Chapter 47 : Targeting Components in Vector Saliva

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

Targeting Components in Vector Saliva, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555816872/9781555815141_Chap47-1.gif /docserver/preview/fulltext/10.1128/9781555816872/9781555815141_Chap47-2.gif


Blood-feeding arthropods transmit some of the most debilitating infections known to mankind, including malaria, lymphatic filariasis, African trypanosomiasis, leishmaniasis, plague, Chagas' disease, onchocerciasis, Lyme disease, dengue fever, and a multitude of encephalitic diseases. Conversely, salivary components can enhance the virulence of some pathogenic organisms, facilitating infection by inhibiting host immune responses. This chapter outlines the major findings supporting the notion that exploiting vector saliva for vaccine development is a viable proposition, focusing on the arthropod vectors most extensively studied: sand flies, mosquitoes, and ticks. It discusses salivary proteins as immunomodulators and enhancers of infection. In addition to reports of exacerbative effects of saliva on L. major infection, studies aimed towards finding immunogenic salivary molecules that can drive a Th1-type immune response considered protective against infection were undertaken. A brief account of molecules recently identified from tick saliva, their contribution towards disease exacerbation, and their potential as vaccine candidates against human disease is provided in this chapter. If vector salivary proteins as vaccine components are to be realized, it will be necessary to undertake studies of natural vector populations to determine pertinent features of their biology. The rapid spread of vector-borne diseases, attributed partly to global warming and insecticide resistance, emphasizes the need to use all available arsenals at our disposal to develop protective vaccines. Therefore, one cannot afford to ignore the potential that vector salivary proteins are present in this regard.

Citation: McDowell M, Kamhawi S. 2011. Targeting Components in Vector Saliva, p 599-608. In Kaufmann S, Rouse B, Sacks D (ed), The Immune Response to Infection. ASM Press, Washington, DC. doi: 10.1128/9781555816872.ch47
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


1. Alarcon-Chaidez,, F. J.,, V. D. Boppana,, A. T. Hagymasi,, A. J. Adler, and, S. K. Wikel. 2009. A novel sphingomyelinase-like enzyme in Ixodes scapularis tick saliva drives host CD4 T cells to express IL-4-Parasite Immunol, 31: 210219.
2. Alger, N. E., and, E. J. Cabrera. 1972. An increase in death rate of Anopheles stephensi fed on rabbits immunized with mosquito antigen. J. Econ. Entomol. 65: 165168.
3. Alger, N. E., and, J. Harant. 1976. Plasmodium berghei: sporozoite challenge, protection, and hypersensitivity in mice. Exp. Parasitol. 40: 273280.
4. Alger,, N. E.,, J. A. Harant,, L. C. Willis,, and G. M. Jorgensen. 1972. Sporozoite and normal salivary gland induced immunity in malaria. Nature 238:341.
5. Anderson, J. M.,, F. Oliveira,, S. Kamhawi,, B. J. Mans,, D. Reynoso,, A. E. Seitz,, P. Lawyer,, M. Garfield,, M. Pham,, and J. G. Valenzuela. 2006. Comparative salivary gland transcriptomics of sandfly vectors of visceral leishmaniasis. BMC Genomics 7:52.
6. Andrade, B. B.,, B. C. Rocha,, A. Reis-Filho,, L. M. Camargo,, W. P. Tadei,, L. A. Moreira,, A. Barral, and, M. Barral-Netto. 2009. Anti- Anopheles darlingi saliva antibodies as marker of Plasmodium vivax infection and clinical immunity in the Brazilian Amazon. Malaria J. 8: 121.
7. Belkaid, Y.,, S. Kamhawi,, G. Modi,, J. Valenzuela,, N. Noben-Trauth,, E. Rowton,, J. Ribeiro,, and D.L. Sacks. 1998a. Development of a natural model of cutaneous leishmaniasis: powerful effects of vector saliva and saliva preexposure on the long-term outcome of Leishmania major infection in the mouse ear dermis. J. Exp. Med. 188: 19411953.
8. Bozza,, M.,, M. B. Soares,, P. T. Bozza,, A. R. Satoskar,, T. G. Diacovo,, F. Brombacher,, R. G. Titus,, C. B. Shoemaker, and, J. R. David. 1998. The PACAP-type I receptor agonist maxadilan from sand fly saliva protects mice against lethal endotoxemia by a mechanism partially dependent on IL-10. Eur.J. Immunol. 28: 31203127.
9. Brodie,, T. M.,, M. C. Smith,, R. V. Morris,, and R. G. Titus. 2007. Immunomodulatory effects of the Lutzomyia longipal-pis salivary gland protein maxadilan on mouse macrophages. Infect. Immun. 75: 23592365.
10. Calvo, E.,, A. Dao,, V. M. Pham,, and J. M. Ribeiro. 2007. An insight into the sialome of Anopheles funestus reveals an emerging pattern in anopheline salivary protein families. Insect Biochem. Mol. Biol. 37: 164175.
11. Calvo, E.,, V. M. Pham,, F. Lombardo,, B. Arca,, and J. M. Ribeiro. 2006. The sialotranscriptome of adult male Anopheles gambiae mosquitoes. Insect Biochem. Mol. Biol. 36: 570575.
12. Calvo, E.,, V. M. Pham,, O. Marinotti,, J. F. Andersen,, and J. M. Ribeiro. 2009. The salivary gland transcriptome of the neotropical malaria vector Anopheles darlingi reveals accelerated evolution of genes relevant to hematophagy. BMC Genomics 10: 57.
13. Carregaro, V.,, J. G. Valenzuela,, T. M. Cunha,, W. A. Verri, Jr.,, R. Grespan,, G. Matsumura,, J. M. Ribeiro,, D. E. Elnaiem,, J. S. Silva, and, F. Q. Cunha. 2008. Phlebotomine salivas inhibit immune inflammation-induced neutrophil migration via an autocrine DC-derived PGE 2/IL-10 sequential pathway. J. Leukoc. Biol. 84:104-114.
14. Collin,, N., R. Gomes,, C. Teixeira,, L. Cheng,, A. Laughinghouse,, J. M Ward,, D. E Elnaiem,, L. Fischer,, J. G. Valenzuela, and, S. Kamhawi. 2009. Sand fly salivary proteins induce strong cellular immunity in a natural reservoir of visceral leishmaniasis with adverse consequences for Leishmania. PLoS Pathog. 5:e1000441.
15. de Moura, T. R.,, F. Oliveira,, F. O Novais,, J. C. Miranda,, J. Clarencio,, I. Follador,, E. M. Carvalho,, J. G. Valenzuela,, M. Barral-Netto,, A. Barral,, C. Brodskyn,, and C. I. de Oliveira. 2007. Enhanced Leishmania braziliensis infection following pre-exposure to sandfly saliva. PLoS Pathog. I: e84.
16. Depinay, N.,, F. Hacini,, W. Beghdadi,, R. Peronet,, and S. Mecheri. 2006. Mast cell-dependent down-regulation of antigen-specific immune responses by mosquito bites. J. Immunol. 176: 41414146.
17. Dinglasan, R. R., and, M. Jacobs-Lorena. 2008. Flipping the paradigm on malaria transmission-blocking vaccines. Trends Parasitol. 24: 364370.
18. Donovan, M. J.,, A. S. Messmore,, D. A. Scrafford,, D. L. Sacks,, S. Kamhawi,, and M. A. McDowell. 2007. Uninfected mosquito bites confer protection against infection with malaria parasites. Infect. Immun. 75: 25232530.
19. Elnaiem, D. E.,, C. Meneses,, M. Slotman,, and G. C. Lanzaro. 2005. Genetic variation in the sand fly salivary protein, SP-15, a potential vaccine candidate against Leishmania major. Insect Mol. Biol. 14: 145150.
20. Francischetti,, I. M.,, A. Sa-Nunes,, B. J. J,, I. M. Santos,, and J. M. Ribeiro. 2009. The role of saliva in tick feeding. Front Biosci. 14: 20512088.
21. Gil,, L. H.,, R P. Alves,, H. Zieler,, J. M. Salcedo,, R. R. Durlacher,, R. P. Cunha,, M. S. Tada,, L. M. Camargo,, E. P. Camargo, and, L. H. Pereira-da-Silva. 2003. Seasonal malaria transmission and variation of anopheline density in two distinct endemic areas in Brazilian Amazonia. J. Med. Entomol. 40: 636641.
22. Gillan, V, and E. Devaney. 2004. Mosquito transmission modulates the immune response in mice infected with the L3 of Brugia pahangi. Parasite Immunol. 26: 359363.
23. Gomes,, R.,, C. Teixeira,, M. J. Teixeira,, F. Oliveira,, M. J Menezes,, C. Silva,, C. I. de Oliveira,, J. C. Miranda,, D. E. Elnaiem,, S. Kamhawi,, J. G. Valenzuela, and, C. I. Brodskyn. 2008. Immunity to a salivary protein of a sand fly vector protects against the fatal outcome of visceral leishmaniasis in a hamster model. Proc. Natl. Acad. Sci. USA 105: 78457850.
24. Guilpin, V. O., C. Swardson-Olver, L. Nosbisch, and, R. G. Titus. 2002. Maxadilan, the vasodilator/immunomodulator from Lutzomyia longipalpis sand fly saliva, stimulates haematopoiesis in mice. Parasite Immunol. 24: 437446.
25. Guo, X.,, C. J. Booth,, M. A. Paley,, X. Wang,, K. DePonte,, E. Fikrig,, S. Narasimhan,, and R. Montgomery. 2009. Inhibition of neutrophil function by two tick salivary proteins. Infect. Immun. 77: 23202329.
26. Hannier, S.,, J. Liversidge,, J. M. Sternberg,, and A. S. Bowman. 2004. Characterization of the B-cell inhibitory protein factor in Ixodes ricinus tick saliva: a potential role in enhanced Borrelia burgdoferi transmission. Immunology 113: 401408.
27. Holt, R. A.,, G. M. Subramanian,, A. Halpern,, G. G. Sutton,, R. Charlab,, D. R. Nusskern,, P. Wincker,, A. G. Clark,, J. M. Ribeiro,, R. Wides,, S. L. Salzberg,, B. Loftus,, M. Yandell, et al. 2002. The genome sequence of the malaria mosquito Anopheles gambiae. Science 298: 129149.
28. Hovius, J. W.,, M. Levi, and, E. Fikrig. 2008. Salivating for knowledge: potential pharmacological agents in tick saliva PLoSMed.. 5: e43.
29. John, B., and, C. A. Hunter. 2008. Immunology. Neutrophil soldiers or Trojan horses? Science 321: 917918.
30. Kamhawi, S. 2000. The biological and immunomodulatory properties of sand fly saliva and its role in the establishment oiLeishmania infections. Microbes Infect. 2: 17651773.
31. Kamhawi, S.,, Y. Belkaid,, G. Modi,, E. Rowton,, and D. Sacks. 2000. Protection against cutaneous leishmaniasis resulting from bites of uninfected sand flies. Science 290: 13511354.
32. Kato, H.,, J. M. Anderson,, S. Kamhawi,, F. Oliveira,, P. G. Lawyer,, V. M. Pham,, C. S. Sangare,, S. Samake,, I. Sissoko,, M. Garfield,, L. Sigutova,, P. Volf,, S. Doumbia,, and J. G. Valenzuela. 2006. High degree of conservancy among secreted salivary gland proteins from two geographically distant Phlebotomus duboscqi sandflies populations (Mali and Kenya). BMC Genomics 7: 226.
33. Katz, C,, J. N. Waitumbi,, R. Zer,, and A. Warburg. 2000. Adenosine, AMP, and protein phosphatase activity in sandfly saliva. Am. J. Trap. Med. Hyg. 62: 145150.
34. Kebaier, C, T. Voza, and, J. Vanderberg. 2009. Kinetics of mosquito-injected Plasmodium sporozoites in mice: fewer sporozoites are injected into sporozoite-immunized mice. PLoSPathog. 5:e1000399.
35. Kotsyfakis,, M.,, J. M. Anderson,, J. F. Andersen,, E. Calvo,, I. M Francischetti,, T. N Mather,, J. G. Valenzuela, and, J. M. Ribeiro. 2008. Cutting edge: Immunity against a “silent” salivary antigen of the Lyme vector Ixodes scapularis impairs its ability to feed. J. Immunol. 181: 52095212.
36. Labuda,, M.,, A. R. Trimnell,, M. Lickova,, M. Kazimirova,, G. M. Davies,, O. Lissina,, R. S. Hails, and, P. A. Nuttall. 2006. An antivector vaccine protects against a lethal vector-borne pathogen. PLoS Pathog. 2:e27.
37. Lal, A. A.,, M. E. Schriefer,, J. B. Sacci,, I. F. Goldman,, V Louis-Wileman,, W. E. Collins, and, A. F. Azad. 1994. Inhibition of malaria parasite development in mosquitoes by anti-mosquito-midgut antibodies. Infect. Immun. 62: 316318.
38. Lanzaro, G. C,, A. H. Lopes,, J. M. Ribeiro,, C. B. Shoemaker,, A. Warburg,, M. Soares,, and R. G. Titus. 1999. Variation in the salivary peptide, maxadilan, from species in the Lutzomyia longipalpis complex. Insect Mol. Biol. 8: 267275.
39. Laurenti,, M. D.,, V M. Silveira,, N. F Secundino,, C. E. Corbett,, and P. P. Pimenta. 2009. Saliva of laboratoryreared Lutzomyia longipalpis exacerbates Leishmania (Leishmania) amazonensis infection more potently than saliva of wild-caught Lutzomyia longipalpis. Parasitology Int. 58: 220226.
40. Lima, H. C., and, R. G. Titus. 1996. Effects of sand fly vector saliva on development of cutaneous lesions and the immune response to Leishmania braziliensis in BALB/c mice. Infect. Immun. 64: 54425445.
41. Mbow,, M. L.,, J. A. Bleyenberg,, L. R. Hall,, and R. G. Titus. 1998. Phlebotomus papatasi sand fly salivary gland lysate downregulates a Th1, but up-regulates a Th2, response in mice infected with Leishmania major.J. Immunol. 161: 55715577.
42. Monteiro,, M. C,, H. C. Lima,, A. A. Souza,, R. G. Titus,, P. R. Romao, and, F. Q. Cunha. 2007. Effect of Lutzomyia longipalpis salivary gland extracts on leukocyte migration induced by Leishmania major. Am. J. Trap. Med. Hyg. 76: 8894.
43. Monteiro,, M. C,, L. G. Nogueira,, A. A. Almeida Souza,, J. M. Ribeiro,, J. S. Silva, and, F. Q. Cunha. 2005. Effect of salivary gland extract of Leishmania vector, Lutzomyia longipalpis, on leukocyte migration in OVA-induced immune peritonitis. Eur. J. Immunol. 35: 24242433.
44. Morris,, R. V,, C. B. Shoemaker,, J. R. David,, G. C. Lanzaro, and, R. G. Titus. 2001. Sandfly maxadilan exacerbates infection with Leishmania major and vaccinating against it protects against L. major infection. J. Immunol. 167: 52265230.
45. Narasimhan,, S., B. Sukumaran,, U. Bozdogan,, V. Thomas,, X. Liang,, K. DePonte,, N. Marcantonio,, R. A. Koski,, J. F. Anderson,, F. Kantor, and, E. Fikrig. 2007. A tick antioxidant facilitates the Lyme disease agent’s successful migration from the mammalian host to the arthropod vector. Cell Host Microbe 2: 718.
46. Oliveira, F.,, R. C. Jochim,, J. G. Valenzuela,, and S. Kamhawi. 2009. Sand flies, Leishmania, and transcriptome-borne solutions. Parasitology Int. 58: 15.
47. Oliveira, F,, S. Kamhawi,, A. E. Seitz,, V. M. Pham,, P. M. Guigal,, L. Fischer,, J. Ward,, and J. G. Valenzuela. 2006. From transcriptome to immunome: identification of DTH inducing proteins from a Phlebotomus ariasi salivary gland cDNA library. Vaccine 24: 374390.
48. Oliveira, F.,, P. G. Lawyer,, S. Kamhawi,, and J. G. Valenzuela. 2008. Immunity to distinct sand fly salivary proteins primes the anti-Leishmania immune response towards protection or exacerbation of disease. PLoS Pathog. 2:e226.
49. Peng, Z., F. Estelle, and, R. Simons. 2007. Mosquito allergy and mosquito salivary allergens. Protein Pept. Lett. 14: 975981.
50. Peters,, N. C.,, J. G. Egen,, N. Secundino,, A. Debrabant,, N. Kimblin,, S. Kamhawi,, P. Lawyer,, M. P. Fay,, R. N. Germain, and, D. Sacks. 2008. In vivo imaging reveals an essential role for neutrophils in leishmaniasis transmitted by sand flies. Science 321: 970974.
51. Peters,, N. C.,, N. Kimblin,, N. Secundino,, S. Kamhawi,, P. Lawyer,, and D. L. Sacks. 2009. Vector transmission of leishmania abrogates vaccine-induced protective immunity. PLoS Pathog. 5:e1000484.
52. Prevot,, P. P.,, B. Couvreur,, V. Denis,, M. Brossard,, L. Vanhamme, and, E. Godfroid. 2007. Protective immunity against Ixodes ricinus induced by a salivary serpin. Vaccine 25: 32843292.
53. Qureshi,, A. A.,, A. Asahina,, M. Ohnuma,, M. Tajima,, R. D Granstein,, and E. A. Lerner. 1996. Immunomodulatory properties of maxadilan, the vasodilator peptide from sand fly salivary gland extracts. Am. J. Trap. Med. Hyg. 54: 665671.
54. Ramamoorthi,, N., S. Narasimhan,, U. Pal,, F. Bao,, X. F. Yang,, D. Fish,, J. Anguita,, M. V. Norgard,, F. S. Kantor,, J. F. Anderson,, R. A. Koski, and, E. Fikrig. 2005. The lyme disease agent exploits a tick protein to infect the mammalian host. Nature 436: 573577.
55. Ramasamy, M. S.,, and R. Ramasamy. 1990. Effect of antimosquito antibodies on the infectivity of the rodent malaria parasite Plasmodium berghei to Anopheles farauti. Med. Vet. Entomol. 4: 161166.
56. Ramasamy,, M. S.,, M. Sands,, B. H Kay,, I. D. Fanning,, G. W. Lawrence, and, R. Ramasamy. 1990. Anti-mosquito antibodies reduce the susceptibility of Aedes aegypti to arbovirus infection. Med. Vet. Entomol. 4: 4955.
57. Ribeiro,, J. M.,, R. Charlab,, V. M Pham,, M. Garfield,, and J. G. Valenzuela. 2004. An insight into the salivary transcriptome and proteome of the adult female mosquito Culexpipiens quinquefasciatus. Insect Biochem, Mol. Biol. 34: 543563.
58. Ribeiro,, J. M.,, O. Katz,, L. K Pannell,, J. Waitumbi, and, A. Warburg. 1999. Salivary glands of the sand fly Phlebotomus papatasi contain pharmacologically active amounts of adenosine and 5′-AMP. J. Exp. Biol. 202: 15511559.
59. Ribeiro, J. M., and, G. Modi. 2001. The salivary adenosine/AMP content of Phlebotomus argentipes Annandale and Brunetti, the main vector of human kala-azar.J. Parasitol. 87: 915917.
60. Ribeiro, J. M.,, A. Vachereau,, G. B. Modi,, and R. B. Tesh. 1989. A novel vasodilatory peptide from the salivary glands of the sand fly Lutzomyia longipalpis. Science (New York) 243: 212214.
61. Rocha,, A. C,, E. M. Braga,, M. S. Araujo,, B. S. Franklin, and, P. F. Pimenta. 2004. Effect of the Aedes fluviatiUs saliva on the development of Plasmodium gallinaceum infection in Gcdlus (gallus) domestxcus. Mem, Inst. Oswaldo Cruz 99:709715.
62. Rohousova, I., and, P. Volt. 2006. Sand fly saliva: effects on host immune response and Leishmania transmission. Folia Parasitologica 53: 161171.
63. Rohousova, I., P. Volf, and, M. Lipoldova. 2005. Modulation of murine cellular immune response and cytokine production by salivary gland lysate of three sand fly species. Parasite Immunol. 27: 469473.
64. Sa-Nunes,, A., A. Bafica,, D. A. Lucas,, T. P. Conrads,, T. D. Veenstra,, J. F. Andersen,, T. N. Mather,, J. M. Ribeiro, and, I. M. Francischetti. 2007. Prostaglandin E2 is a major inhibitor of dendritic cell maturation and function in Ixodes scapularis saliva. J. Immunol. 179: 14971505.
65. Sacks, D., and, S. Kamhawi. 2001. Molecular aspects of parasitevector and vector-host interactions in leishmaniasis. Annu. Rev. Microbiol. 55: 453483.
66. Sacks, D., and, N. Noben-Trauth. 2002. The immunology of susceptibility and resistance to Leishmania major in mice. Nat. Rev. Immunol. 2: 845858.
67. Schneider, B. S., and, S. Higgs. 2008. The enhancement of arbovirus transmission and disease by mosquito saliva is associated with modulation of the host immune response. Trans. R. Soc. Trop. Med. Hyg. 102: 400408.
68. Schneider,, B. S.,, C. E. McGee,, J. M. Jordan,, H. L. Stevenson,, L. Soong, and, S. Higgs. 2007. Prior exposure to uninfected mosquitoes enhances mortality in naturally-transmitted West Nile virus infection. PloS ONE 2:ell71.
69. Schneider, B. S.,, L. Soong,, N. S. Zeidner,, and S. Higgs. 2004. Aedes aegypti salivary gland extracts modulate antiviral and TH1/TH2 cytokine responses to sindbis virus infection. Virallmmunol. 17: 565573.
70. Schoeler, G. B., and, S. K. Wikel. 2001. Modulation of host immunity by haematophagous arthropods. Ann. Trop. Med. Parasitol. 95: 755771.
71. Soares,, M. B.,, R. G. Titus,, C. B. Shoemaker,, J. R. David, and, M. Bozza. 1998. The vasoactive peptide maxadilan from sand fly saliva inhibits TNF-alpha and induces IL-6 by mouse macrophages through interaction with the pituitary adenylate cyclase-activating polypeptide (PACAP) receptor. J. Immunol. 160: 18111816.
72. Teixeira, C. R.,, M.J. Teixeira,, R. B. Gomes,, C. S. Santos,, B. B. Andrade,, I. Raffaele-Netto,, J. S. Silva,, A. Guglielmotti,, J. C. Miranda,, A. Barral,, C. Brodskyn, and, M. Barral-Netto. 2005. Saliva from Lutzomyia longipalpis induces CC chemokine ligand 2/monocyte chemoattractant protein-1 expression and macrophage recruitment. J. Immunol. 175: 83468353.
73. Theodos, C. M., J. M. Ribeiro, and, R. G. Titus. 1991. Analysis of enhancing effect of sand fly saliva on Leishmania infection in mice. Infect. Immun. 59: 15921598.
74. Theodos, C. M., and, R. G. Titus. 1993. Salivary gland material from the sand fly Lutzomyia longipalpis has an inhibitory effect on macrophage function in vitro. Parasite Immunol. 15: 481487.
75. Titus, R. G. 1998. Salivary gland lysate from the sand fly Lutzomyia longipalpis suppresses the immune response of mice to sheep red blood cells in vivo and concanavalin A in vitro. Exp. Parasitol. 89: 133136.
76. Titus, R. G., J. V. Bishop, and, J. S. Mejia. 2006. The immu-nomodulatory factors of arthropod saliva and the potential for these factors to serve as vaccine targets to prevent pathogen transmission. Parasite Immunol. 28: 131141.
77. Valenzuela, J. G. 2002. High-throughput approaches to study salivary proteins and genes from vectors of disease. Insect Biochem. Mol. Biol. 32: 11991209.
78. Valenzuela,, J. G.,, Y. Belkaid,, M. K Garfield,, S. Mendez,, S. Kamhawi,, E. D Rowton,, D. L Sacks,, and J. M. C. Ribeiro. 2001. Toward a defined anti-Leishmania vaccine targeting vector antigens: characterization of a protective salivary protein. J. Exp. Med. 194: 331342.
79. Valenzuela,, J. G.,, I. M. Francischetti,, V. M. Pham,, M. K. Garfield, and, J. M. Ribeiro. 2003. Exploring the salivary gland transcriptome and proteome of the Anopheles stephensi mosquito. Insect Biochem. Mol. Biol. 33: 717732.
80. Valenzuela, J. G.,, M. Garfield,, E. D. Rowton,, and V. M. Pham. 2004. Identification of the most abundant secreted proteins from the salivary glands of the sand fly Lutzomyia longipalpis, vector of Leishmania chagasi. J. Exp. Biol. 207: 37173729.
81. Valenzuela,, J. G.,, V. M. Pham,, M. K. Garfield,, I. M. Francis-chetti, and, J. M. Ribeiro. 2002. Toward a description of the sialome of the adult female mosquito Aedes aegypti. Insect Biochem. Mol. Biol. 32: 11011122.
82. Vaughan,, J. A.,, L. F. Scheller,, R. A. Wirtz,, and A. F. Azad. 1999. Infectivity of Plasmodium berghei sporozoites delivered by intravenous inoculation versus mosquito bite: implications for sporozoite vaccine trials. Infect. Immun. 67: 42854289.
83. Vinhas, V,, B.B. Andrade,, F. Paes,, A. Bomura,, J. Clarencio,, J. C Miranda,, A. Bafica,, A. Barral, and, M. Barral-Netto. 2007. Human anti-saliva immune response following experimental exposure to the visceral leishmaniasis vector, Lutzomyia longipalpis. Eur. J. Immunol. 37: 31113121.
84. Wheat, W H.,, K.E. Pauken,, R.V. Morris,, and R.G. Titus. 2008. Lutzomyia longipalpis salivary peptide maxadilan alters murine dendritic cell expression of CD80/86, CCR7, and cytokine secretion and reprograms dendritic cell-mediated cytokine release from cultures containing allogeneic T cells. J. Immunol. 180: 82868298.
85. World Health Organization. 2008. The global burden of disease: 2004 update. World Health Organization, Geneva, Switzerland.
86. Yin, H.,, D. E. Norris,, and G.C. Lanzaro. 2000. Sibling species in the Lutzomyia longipalpis complex differ in levels of mRNA expression for the salivary peptide, maxadilan. Insect Mol. Biol. 9: 309314.
87. Zeidner,, N., A. Ullmann,, C. Sackal,, M. Dolan,, G. Dietrich,, J. Piesman, and, D. Champagne. 2009. A borreliacidal factor in Amblyomma americanum saliva is associated with phospholipase A(2) activity. Exp. Parasitol. 121: 370375.


Generic image for table

A summary of recent salivary vaccine candidates from sand flies and ticks

Citation: McDowell M, Kamhawi S. 2011. Targeting Components in Vector Saliva, p 599-608. In Kaufmann S, Rouse B, Sacks D (ed), The Immune Response to Infection. ASM Press, Washington, DC. doi: 10.1128/9781555816872.ch47

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error