differentiation and survival. Curr. Opin. Immunol. 20: 162169.
58. Townsend, S. E.,, C. C. Goodnow, and, R. J. Cornall. 2001. Single epitope multiple staining to detect ultralow frequency B cells. J. Immunol. Methods 249: 137146.
59. Van Epps, H. L.,, M. Terajima,, J. Mustonen,, T. P. Arstila,, E. A. Corey,, A. Vaheri, and, F. A. Ennis. 2002. Long-lived memory T lymphocyte responses after hantavirus infection. J. Exp. Med. 196: 579588.
60. van Leeuwen, E. M.,, J. J. Koning,, E. B. Remmerswaal,, D. van Baarle,, R. A. van Lier, and, I. J. ten Berge. 2006. Differential usage of cellular niches by cytomegalovirus versus EBV- and influenza virus-specific CD8+ T cells. J. Immunol. 177: 49985005.
61. Vezys, V.,, A. Yates,, K. A. Casey,, G. Lanier,, R. Ahmed,, R. Antia, and, D. Masopust. 2009. Memory CD8 T-cell compartment grows in size with immunological experience. Nature 457: 196199.
62. von Andrian, U. H., and, C. R. Mackay. 2000. T-cell function and migration. Two sides of the same coin. N. Engl. J. Med. 343: 10201034.
63. Wherry, E. J., and, R. Ahmed. 2004. Memory CD8 T-cell differentiation during viral infection. J. Virol. 78: 55355545.
64. Wherry, E. J.,, V. Teichgraber,, T. C. Becker,, D. Masopust,, S. M. Kaech,, R. Antia,, U. H. Von Andrian, and, R. Ahmed. 2003. Lineage relationship and protective immunity of memory CD8 T cell subsets. Nat. Immunol. 4: 225234.
65. Whitmire, J. K.,, M. S. Asano,, S. M. Kaech,, S. Sarkar,, L. G. Hannum,, M. J. Shlomchik, and, R. Ahmed. 2009. Requirement of B cells for generating CD4+ T cell memory. J. Immunol. 182: 18681876.
66. Woodland, D. L., and, J. E. Kohlmeier. 2009. Migration, maintenance and recall of memory T cells in peripheral tissues. Nat. Rev. Immunol. 9: 153161.
67. Wrammert, J.,, K. Smith,, J. Miller,, W. A. Langley,, K. Kokko,, C. Larsen,, N. Y. Zheng,, I. Mays,, L. Garman,, C. Helms,, J. James,, G. M. Air,, J. D. Capra,, R. Ahmed, and, P. C. Wilson. 2008. Rapid cloning of high-affinity human monoclonal antibodies against influenza virus. Nature 453: 667671.
68. Yajima, T.,, H. Nishimura,, R. Ishimitsu,, T. Watase,, D. H. Busch,, E. G. Pamer,, H. Kuwano, and, Y. Yoshikai. 2002. Overexpression of IL-15 in vivo increases antigen-driven memory CD8+ T cells following a microbe exposure. J. Immunol. 168: 11981203.


Generic image for table

T-cell properties vary with differentiation state and anatomic location

Citation: Masopust D, Slifka M. 2011. Memory and Infection, p 121-130. In Kaufmann S, Rouse B, Sacks D (ed), The Immune Response to Infection. ASM Press, Washington, DC. doi: 10.1128/9781555816872.ch9
Generic image for table

Duration of serum antibody production after infection or vaccination

Citation: Masopust D, Slifka M. 2011. Memory and Infection, p 121-130. In Kaufmann S, Rouse B, Sacks D (ed), The Immune Response to Infection. ASM Press, Washington, DC. doi: 10.1128/9781555816872.ch9

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error