Chapter 50 : Malaria: Clinical and Epidemiological Aspects

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

Malaria: Clinical and Epidemiological Aspects, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555816872/9781555815141_Chap50-1.gif /docserver/preview/fulltext/10.1128/9781555816872/9781555815141_Chap50-2.gif


The cycle of invasion, multiplication, and reinvasion takes place over 48 hours for , , and ; 72 hours for ; and 24 hours for . Although some degree of anemia resulting from hemolysis of infected red blood cells is an expected consequence of symptomatic malaria infections, the pathogenesis of severe malarial anemia, seen most commonly in disease, and also present with, is multifactorial. Malaria during pregnancy also carries a risk of adverse birth outcomes such as spontaneous abortion, stillbirth, and premature birth or intrauterine growth restriction, both of which contribute to low birth weight, which is the single most important indicator of infant mortality. With the recent call for malaria elimination, more tools, including vaccines, can be anticipated in the near future. Host genetic factors that play important roles in malaria risk and epidemiology are summarized in this chapter. The new goal of using vaccines for malaria elimination places an increased emphasis on vaccines that would completely prevent infection and thus transmission by targeting the pre-erythrocytic stages of the parasite life cycle or block transmission directly by generating immunity against the sexual and mosquito stages. Most malaria vaccines are based on recombinant versions of antigenic targets from specific stages of the parasite life cycle, although DNA vaccines and viral vector expression approaches have been used with limited success to date. The most advanced malaria vaccine is based on the circum sporozoite protein that coats the surface of the infectious sporozoites.

Citation: Berry A, Nyunt M, Plowe C. 2011. Malaria: Clinical and Epidemiological Aspects, p 633-641. In Kaufmann S, Rouse B, Sacks D (ed), The Immune Response to Infection. ASM Press, Washington, DC. doi: 10.1128/9781555816872.ch50
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of FIGURE 1

Scanning electron micrographs showing a normal uninfected erythrocyte (top), a trophozoite-infected erythrocyte with knobs expressing cytoadherent erythrocyte membrane protein-1 (center), and abnormally large and widely separated knobs on a similarly parasitized erythrocyte from an individual with hemoglobin AC, which is associated with protection from severe malaria (bottom). Reprinted by kind permission from the author and Macmillan Publishers Ltd.: :1119, copyright 2005.

Citation: Berry A, Nyunt M, Plowe C. 2011. Malaria: Clinical and Epidemiological Aspects, p 633-641. In Kaufmann S, Rouse B, Sacks D (ed), The Immune Response to Infection. ASM Press, Washington, DC. doi: 10.1128/9781555816872.ch50
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2

Schematic representation of infection, disease, and death rates by transmission intensity. Protective immunity to malaria is acquired more rapidly in high and moderate transmission areas than in low transmission areas, and disease patterns also vary with transmission intensity. (A) In high transmission areas (entomological inoculation rate [EIR] >100 infected mosquito bites per person per year), the incidence of uncomplicated malaria falls rapidly after childhood despite the high prevalence of asymptomatic parasitemia. Severe anemia occurs in the youngest children, while cerebral malaria is less common and occurs in slightly older children, reflecting the contribution of acquired immunity to pathogenesis of this syndrome. (B) In areas of low but stable transmission (EIR = 1-10), the incidence of uncomplicated malaria declines later and more slowly than in higher transmission settings, and the prevalence of asymptomatic parasitemia also declines with age. Severe anemia and cerebral malaria are equally common, with cerebral malaria again occurring in slightly older children. (C) In areas of unstable or epidemic malaria transmission (e.g., EIR < 1 and R < 1), asymptomatic infection rates are low, but people of all ages remain susceptible to both uncomplicated and severe disease. Severe anemia remains limited mainly to young children but the risk of cerebral malaria extends into adulthood and is compounded by risk of multiorgan disease in adults. Adapted from ( ) with kind permission of the author and John Wiley & Sons, Inc.

Citation: Berry A, Nyunt M, Plowe C. 2011. Malaria: Clinical and Epidemiological Aspects, p 633-641. In Kaufmann S, Rouse B, Sacks D (ed), The Immune Response to Infection. ASM Press, Washington, DC. doi: 10.1128/9781555816872.ch50
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3

Age distribution of hospital admissions with severe malaria and case-fatality rate at various altitudes in Tanzania, showing concentration of severe disease in younger age groups in lowaltitude areas with higher malaria transmission and relatively stronger and more rapidly acquired natural immunity. At higher altitudes, there is less malaria transmission, less immunity, and an extension of disease risk into older age groups. Adapted with kind permission of the author and the publisher from the 2005, 293:1465. Copyright © 2005 American Medical Association. All rights reserved.

Citation: Berry A, Nyunt M, Plowe C. 2011. Malaria: Clinical and Epidemiological Aspects, p 633-641. In Kaufmann S, Rouse B, Sacks D (ed), The Immune Response to Infection. ASM Press, Washington, DC. doi: 10.1128/9781555816872.ch50
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Baird, J. K. 1998. Agedependent characteristics of protection v. susceptibility to Plasmodium falciparum. Ann. Trop, Med. Parasitol. 92: 367390.
2. Baird, J. K. 2009. Malaria zoonoses. Travel Med. Infect. Dis. 7: 269277.
3. Ballou, W. R.,, M. Arevalo-Herrera,, D. Carucci,, T. L. Richie,, G. Corradin,, C. Diggs,, P. Druilhe,, B. K. Giersing,, A. Saul,, D. G. Heppner,, K. E. Kester,, D. E. Lanar,, J. Lyon,, A. V. Hill,, W. Pan,, and J. D. Cohen. 2004. Update on the clinical development of candidate malaria vaccines. Am. J. Trop. Med. Hyg. 71: 239247.
4. Berkley, J. A.,, P. Bejon,, T. Mwangi,, S. Gwer,, K. Maitland,, T. N Williams,, S. Mohammed,, F. Osier,, S. Kinyanjui,, G. Fegan,, B. S. Lowe,, M. English,, N. Peshu,, K. Marsh,, and C. R. Newton. 2009. HIV infection, malnutrition, and invasive bacterial infection among children with severe malaria. Clin. Infect. Dis. 49: 336343.
5. Brown,, H., S. Rogerson,, T. Taylor,, M. Tembo,, J. Mwenechanya,, M. Molyneux, and, G. Turner. 2001. Blood-brain barrier function in cerebral malaria in Malawian children. Am. J. Trop. Med. Hyg. 64: 207213.
6. Church,, L. W.,, T. P. Le,, J. P. Bryan,, D. M. Gordon,, R. Edelman,, L. Fries,, J. R. Davis,, D. A. Herrington,, D. F. Clyde,, M. J. Shmuklarsky,, I. Schneider,, T. W. McGovern,, J. D. Chulay,, W. R. Ballou, and, S. L. Hoffman. 1997. Clinical manifestations of Plasmodium falciparum malaria experimentally induced by mosquito challenge. J. Infect. Dis. 175: 915920.
7. Collins, W. E., and, G. M. Jeffery. 2007. Plasmodium malariae: parasite and disease. Clin. Microbiol. Rev. 20: 579592.
8. Cox-Singh,, J.,, T. M. Davis,, K. S. Lee,, S. S. Shamsul,, A. Matusop,, S. Ratnam,, H. A. Rahman,, D. J. Conway, and, B. Singh. 2008. Plasmodium knowlesi malaria in humans is widely distributed and potentially life threatening. Clin. Infect. Dis. 46: 165171.
9. Dondorp, A. M.,, F. Nosten,, P. Yi,, D. Das,, A. P Phyo,, J. Tarning,, K. M. Lwin,, F. Ariey,, W. Hanpithakpong,, S. J. Lee,, P. Ringwald,, K. Silamut,, M. Imwong,, K. Chotivanich,, P. Lim,, T. Herdman,, S. S. An,, S. Yeung,, P. Singhasivanon,, N. P. Day,, N. Lindegardh,, D. Socheat,, and N. J. White. 2009. Artemisinin resistance in Plasmodium falciparum malaria. N. Engl. J. Med. 361: 455467.
10. Duffy, P. E. 2007. Plasmodium in the placenta: parasites, parity, protection, prevention and possibly preeclampsia. Parasitology 134: 18771881.
11. Fairhurst, R. M.,, D. I. Baruch,, N. J. Brittain,, G. R. Ostera,, J. S. Wallach,, H. L. Hoang,, K. Hayton,, A. Guindo,, M. O. Makobongo,, O. M. Schwartz,, A. Tounkara,, O. K. Doumbo,, D. A. Diallo,, H. Fujioka,, M. Ho,, and T. E. Wellems. 2005. Abnormal display of PfEMP-1 on erythrocytes carrying haemoglobin C may protect against malaria. Nature 435: 11171121.
12. Geerligs, P. D., B. J. Brabin, and, T. A. Eggelte. 2003. Analysis of the effects of malaria chemoprophylaxis in children on haematological responses, morbidity and mortality. Bull. W. H. O. 81: 205216.
13. Ghosh, K. 2008. Evolution and selection of human leukocyte antigen alleles by Plasmodium falciparum infection. Hum. Immunol. 69: 856860.
14. Greenwood, B., and, G. Targett. 2009. Do we still need a malaria vaccine? Parasite Immunol. 31: 582586.
15. Guerra,, C. A.,, P. W. Gikandi,, A. J. Tatem,, A. M. Noor,, D. L. Smith,, S. I. Hay, and, R. W. Snow. 2008. The limits and intensity of Plasmodium falciparum transmission: implications for malaria control and elimination worldwide. PLoS Med. 5:e38.
16. Gupta,, S.,, R. W. Snow,, C. A. Donnelly,, K. Marsh, and, C. Newbold. 1999. Immunity to non-cerebral severe malaria is acquired after one or two infections. Nat. Med. 5: 340343.
17. Haldar, K.,, S. C. Murphy,, D. A. Milner,, and T. E. Taylor. 2007. Malaria: mechanisms of erythrocytic infection and pathological correlates of severe disease. Annu. Rev. Pathol. 2: 217249.
18. Hay,, S. I.,, C. A. Guerra,, A. J. Tatem,, A. M. Milner, and, R. W. Snow. 2004. The global distribution and population at risk of malaria: past, present, and future. Lancet Infect. Dis. 4: 327336.
19. Heppner,, D. G.,, Jr., K. E. Kester,, C. F. Ockenhouse,, N. Tornieporth,, O. Ofori,, J. A. Lyon,, V. A. Stewart,, P. Dubois,, D. E. Lanar,, U. Krzych,, P. Moris,, E. Angov,, J. F. Cummings,, A. Leach,, B. T. Hall,, S. Dutta,, R. Schwenk,, C. Hillier,, A. Barbosa,, L. A. Ware,, L. Nair,, C. A. Darko,, M. R. Withers,, B. Ogutu,, M. E. Polhemus,, M. Fukuda,, S. Pichyangkul,, M. Gettyacamin,, C. Diggs,, L. Soisson,, J. Milman,, M. C. Dubois,, N. Garcon,, K. Tucker,, J. Wittes,, C. V. Plowe,, M. A. Thera,, O. K. Duombo,, M. G. Pau,, J. Goudsmit,, W. R. Ballou, and, J. Cohen. 2005. Towards an RTS, S-based, multi-stage, multi-antigen vaccine against falciparum malaria: progress at the Walter Reed Army Institute of Research. Vaccine 23: 22432250.
20. Hershey, F. B., and, J. M. Lubitz. 1948. Spontaneous rupture of the malarial spleen; case report and analysis of 64 reported cases. Ann. Surg. 127: 4057.
21. Hewitt, K.,, R. Steketee,, V. Mwapasa,, J. Whitworth,, and N. French. 2006. Interactions between HIV and malaria in non-pregnant adults: evidence and implications. AIDS 20: 19932004.
22. Hoffman,, S. L.,, D. Rustama,, N. H Punjabi,, B. Surampaet,, B. Sanjaya,, A. J Dimpudus,, K. T McKee, Jr.,, F. P. Paleologo,, J. R. Campbell,, H. Marwoto, and, L. Laughlin. 1988. High-dose dexamethasone in quinine-treated patients with cerebral malaria: a double-blind, placebo-controlled trial. J. Infect. Dis. 158: 325331.
23. Hoffman,, S. L.,, P. F. Billingsley,, E. James,, A. Richman,, M. Loyevsky,, T. Li,, S. Chakravarty,, A. Gunasekera,, R. Chattopadhyay,, M. Li,, R. Stafford,, A. Ahumada,, J. E. Epstein,, M. Sedegah,, S. Reyes,, T. L. Richie,, K. E. Lyke,, R. Edelman,, M. B. Laurens,, C. V. Plowe, and, B. K. Sim. 2010. Development of a metabolically active, non-replicating sporozoite vaccine to prevent Plasmodium falciparum malaria. Hum. Vaccin. 6: 97106.
24. Hviid, L. 2005. Naturally acquired immunity to Plasmodium falciparum malaria in Africa. Acta Trop. 95: 270275.
25. Khoo, S., D. Back, and, P. Winstanley. 2005. The potential for interactions between antimalarial and antiretroviral drugs. AIDS 19: 9951005.
26. Kyriacou,, H. M.,, G. N. Stone,, R. J. Challis,, A. Raza,, K. E. Lyke,, M. A. Thera,, A. K. Kone,, O. K. Doumbo,, C. V. Plowe, and, J. A. Rowe. 2006. Differential var gene transcription in Plasmodium falciparum isolates from patients with cerebral malaria compared to hyperparasitaemia. Mol. Biochem. Parasitol. 150: 211218.
27. Laufer, M. K., and, C. V. Plowe. 2007. The interaction between HIV and malaria in Africa. Curr. Infect. Dis. Rep. 9: 4754.
28. Lyke,, K. E.,, A. Dicko,, A. Dabo,, L. Sangare,, A. Kone,, D. Coulibaly,, A. Guindo,, K. Traore,, M. Daou,, I. Diarra,, M. B. Sztein,, C. V. Plowe, and, O. K. Doumbo. 2005. Association of Schistosoma haematobium infection with protection against acute Plasmodium falciparum malaria in Malian children. Am. J. Trop. Med. Hyg. 73: 11241130.
29. Lyke,, K. E.,, A. Dabo,, L. Sangare,, C. Arama,, M. Daou,, I. Diarra,, C. V. Plowe,, O. K. Doumbo, and, M. B. Sztein. 2006. Effects of concomitant Schistosoma haematobium infection on the serum cytokine levels elicited by acute Plasmodium falciparum malaria infection in Malian children. Infect. Immun. 74: 57185724.
30. Mercereau-Puijalon, O., M. Guillotte, and, I. Vigan-Womas. 2008. Rosetting in Plasmodium falciparum: a cytoadherence phenotype with multiple actors. Transfus. Clin. Biol. 15: 6271.
31. Miller,, L. H.,, S. J. Mason,, D. F. Clyde,, and M. H. McGinniss. 1976. The resistance factor to Plasmodium vivax in blacks. The Duffy-blood-group genotype, FyFy. N. Engl. J. Med. 295: 302304.
32. Milner, D. A., Jr.,, J. Montgomery,, K. B. Seydel,, and S. J. Rogerson. 2008. Severe malaria in children and pregnancy: an update and perspective. Trends Parasitol. 24: 590595.
33. Noedl,, H., Y. Se,, K. Schaecher,, B. L Smith,, D. Socheat,, and M. M. Fukuda. 2008. Evidence of artemisinin-resistant malaria in western Cambodia. N. Engl. J. Med. 359: 26192620.
34. Okiro,, E. A.,, A. Al-Taiar, H. Reyburn,, R. Idro,, J. A Berkley,, and R. W. Snow. 2009. Age patterns of severe paediatric malaria and their relationship to Plasmodium falciparum transmission intensity. Malar. J. 8:4.
35. Plowe, C. V., P. Alonso, and, S. L. Hoffman. 2009. The potential role of vaccines in the elimination of falciparum malaria and the eventual eradication of malaria. J. Infect. Dis. 200: 16461649.
36. Price, R. N.,, N. M. Douglas, and, N. M. Anstey. 2009. New developments in Plasmodium vivax malaria: severe disease and the rise of chloroquine resistance. Curr. Opin. Infect. Dis. 22: 430435.
37. Reyburn,, H., R. Mbatia,, C. Drakeley,, J. Bruce,, I. Carneiro,, R. Olomi,, J. Cox,, W. M. Nkya,, M. Lemnge,, B. M. Greenwood, and, E. M. Riley. 2005. Association of transmission intensity and age with clinical manifestations and case fatality of severe Plasmodium falciparum malaria. JAMA 293: 14611470.
38. Rieckmann, K. H. 2006. The chequered history of malaria control: are new and better tools the ultimate answer? Ann. Trop. Med. Parasitol. 100: 647662.
39. Roberts, L., and, M. Enserink. 2007. Malaria. Did they really say. . .eradication? Science 318: 15441545.
40. Rogerson, S. J., V. Mwapasa, and, S. R. Meshnick. 2007. Malaria in pregnancy: linking immunity and pathogenesis to prevention. Am. J. Trop. Med. Hyg. 77: 1422.
41. Rowe, J. A., D. H. Opi, and, T. N. Williams. 2009. Blood groups and malaria: fresh insights into pathogenesis and identification of targets for intervention. Curr. Opin. Hematol. 16: 480487.
42. Smith,, D. L.,, F. E. McKenzie,, R. W. Snow,, and S. I. Hay. 2007. Revisiting the basic reproductive number for malaria and its implications for malaria control. PLoS Biol. 5:e42.
43. Smith, D. L.,, T. A. Smith,, and S.I. Hay. 2009. Measuring malaria for elimination, p. 108126. In R. G. Feachem,, A. A. Phillips,, G. A. T. Targett, and Malaria Elimination Group (ed.), Shrinking the Malaria Map: A Prospectus on Malaria Elimination, 1st ed. Global Health Group, UCSF Global Health Sciences, San Francisco.
44. Struik, S. S., and, E. M. Riley. 2004. Does malaria suffer from lack of memory? Immunol. Rev. 201: 268290.
45. Takala, S. L., and, C. V. Plowe. 2009. Genetic diversity and malaria vaccine design, testing, and efficacy: preventing and overcoming ‘vaccine resistant malaria’. Parasite Immunol. 9: 560573.
46. Verra, F.,, V. D. Mangano, and, D. Modiano. 2009. Genetics of susceptibility to Plasmodium falciparum: from classical malaria resistance genes towards genome-wide association studies. Parasite Immunol. 31: 234253.
47. von Seidlein, L., and, B. M. Greenwood. 2003. Mass administrations of antimalarial drugs. Trends Parasitol. 19: 452460.
48. White, N. J. 2008. Plasmodium knowlesi: the fifth human malaria parasite. Clin. Infect. Dis. 46: 172173.
49. World Health Organization. 2000. WHO Expert Committee on Malaria. WHO Tech. Rep. Ser. 892:i-v, 174.
50. World Health Organization. 2007. United Arab Emirates certified malaria-free. Wkly. Epidemiol. Rec. 82: 3032.
51. World Health Organization. 2008. World malaria report 2008. World Health Organization, Geneva, Switzerland.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error