Chapter 51 : The Epidemiology and Immunology of Influenza Viruses

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

The Epidemiology and Immunology of Influenza Viruses, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555816872/9781555815141_Chap51-1.gif /docserver/preview/fulltext/10.1128/9781555816872/9781555815141_Chap51-2.gif


Currently, 16 receptor binding hemagglutinin protein (HA) and 9 receptor destroying neuraminidase protein (NA) antigens have been described for type A influenza, which have the potential of combining to give rise to distinct virus subtypes (e.g., H1N1, H3N2, H5N1, etc.). This chapter provides an overview of past and present pandemics and epidemics of influenza virus and the most significant findings about how those viruses evade immunity in humans. One particular ability of influenza viruses is that they undergo genetic changes through shift and drift. Seasonal influenza viruses predominantly infect children and the older population. Currently, there are two types of antiviral drugs available for treatment of IAV: the so-called neuraminidase inhibitors and the adamantanes, which interfere with the M2 protein of the virus, thereby preventing the release of infectious viral nucleic acid into the host cell by interfering with the function of the transmembrane domain of the viral M2 protein. Due to the high rate of infection and the massive vaccination programs in place around the world, it is likely that the virus strain will undergo antigenic drift in the next few years due to preexisting immunity. Finally, the current nomenclature and pandemic phase category of the WHO does not allow for an assessment of the severity of the pandemic virus. It would be beneficial to incorporate a measure for severity or pathogenicity of a virus into the current system in order to more accurately and more clearly inform the public of the status of a pandemic strain.

Citation: Medina R, Ramos I, Fernandez-Sesma A. 2011. The Epidemiology and Immunology of Influenza Viruses, p 643-652. In Kaufmann S, Rouse B, Sacks D (ed), The Immune Response to Infection. ASM Press, Washington, DC. doi: 10.1128/9781555816872.ch51
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of FIGURE 1

Circulation of human and swine influenza A viruses. To date, influenza A viruses containing three hemagglutinin subtypes (H1, H2, and H3) and two neuraminidase subtypes (N1 and N2) have been identified in humans. The introduction of new subtypes through reassortment has resulted in antigenic shift leading to the origin of four pandemics in 1918, 1957, 1968, and 2009. H1N1 viruses, descendents of the 1918 Spanish influenza, were introduced in the swine population sometime after 1918. The detection of three other swine origin viruses in pigs that provided the genetic pool for the genesis of the 2009 H1N1 pandemic virus are also included. Broken lines denote the lack of virus isolates from that particular time, and question marks highlight the uncertainty of the date of circulation and/or the origin of the subtype. Solid lines demonstrate circulation of influenza strains, which undergo antigenic drift overtime during interpandemic years. Modified with permission from Palese & .

Citation: Medina R, Ramos I, Fernandez-Sesma A. 2011. The Epidemiology and Immunology of Influenza Viruses, p 643-652. In Kaufmann S, Rouse B, Sacks D (ed), The Immune Response to Infection. ASM Press, Washington, DC. doi: 10.1128/9781555816872.ch51
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2

Origin of the 2009 H1N1 pandemic influenza virus. The 2009 pandemic virus originated through reassortment of a Eurasian swine H1N1 virus with a triple reassortant North American swine H1N2 virus that arose in 1998. This novel virus therefore contains the PB2 and PA genes of North American avian virus origin, the PB1 gene of human H3N2 virus origin, the HA (H1), NP and NS genes of classical swine virus origin, and NA (N1) and M genes of Eurasian “avian-like” swine virus origin. Predecessors leading to the triple reassortant viruses are depicted. Arrows denote the sequential reassortment events. Years of emergence are in parentheses. Segments within virions from top to bottom are: PB2, PB1, PA HA, NP, NA, M and NS.

Citation: Medina R, Ramos I, Fernandez-Sesma A. 2011. The Epidemiology and Immunology of Influenza Viruses, p 643-652. In Kaufmann S, Rouse B, Sacks D (ed), The Immune Response to Infection. ASM Press, Washington, DC. doi: 10.1128/9781555816872.ch51
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3

Effects of influenza virus on the initiation of immunity by dendritic cells. Influenza virus can block dendritic cell activation and function and that affects both innate and adaptive immunity. By blocking cytokine and chemokine production by dendritic cells (DCs), including IFN-α/β, influenza virus has an inhibitory effect on innate immunity. Blocking DC activation and up regulation of MHC class II and costimulatory molecules, allows influenza virus inhibition of adaptive immunity.

Citation: Medina R, Ramos I, Fernandez-Sesma A. 2011. The Epidemiology and Immunology of Influenza Viruses, p 643-652. In Kaufmann S, Rouse B, Sacks D (ed), The Immune Response to Infection. ASM Press, Washington, DC. doi: 10.1128/9781555816872.ch51
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Ahmed, R.,, M. B. Oldstone, and, P. Palese. 2007. Protective immunity and susceptibility to infectious diseases: lessons from the 1918 influenza pandemic. Nat. Immunol. 8: 11881193.
2. Banchereau,, J., F. Briere,, C. Caux,, J. Davoust,, S. Lebecque,, Y. J Liu,, B. Pulendran, and, K. Palucka. 2000. Immunobiology of dendritic cells. Annu. Rev. Immunol. 18: 767811.
3. Bosch, F. X.,, W. Garten,, H. D. Klenk,, and R. Rott. 1981. Proteolytic cleavage of influenza virus hemagglutinins: primary structure of the connecting peptide between HA1 and HA2 determines proteolytic cleavability and pathogenicity of Avian influenza viruses. Virology 113: 725735.
4. Centers for Disease Control and Prevention. 2009. Update: Swine Influenza A (H1N1) Infections - California and Texas. MMWR Morb. Mortal. Wkly. Rep. 58: 13.
5. Chen, W.,, P.A. Calvo,, D. Malide,, J. Gibbs,, U. Schubert,, I. Bacik,, S. Basta,, R. O’Neill,, J. Schickli,, P. Palese,, P. Henklein,, J. R. R, and J. W. Yewdell. 2001. A novel influenza A virus mitochondrial protein that induces cell death. Nat. Med. 7: 13061312.
6. Cheung, C. Y.,, L.L. Poon,, A. S. Lau,, W. Luk,, Y. L. Lau,, K. F. Shortridge,, S. Gordon,, Y. Guan,, and J.S. Peiris. 2002. Induction of proinflammatory cytokines in human macrophages by influenza A (H5N1) viruses: a mechanism for the unusual severity of human disease? Lancet 360: 18311837.
7. Childs, R. A.,, A.S. Palma,, S. Wharton,, T. Matrosovich,, Y. Liu,, W. Chai,, M. A. Campanero-Rhodes,, Y. Zhang,, M. Eickmann,, M. Kiso,, A. Hay,, M. Matrosovich, and, T. Feizi. 2009. Receptorbinding specificity of pandemic influenza A (H1N1) 2009 virus determined by carbohydrate microarray. Nat. Biotechnol. 27: 797799.
8. Conenello,, G. M.,, D. Zamarin,, L. A Perrone,, T. Tumpey, and, P. Palese. 2007. A single mutation in the PB1-F2 of H5N1 (HK/97) and 1918 influenza A viruses contributes to increased virulence. PLoS Pathog. 3: 14141421.
9. Cox, N.,, G. Neumann,, R. Donis,, and Y. Kawaoka. 2005. Orthomyxoviruses: influenza, p. 634–698. In B. W. J. Mahy (ed.), Topley and Wilson’s microbiology and microbial infections. Hodder Arnold Press, London.
10. Dawood,, F. S.,, S. Jain,, L. Finelli,, M. W. Shaw,, S. Lindstrom,, R. J. Garten,, L. V. Gubareva,, X. Xu,, C. B. Bridges, and, T. M. Uyeki. 2009. Emergence of a novel swine-origin influenza A (H1N1) virus in humans. N. Engl. J. Med. 360: 26052615.
11. de Jong, M. D.,, C.P. Simmons,, T. T. Thanh,, V. M. Hien,, G. J. Smith,, T. N. Chau,, D. M. Hoang,, N. V. Chau,, T. H. Khanh,, V. C. Dong,, P. T. Qui,, B. V. Cam,, Q. Ha do,, Y. Guan,, J. S. Peiris,, N. T. Chinh,, T. T. Hien, and, J. Farrar. 2006. Fatal outcome of human influenza A (H5N1) is associated with high viral load and hypercytokinemia. Nat. Med. 12: 12031207.
12. Fernandez-Sesma, A.,, S. Marukian,, B.J. Ebersole,, D. Kaminski,, M. S Park,, T. Yuen,, S. C. Sealfon,, A. Garcia-Sastre,, and T.M. Moran. 2006. Influenza virus evades innate and adaptive immunity via the NS1 protein. J. Virol. 80: 62956304.
13. Gamblin,, S. J.,, L. F. Haire,, R. J. Russell,, D. J. Stevens,, B. Xiao,, Y. Ha,, N. Vasisht,, D. A. Steinhauer,, R. S. Daniels,, A. Elliot,, D. C. Wiley, and, J. J. Skehel. 2004. The structure and receptor binding properties of the 1918 influenza hemagglutinin. Science 303: 18381842.
14. García-Sastre, A. 2002. Mechanisms of inhibition of the host interferon alpha/beta-mediated antiviral responses by viruses. Microbes Infect. 4: 647655.
15. Garten, R. J.,, C.T. Davis,, C. A. Russell,, B. Shu,, S. Lindstrom,, A. Balish,, W. M. Sessions,, X. Xu,, E. Skepner,, V. Deyde,, M. Okomo-Adhiambo,, L. Gubareva,, J. Barnes,, C. B. Smith,, S. L. Emery,, M. J. Hillman,, P. Rivailler,, J. Smagala,, M. de Graaf,, D. F. Burke,, R. A. Fouchier,, C. Pappas,, C. M. Alpuche-Aranda,, H. Lopez-Gatell,, H. Olivera,, I. Lopez,, C. A. Myers,, D. Faix,, P. J. Blair,, C. Yu,, K. M. Keene,, P. D. Dotson, Jr.,, D. Boxrud,, A. R. Sambol,, S. H. Abid,, K. St. George,, T. Bannerman,, A. L. Moore,, D. J. Stringer,, P. Blevins,, G. J. Demmler-Harrison,, M. Ginsberg,, P. Kriner,, S. Waterman,, S. Smole,, H. F. Guevara,, E. A. Belongia,, P. A. Clark,, S. T. Beatrice,, R. Donis,, J. Katz,, L. Finelli,, C. B. Bridges,, M. Shaw,, D. B. Jernigan,, T. M. Uyeki,, D. J. Smith,, A. I. I,, and N. J. Cox. 2009. Antigenic and genetic characteristics of swine-origin 2009 A(H1N1) influenza viruses circulating in humans. Science 325: 197201.
16. Gaydos,, J. C.,, F. H. Top,, Jr., R. A. Hodder,, and P. K. Russell. 2006. Swine influenza a outbreak, Fort Dix, New Jersey, 1976. Emerg. Infect. Dis. 12: 2328.
17. Geiss, G. K.,, M. Salvatore,, T. M Tumpey,, V. S. Carter,, X. Wang,, C. F. Basler,, J. K. Taubenberger,, R. E. Bumgarner,, P. Palese,, M. G. Katze, and, A. García-Sastre. 2002. Cellular transcriptional profiling in influenza A virus-infected lung epithelial cells: the role of the nonstructural NS1 protein in the evasion of the host innate defense and its potential contribution to pandemic influenza. Proc. Natl. Acad. Sci. USA 99: 1073610741.
18. Gillim-Ross, L., and, K. Subbarao. 2006. Emerging respiratory viruses: challenges and vaccine strategies. Clin. Microbiol. Rev. 19: 614636.
19. Glaser,, L., J. Stevens,, D. Zamarin,, I. A Wilson,, A. Garcia-Sastre,, T. M. Tumpey,, C. F. Basler,, J. K. Taubenberger, and, P. Palese. 2005. A single amino acid substitution in 1918 influenza virus hemagglutinin changes receptor binding specificity. J. Virol. 79: 1153311536.
20. Graham, M. B., V. L. Braciale, and, T. J. Braciale. 1994. Influenza virus-specific CD4+ T helper type 2 T lymphocytes do not promote recovery from experimental virus infection. J. Exp. Med. 180: 12731282.
21. Hatta, M.,, P. Gao,, P. Halfmann,, and Y. Kawaoka. 2001. Molecular basis for high virulence of Hong Kong H5N1 influenza A viruses. Science 293: 18401842.
22. Horimoto, T.,, K. Nakayama,, S. P. Smeekens,, and Y. Kawaoka. 1994. Proprotein-processing endoproteases PC6 and furin both activate hemagglutinin of virulent avian influenza viruses. J. Virol. 68: 60746078.
23. Itoh, Y.,, K. Shinya,, M. Kiso,, T. Watanabe,, Y. Sakoda,, M. Hatta,, Y. Muramoto,, D. Tamura,, Y. Sakai-Tagawa,, T. Noda,, S. Sakabe,, M. Imai,, Y. Hatta,, S. Watanabe,, C. Li,, S. Yamada,, K. Fujii,, S. Murakami,, H. Imai,, S. Kakugawa,, M. Ito,, R. Takano,, K. Iwatsuki-Horimoto,, M. Shimojima,, T. Horimoto,, H. Goto,, K. Takahashi,, A. Makino,, H. Ishigaki,, M. Nakayama,, M. Okamatsu,, D. Warshauer,, P. A. Shult,, R. Saito,, H. Suzuki,, Y. Furuta,, M. Yamashita,, K. Mitamura,, K. Nakano,, M. Nakamura,, R. Brockman-Schneider,, H. Mitamura,, M. Yamazaki,, N. Sugaya,, M. Suresh,, M. Ozawa,, G. Neumann,, J. Gern,, H. Kida,, K. Ogasawara, and, Y. Kawaoka. 2009. In vitro and in vivo characterization of new swine-origin H1N1 influenza viruses. Nature 460: 10211025.
24. Jackson, D.,, M. J. Hossain,, D. Hickman,, D. R. Perez,, and R. A. Lamb. 2008. A new influenza virus virulence determinant: the NS1 protein four C-terminal residues modulate pathogenicity. Proc. Natl. Acad. Sci. USA 105: 43814386.
25. Johnson, N. P., and, J. Mueller. 2002. Updating the accounts: global mortality of the 1918–1920 “Spanish” influenza pandemic. Bull. Hist. Med. 76: 105115.
26. Kobasa,, D., A. Takada,, K. Shinya,, M. Hatta,, P. Halfmann,, S. Theriault,, H. Suzuki,, H. Nishimura,, K. Mitamura,, N. Sugaya,, T. Usui,, T. Murata,, Y. Maeda,, S. Watanabe,, M. Suresh,, T. Suzuki,, Y. Suzuki,, H. Feldmann, and, Y. Kawaoka. 2004. Enhanced virulence of influenza A viruses with the haemagglutinin of the 1918 pandemic virus. Nature 431: 703707.
27. Kochs, G., A. García-Sastre, and, L. Martínez-Sobrido. 2007. Multiple anti-interferon actions of the influenza A virus NS1 protein. J. Virol. 81: 70117021.
28. Langford, C. 2002. The age pattern of mortality in the 1918-19 influenza pandemic: an attempted explanation based on data for England and Wales. Med. Hist. 46: 120.
29. Myers, K. P., C. W. Olsen, and, G. C. Gray. 2007. Cases of swine influenza in humans: a review of the literature. Clin. Infect. Dis. 44: 10841088.
30. Nakajima, K., U. Desselberger, and, P. Palese. 1978. Recent human influenza A (H1N1) viruses are closely related genetically to strains isolated in 1950. Nature 274: 334339.
31. Nelson,, M. I.,, C. Viboud,, L. Simonsen,, R. T. Bennett,, S. B. Griesemer,, K. St George,, J. Taylor,, D. J. Spiro,, N. A. Sengamalay,, E. Ghedin,, J. K. K,, and E.C. Holmes. 2008. Multiple reassortment events in the evolutionary history of H1N1 influenza A virus since 1918. PLoS Pathog. 4:e1000012.
32. Neumann, G., and, Y. Kawaoka. 2006. Host range restriction and pathogenicity in the context of influenza pandemic. Emerg. Infect. Dis. 12: 881886.
33. Neumann, G., T. Noda, and, Y. Kawaoka. 2009. Emergence and pandemic potential of swine-origin H1N1 influenza virus. Nature 459: 931939.
34. Nobusawa,, E., T. Aoyama,, H. Kato,, Y. Suzuki,, Y. Tateno, and, K. Nakajima. 1991. Comparison of complete amino acid sequences and receptor-binding properties among 13 serotypes of hemagglutinins of influenza A viruses. Virology 182: 475485.
35. Obenauer, J. C.,, J. Denson,, P. K Mehta,, X. Su,, S. Mukatira,, D. B Finkelstein,, X. Xu,, J. Wang,, J. Ma,, Y. Fan,, K. M. Rakestraw,, R. G. Webster,, E. Hoffmann,, S. Krauss,, J. Zheng,, Z. Zhang, and, C. W. Naeve. 2006. Largescale sequence analysis of avian influenza isolates. Science 311: 15761580.
36. Palese, P.,, and M.L. Shaw. 2007. Orthomyxoviridae: the viruses and their replication, p. 1647-1689. In D. M. M,, P. M. Howley,, D. E. Griffin,, R. A. Lamb,, M. A. Martin,, B. Roizman, and S. E. Straus (ed.), Fields virology, 5th ed. Lippincott Williams & Wilkins, Philadelphia.
37. Palese, P., and, A. García-Sastre. 2002. Influenza vaccines: present and future. J. Clin. Invest. 110: 913.
38. Sencer, D. J., and, J. D. Millar. 2006. Reflections on the 1976 swine flu vaccination program. Emerg. Infect. Dis. 12: 2933.
39. Skehel, J. J., and, D. C. Wiley. 2000. Receptor binding and membrane fusion in virus entry: the influenza hemagglutinin. Annu. Rev. Biochem. 69: 531569.
40. Smith,, G. J.,, D. Vijaykrishna,, J. Bahl,, S. J. Lycett,, M. Worobey,, O. G. Pybus,, S. K. Ma,, C. L. Cheung,, J. Raghwani,, S. Bhatt,, J. S. Peiris,, Y. Guan, and, A. Rambaut. 2009. Origins and evolutionary genomics of the 2009 swine-origin H1N1 influenza A epidemic. Nature 459: 11221125.
41. Solorzano,, A.,, R. J. Webby,, K. M. Lager,, B. H. Janke,, A. García-Sastre, and, J. A. Richt. 2005. Mutations in the NS1 protein of swine influenza virus impair anti-interferon activity and confer attenuation in pigs. J. Virol. 79: 75357543.
42. Stevens,, J., O. Blixt,, T. M. Tumpey,, J. K. Taubenberger,, J. C. Paulson, and, I. A. Wilson. 2006. Structure and receptor specificity of the hemagglutinin from an H5N1 influenza virus. Science 312: 404410.
43. Subbarao, E. K., W. London, and, B. R. Murphy. 1993. A single amino acid in the PB2 gene of influenza A virus is a determinant of host range. J. Virol. 67: 17611764.
44. Taubenberger, J. K., and, D. M. Morens. 2006. 1918 influenza: the mother of all pandemics. Emerg. Infect. Dis. 12: 1522.
45. Tumpey,, T. M.,, C. F. Basler,, P. V. Aguilar,, H. Zeng,, A. Solorzano,, D. E. Swayne,, N. J. Cox,, J. M. Katz,, J. K. Taubenberger,, P. Palese, and, A. García-Sastre. 2005. Characterization of the reconstructed 1918 Spanish influenza pandemic virus. Science 310: 7780.
46. Van Hoeven, N., C., Pappas, J. A., Belser, T. R., Maines, H., Zeng, A., García-Sastre, R., Sasisekharan, J. M., Katz, and, T. M. Tumpey. 2009. Human HA and polymerase subunit PB2 proteins confer transmission of an avian influenza virus through the air. Proc. Natl. Acad. Sci. USA 106: 33663371.
47. Vincent,, A. L.,, W. Ma,, K. M Lager,, B. H. Janke,, and J. A. Richt. 2008. Swine influenza viruses a North American perspective. Adv. Virus Res. 72: 127154.
48. Wang, T. T., and, P. Palese. 2009. Unraveling the mystery of swine influenza virus. Cell 137: 983985.
49. World Health Organization. 2009a. Clinical features of severe cases of pandemic influenza. Pandemic (H1N1) 2009 briefing note 13. WHO, Geneva, Switzerland.
50. World Health Organization. 2009b. Cumulative number of confirmed human cases of avian influenza A/(H5N1). Reported to WHO. WHO, Geneva, Switzerland. http://www.who.int/csr/disease/avian_influenza/country/cases_table_2009_09_24/en/print.html
51. World Health Organization. 2009c. H5N1 avian influenza: timeline of major events. WHO, Geneva, Switzerland. http://www.who.int/csr/disease/avian_influenza/Timeline090727.pdf
52. Wright, P. F.,, Neumann, G., and, Y. Kawaoka. 2007. Orthomyxoviruses, p. 1691. In D. M. Knipe,, P. M. Howley,, D. E. Griffin,, R. A. Lamb,, M. A. Martin,, B. Roizman, and, S. E. Straus (ed.), Fields virology, 5th ed. Lippincott Williams & Wilkins, Philadelphia.
53. Zamarin, D.,, A. García-Sastre,, X. Xiao,, R. Wang,, and P. Palese. 2005. Influenza virus PB1-F2 protein induces cell death through mitochondrial ANT3 and VDAC1. PLoS Pathog. 1: e4.


Generic image for table

Determinants of pathogenicity of the 20th century pandemic and highly pathogenic avian influenza viruses

Citation: Medina R, Ramos I, Fernandez-Sesma A. 2011. The Epidemiology and Immunology of Influenza Viruses, p 643-652. In Kaufmann S, Rouse B, Sacks D (ed), The Immune Response to Infection. ASM Press, Washington, DC. doi: 10.1128/9781555816872.ch51

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error