Chapter 10 : Trophic Interactions in Microbial Communities and Food Webs Traced by Stable Isotope Probing of Nucleic Acids

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

Trophic Interactions in Microbial Communities and Food Webs Traced by Stable Isotope Probing of Nucleic Acids, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555816896/9781555815370_Chap10-1.gif /docserver/preview/fulltext/10.1128/9781555816896/9781555815370_Chap10-2.gif


The isolation of microorganisms in pure culture has established a solid foundation of the metabolic capabilities of microorganisms, which has allowed us to understand key transformation processes in nature as well as in microbial biochemistry and molecular biology. This chapter focuses on trophic interactions involving microbes and food webs as revealed by stable isotope probing (SIP) of nucleic acids and also highlights studies using related techniques where exceptional insights have been gained in delineating trophic interactions. The concept of cooperation in anaerobic degradation of organic matter is briefly introduced to facilitate an understanding of carbon flow and trophic interactions in the anaerobic microbial food chain that is governed by both specialization of the key players and thermodynamic constraints. The thermodynamic constraints on fatty acid oxidations provide a biogeochemical framework which renders only syntrophic secondary fermenters capable of dissimilation and assimilation: only syntrophic coupling of fatty acid-oxidizing and hydrogen- and acetate-scavenging reactions makes fatty acid oxidation under methanogenic conditions exergonic. A number of studies have shown how carbon (and nitrogen) flow can be traced through microbial communities and food webs via phylogenetically identified microbes and higher-trophic-level consumers by using nucleic acid SIP and novel single-cell-based approaches of SIP.

Citation: Friedrich M. 2011. Trophic Interactions in Microbial Communities and Food Webs Traced by Stable Isotope Probing of Nucleic Acids, p 203-232. In Murrell J, Whiteley A (ed), Stable Isotope Probing and Related Technologies. ASM Press, Washington, DC. doi: 10.1128/9781555816896.ch10
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of FIGURE 1

Carbon and electron flow through the various trophic groups of microorganisms involved in the methanogenic degradation of complex organic matter via the anaerobic microbial food chain. Groups of bacteria involved: 1, primary fermenting bacteria; 2, hydrogen-oxidizing methano-gens; 3, acetate-cleaving methanogens; 4, secondary-fermenting (“syntrophic”) bacteria; 5, homoacetogenic bacteria. (Modified after Schink and Stams, 2006.)

Citation: Friedrich M. 2011. Trophic Interactions in Microbial Communities and Food Webs Traced by Stable Isotope Probing of Nucleic Acids, p 203-232. In Murrell J, Whiteley A (ed), Stable Isotope Probing and Related Technologies. ASM Press, Washington, DC. doi: 10.1128/9781555816896.ch10
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2

Carbon flow through microbial populations involved in syntrophic propionate oxidation in flooded rice field soil (based on data from Lueders et al., ).

Citation: Friedrich M. 2011. Trophic Interactions in Microbial Communities and Food Webs Traced by Stable Isotope Probing of Nucleic Acids, p 203-232. In Murrell J, Whiteley A (ed), Stable Isotope Probing and Related Technologies. ASM Press, Washington, DC. doi: 10.1128/9781555816896.ch10
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3

Ratios of substrate dissimilation and assimilation in anaerobic microorganisms thriving on sugars. Left: C-substrate-metabolizing population. Right: population metabolizing a nonlabeled substrate. It is assumed that the central metabolite pool of both populations originates from the energy substrate. Coassimilation of a C-labeled substrate by a potential cross-feeder (right) will most likely result in label dilution due to catabolism of the unlabeled energy substrate (further explanations in the text).

Citation: Friedrich M. 2011. Trophic Interactions in Microbial Communities and Food Webs Traced by Stable Isotope Probing of Nucleic Acids, p 203-232. In Murrell J, Whiteley A (ed), Stable Isotope Probing and Related Technologies. ASM Press, Washington, DC. doi: 10.1128/9781555816896.ch10
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 4

Conceptual scheme of primary assimilation, succession and trophic interactions in (A) methanol- and (B) methane-driven microbial foods webs in aerobic in rice field soil (based on data from , and ).

Citation: Friedrich M. 2011. Trophic Interactions in Microbial Communities and Food Webs Traced by Stable Isotope Probing of Nucleic Acids, p 203-232. In Murrell J, Whiteley A (ed), Stable Isotope Probing and Related Technologies. ASM Press, Washington, DC. doi: 10.1128/9781555816896.ch10
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Alain, K.,, T. Holler,, F. Musat,, M. Elvert,, T. Treude, and, M. Krüger. 2006. Microbiological investigation of methane- and hydrocarbon-discharging mud volcanoes in the Carpathian Mountains, Romania. Environ. Microbiol. 8: 574590.
2. Arenovski, A. L.,, E. L. Lim, and, D. A. Caron. 1995. Mixotrophic nanoplankton in oligotrophic surface waters of the Sargasso Sea may employ phagotrophy to obtain major nutrients. J. Plankton Res. 17: 801820.
3. Azam, F.,, T. Fenchel,, J. G. Field,, J. S. Gray,, L. A. Meyerreil, and, F. Thingstad. 1983. The ecological role of water-column microbes in the sea. Mar. Ecol. Prog. Ser. 10: 257263.
4. Azam, F., and, F. Malfatti, 2007. Microbial structuring of marine ecosystems. Nat. Rev. Microbiol. 5: 782791.
5. Barclay, A. R.,, D. J. Morrison, and, L. T. Weaver. 2008. What is the role of the metabolic activity of the gut microbiota in inflammatory bowel disease? Probing for answers with stable isotopes. J. Pediatr. Gastroenterol. Nutr. 46: 486495.
6. Bastias, B. A.,, I. C. Anderson,, J. I. Rangel-Castro,, P. I. Parkin,, J. I. Prosser, and, J. W. G. Cairney. 2009. Influence of repeated prescribed burning on incorporation of 13C from cellulose by forest soil fungi as determined by RNA stable isotope probing. Soil Biol. Biochem. 41: 467472.
7. Behrens, S.,, T. Losekann,, J. Pett-Ridge,, P. K. Weber,, W. O. Ng,, B. S. Stevenson,, I. D. Hutcheon,, D. A. Relman, and, A. M. Spormann. 2008. Linking microbial phylogeny to metabolic activity at the single-cell level by using enhanced element labeling-catalyzed reporter deposition fluorescence in situ hybridization (EL-FISH) and NanoSIMS. Appl. Environ. Microbiol. 74: 31433150.
8. Bernard, L.,, P. A. Maron,, C. Mougel,, V. Nowak,, J. Leveque,, C. Marol,, J. Balesdent,, F. Gibiat, and, L. Ranjard. 2009. Contamination of soil by copper affects the dynamics, diversity, and activity of soil bacterial communities involved in wheat decomposition and carbon storage. Appl. Environ. Microbiol. 75: 75657569.
9. Bernard, L.,, C. Mougel,, P. A. Maron,, V. Nowak,, J. Leveque,, C. Henault,, F. E. Z. Haichar,, O. Berge,, C. Marol,, J. Balesdent,, F. Gibiat,, P. Lemanceau, and, L. Ranjard. 2007. Dynamics and identification of soil microbial populations actively assimilating carbon from C-13-labelled wheat residue as estimated by DNA- and RNA-SIP techniques. Environ. Microbiol. 9: 752764.
10. Blumenberg, M.,, R. Seifert,, K. Nauhaus,, T. Pape, and, W. Michaelis. 2005. In vitro study of lipid biosynthesis in an anaerobically methane-oxidizing microbial mat. Appl. Environ. Microbiol. 71: 43454351.
11. Boetius, A.,, K. Ravenschlag,, C. J. Schubert,, D. Rickert,, F. Widdel,, A. Gieseke,, R. Amann,, B. B. Jorgensen,, U. Witte, and, O. Pfannkuche. 2000. A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature 407: 623626.
12. Bonkowski, M. 2004. Protozoa and plant growth: the microbial loop in soil revisited. New Phytologist 162: 617631.
13. Boschker, H. T. S., and, J. J. Middelburg. 2002. Stable isotopes and biomarkers in microbial ecology. FEMS Microbiol. Ecol. 40: 8595.
14. Boschker, H. T. S.,, S. C. Nold,, P. Wellsbury,, D. Bos,, W. de Graaf,, R. Pel,, R. J. Parkes, and, T. E. Cappenberg. 1998. Direct linking of microbial populations to specific biogeochemical processes by 13C-labelling of biomarkers. Nature 392: 801805.
15. Bressan, M.,, M. A. Roncato,, F. Bellvert,, G. Comte,, F. E. Haichar,, W. Achouak, and, O. Berge. 2009. Exogenous glucosinolate produced by Arabidopsis thaliana has an impact on microbes in the rhizosphere and plant roots. ISME J. 3: 12431257.
16. Bridge, P., and, B. Spooner, 2001. Soil fungi: diversity and detection. Plant Soil 232: 147154.
17. Brinkmann, N.,, R. Martens, and, C. C. Tebbe. 2008. Origin and diversity of metabolically active gut bacteria from laboratory-bred larvae of Manduca sexta (Sphingidae, Lepidoptera, Insecta). Appl. Environ. Microbiol. 74: 7189- 7196.
18. Bryant, M. P.,, L. L. Campbell,, C. A. Reddy, and, M. R. Crabill. 1977. Growth of Desulfovibrio in lactate or ethanol media low in sulfate in association with H 2-utilizing methanogenic bacteria. Appl. Environ. Microbiol. 33: 11621169.
19. Buckley, D. H.,, V. Huangyutitham,, S. F. Hsu, and, T. A. Nelson. 2007. Stable isotope probing with N-15(2) reveals novel noncultivated diazotrophs in soil. Appl. Environ. Microbiol. 73: 31963204.
20. Bühring, S. I.,, N. Lampadariou,, L. Moodley,, A. Tselepides, and, U. Witte. 2006. Benthic microbial and whole-community responses to different amounts of C-13-enriched algae: in situ experiments in the deep Cretan Sea (Eastern Mediterranean). Limnol. Oceanogr. 51: 157165.
21. Bull, A. T.,, J. E. M. Stach,, A. C. Ward, and, M. Goodfellow. 2005. Marine actinobacteria: perspectives, challenges, future directions. Antonie van Leeu-wenhoek 87: 6579.
22. Bussmann, I.,, M. Rahalkar, and, B. Schink, 2006. Cultivation of methanotrophic bacteria in opposing gradients of methane and oxygen. FEMS Microbiol. Ecol. 56: 331344.
23. Cadisch, G.,, M. Espana,, R. Causey,, M. Richter,, E. Shaw,, J. A. Morgan,, C. Rahn, and, G. D. Bending. 2005. Technical considerations for the use of 15N-DNA stable-isotope probing for functional microbial activity in soils. Rapid Commun. Mass Spectrom. 19: 14241428.
24. Cebron, A.,, L. Bodrossy,, N. Stralis-Pavese,, A. C. Singer,, I. P. Thompson,, J. I. Prosser, and, J. C. Murrell. 2007. Nutrient amendments in soil DNA stable isotope probing experiments reduce the observed methanotroph diversity. Appl. Environ. Microbiol. 73: 798807.
25. Chamberlain, P. M.,, I. D. Bull,, H. I. J. Black,, P. Ineson, and, R. P. Evershed. 2006. Collembolan trophic preferences determined using fatty acid distributions and compound-specific stable carbon isotope values. Soil Biol. Biochem. 38: 12751281.
26. Chauhan, A.,, J. Cherrier, and, H. N. Williams. 2009. Impact of sideways and bottom-up control factors on bacterial community succession over a tidal cycle. Proc. Natl. Acad. Sci. USA 106: 43014306.
27. Chauhan, A., and, A. Ogram, 2006a. Fatty acid-oxidizing consortia along a nutrient gradient in the Florida Everglades. Appl. Environ. Microbiol. 72: 24002406.
28. Chauhan, A., and, A. Ogram, 2006b. Phylogeny of acetate-utilizing microorganisms in soils along a nutrient gradient in the Florida everglades. Appl. Environ. Microbiol. 72: 68376840.
29. Chisholm, S. W.,, R. J. Olson,, E. R. Zettler,, R. Go-ericke,, J. B. Waterbury, and, N. A. Welschmeyer. 1988. A novel free-living prochlorophyte abundant in the oceanic euphotic zone. Nature 334: 340343.
30. Clode, P. L.,, M. R. Kilburn,, D. L. Jones,, E. A. Stockdale,, J. B. Cliff,, A. M. Herrmann, and, D. V. Murphy. 2009. In situ mapping of nutrient uptake in the rhizosphere using nanoscale secondary ion mass spectrometry. Plant Physiol. 151: 17511757.
31. Conrad, R. 1996. Soil microorganisms as controllers of atmospheric trace gases (H 2, CO, CH 4, OCS, N 2O, and NO). Microbiol. Rev. 60: 609640.
32. Conrad, R. 2007. Microbial ecology of methanogens and methanotrophs. Adv. Agron. 96: 163.
33. Conrad, R. 2009. The global methane cycle: recent advances in understanding the microbial processes involved. Environ. Microbiol. Rep. 1: 285292.
34. Conrad, R.,, B. Schink, and, T. J. Phelps. 1986. Thermodynamics of H 2-consuming and H 2-producing metabolic reactions in diverse methanogenic environments under in situ conditions. FEMS Microbiol. Ecol. 38: 353360.
35. Conrad, R.,, C. Erkel, and, W. Liesack, 2006. Rice Cluster I methanogens, an important group of Archaea producing greenhouse gas in soil. Curr. Opin. Biotechnol. 17: 262267.
36. Cordruwisch, R.,, D. R. Lovley, and, B. Schink. 1998. Growth of Geobacter sulfurreducens with acetate in syntrophic cooperation with hydrogen-oxidizing anaerobic partners. Appl. Environ. Microbiol. 64: 22322236.
37. De Bok, F. A. M.,, C. M. Plugge, and, A. J. M. Stams. 2004. Interspecies electron transfer in methanogenic propionate degrading consortia. Water Res. 38: 13681375.
38. De Bok, F. A. M.,, A. J. M. Stams,, C. Dijkema, and, D. R. Boone. 2001. Pathway of propionate oxidation by a syntrophic culture of Smithella propionica and Methanospirillum hungatei. Appl. Environ. Microbiol. 67: 18001804.
39. Dekas, A. E.,, R. S. Poretsky, and, V. J. Orphan. 2009. Deep-Sea Archaea fix and share nitrogen in methane-consuming microbial consortia. Science 326: 422426.
40. Del Rio, C. M.,, N. Wolf,, S. A. Carleton, and, L. Z. Gannes. 2009. Isotopic ecology ten years after a call for more laboratory experiments. Biol. Rev. 84: 91111.
41. DeLong, E. F.,, D. G. Franks, and, A. L. Alldredge. 1993. Phylogenetic diversity of aggregate-attached vs free-living marine bacterial assemblages. Limnol. Oceanogr. 38: 924934.
42. Derito, C. M.,, G. M. Pumphrey, and, E. L. Madsen. 2005. Use of field-based stable isotope probing to identify adapted populations and track carbon flow through a phenol-degrading soil microbial community. Appl. Environ. Microbiol. 71: 78587865.
43. Dumont, M. G., and, J. C. Murrell. 2005. Stable isotope probing—linking microbial identity to function. Nat. Rev. Microbiol. 3: 499504.
44. Dumont, M. G.,, S. M. Radajewski,, C. B. Miguez,, I. R. McDonald, and, J. C. Murrell. 2006. Identification of a complete methane monooxygenase operon from soil by combining stable isotope probing and metagenomic analysis. Environ. Microbiol. 8: 12401250.
45. Egert, M.,, A. A. de Graaf,, A. Maathuis,, P. De Waard,, C. M. Plugge,, H. Smidt,, N. E. P. Deutz,, C. Dijkema,, W. M. De Vos, and, K. Venema. 2007. Identification of glucose-fermenting bacteria present in an in vitro model of the human intestine by RNA-stable isotope probing. FEMS Microbiol. Ecol. 60: 126135.
46. Egert, M.,, A. A. de Graaf,, H. Smidt,, W. M. De Vos, and, K. Venema. 2006. Beyond diversity: functional microbiomics of the human colon. Trends Microbiol. 14: 8691.
47. Eilers, H.,, J. Pernthaler, and, R. Amann, 2000. Succession of pelagic marine bacteria during enrichment: a close look at cultivation-induced shifts. Appl. Environ. Microbiol. 66: 46344640.
48. Ekelund, F.,, R. Ronn, and, B. S. Griffiths. 2001. Quantitative estimation of flagellate community structure and diversity in soil samples. Protist 152: 301314.
49. Ettwig, K. F.,, S. Shima,, K. van de Pas-Schoonen,, J. Kahnt,, M. H. Medema,, H. J. M. op Den Camp,, M. S. M. Jetten, and, M. Strous. 2008. Denitrifying bacteria anaerobically oxidize methane in the absence of Archaea. Environ. Microbiol. 10: 31643173.
50. Ettwig, K. F.,, T. van Alen,, K. van de Pas-Schoonen,, M. S. M. Jetten, and, M. Strous. 2009. Enrichment and molecular detection of denitrifying metha-notrophic bacteria of the NC 10 phylum. Appl. Environ. Microbiol. 75: 36563662.
51. Freitag, T. E., and, J. I. Prosser. 2003. Community structure of ammonia-oxidizing bacteria within anoxic marine sediments. Appl. Environ. Microbiol. 69: 13591371.
52. Frias-Lopez, J.,, A. Thompson,, J. Waldbauer, and, S. W. Chisholm. 2009. Use of stable isotope-labelled cells to identify active grazers of picocyanobacteria in ocean surface waters. Environ. Microbiol. 11: 512525.
53. Gallagher, E.,, L. McGuinness,, C. Phelps,, L. Y. Young, and, L. J. Kerkhof. 2005. 13C-carrier DNA shortens the incubation time needed to detect benzoate-utilizing denitrifying bacteria by stable-isotope probing. Appl. Environ. Microbiol. 71: 51925196.
54. Gihring, T. M.,, M. Humphrys,, H. J. Mills,, M. Huettel, and, J. E. Kostka. 2009. Identification of phytodetritus-degrading microbial communities in sublittoral Gulf of Mexico sands. Limnol. Oceanogr. 54: 10731083.
55. Glaubitz, S.,, T. Lueders,, W. R. Abraham,, G. Jost,, K. Jurgens, and, M. Labrenz. 2009. C-13-isotope analyses reveal that chemolithoautotrophic Gamma- and Epsilonproteobacteria feed a microbial food web in a pelagic redoxcline of the central Baltic Sea. Environ. Microbiol. 11: 326337.
56. Griffiths, R. I.,, M. Manefield,, N. Ostle,, N. McnaMara,, A. G. O’Donnell,, M. J. Bailey, and, A. S. Whiteley. 2004. 13CO 2 pulse labelling of plants in tandem with stable isotope probing: methodological considerations for examining microbial function in the rhizosphere. J. Microbiol. Methods 58: 119129.
57. Grossart, H. P.,, A. Schlingloff,, M. Bernhard,, M. Simon, and, T. Brinkhoff. 2004. Antagonistic activity of bacteria isolated from organic aggregates of the German Wadden Sea. FEMS Microbiol. Ecol. 47: 387396.
58. Haichar, F. E.,, C. Marol,, O. Berge,, J. I. Rangel-Castro,, J. I. Prosser,, J. Balesdent,, T. Heulin, and, W. Achouak. 2008. Plant host habitat and root exudates shape soil bacterial community structure. ISME J. 2: 12211230.
59. Haichar, F. E. Z.,, W. Achouak,, R. Christen,, T. Heulin,, C. Marol,, M. F. Marais,, C. Mougel,, L. Ranjard,, J. Balesdent, and, O. Berge. 2007. Identification of cellulolytic bacteria in soil by stable isotope probing. Environ. Microbiol. 9: 625634.
60. Hamberger, A.,, M. A. Horn,, M. G. Dumont,, J. C. Murrell, and, H. L. Drake. 2008. Anaerobic consumers of monosaccharides in a moderately acidic fen. Appl. Environ. Microbiol. 74: 31123120.
61. Han, B.,, Y. Chen,, G. Abell,, H. Jiang,, L. Bodrossy,, J. G. Zhao,, J. C. Murrell, and, X. H. Xing. 2009. Diversity and activity of methanotrophs in alkaline soil from a Chinese coal mine. FEMS Microbiol. Ecol. 70: 196207.
62. Hansen, K. H.,, B. K. Ahring, and, L. Raskin. 1999. Quantification of syntrophic fatty acid-beta-oxidizing bacteria in a mesophilic biogas reactor by oligonucleotide probe hybridization. Appl. Environ. Microbiol. 65: 47674774.
63. Hatamoto, M.,, H. Imachi,, A. Ohashi, and, H. Harada. 2007a. Identification and cultivation of anaerobic, syntrophic long-chain fatty acid-degrading microbes from mesophilic and thermophilic methanogenic sludges. Appl. Environ. Microbiol. 73: 13321340.
64. Hatamoto, M.,, H. Imachi,, Y. Yashiro,, A. Ohashi, and, H. Harada. 2007b. Diversity of anaerobic microorganisms involved in long-chain fatty acid degradation in methanogenic sludges as revealed by RNA-based stable isotope probing. Appl. Environ. Microbiol. 73: 41194127.
65. Hatamoto, M.,, H. Imachi,, Y. Yashiro,, A. Ohashi, and, H. Harada. 2008. Detection of active butyrate-degrading microorganisms in methanogenic sludges by RNA-based stable isotope probing. Appl. Environ. Microbiol. 74: 36103614.
66. Hattori, S. 2008. Syntrophic acetate-oxidizing microbes in methanogenic environments. Microbes Environ. 23: 118127.
67. Henckel, T.,, M. Friedrich, and, R. Conrad, 1999. Molecular analyses of the methane-oxidizing microbial community in rice field soil by targeting the genes of the 16S rRNA, particulate methane monooxygenase, and methanol dehydrogenase. Appl. Environ. Microbiol. 65: 19801990.
68. Herman, P. M. J.,, J. J. Middelburg,, J. Widdows,, C. H. Lucas, and, C. H. R. Heip. 2000. Stable isotopes as trophic tracers: combining field sampling and manipulative labelling of food resources for macrobenthos. Mar. Ecol. Prog. Ser. 204: 7992.
69. Hery, M.,, A. C. Singer,, D. Kumaresan,, L. Bodrossy,, N. Stralis-Pavese,, J. I. Prosser,, I. P. Thompson, and, J. C. Murrell. 2008. Effect of earthworms on the community structure of active methanotrophic bacteria in a landfill cover soil. ISME J. 2: 92104.
70. Hinrichs, K. U.,, J. M. Hayes,, S. P. Sylva,, P. G. Brewer, and, E. F. DeLong. 1999. Methane-consuming archaebacteria in marine sediments. Nature 398: 802805.
71. Hobbie, E. A.,, S. A. Macko, and, H. H. Shugart. 1999. Insights into nitrogen and carbon dynamics of ectomycorrhizal and saprotrophic fungi from isoto-pic evidence. Oecologia 118: 353360.
72. Hori, T.,, M. Noll,, Y. Igarashi,, M. W. Friedrich, and, R. Conrad. 2007. Identification of acetate-assimilating microorganisms under methanogenic conditions in anoxic rice field soil by comparative stable isotope probing of RNA. Appl. Environ. Microbiol. 73: 101109.
73. Hutchens, E.,, S. Radajewski,, M. G. Dumont,, I. R. McDonald, and, J. C. Murrell. 2004. Analysis of methanotrophic bacteria in Movile Cave by stable isotope probing. Environ. Microbiol. 6: 111120.
74. Imachi, H.,, Y. Sekiguchi,, Y. Kamagata,, A. Loy,, Y. L. Qiu,, P. Hugenholtz,, N. Kimura,, M. Wagner,, A. Ohashi, and, H. Harada. 2006. Non-sulfate-reducing, syntrophic bacteria affiliated with Desulfotomaculum cluster I are widely distributed in methanogenic environments. Appl. Environ. Microbiol. 72: 20802091.
75. Jackson, B. E.,, V. K. Bhupathiraju,, R. S. Tanner,, C. R. Woese, and, M. J. Mclnerney. 1999. Syntrophus aciditrophicus sp. nov., a new anaerobic bacterium that degrades fatty acids and benzoate in syntrophic association with hydrogen-using microorganisms. Arch. Microbiol. 171: 107114.
76. Jagersma, G. C.,, R. J. W. Meulepas,, I. Heikamp-De Jong,, J. Gieteling,, A. Klimiuk,, S. Schouten,, J. S. Sinninghe Damste,, P. N. L. Lens, and, A. J. M. Stams. 2009. Microbial diversity and community structure of a highly active anaerobic methane-oxidizing sulfate-reducing enrichment. Environ. Microbiol. 11: 32233232.
77. Jensen, S.,, J. D. Neufeld,, N. K. Birkeland,, M. Hovland, and, J. C. Murrell. 2008. Methane assimilation and trophic interactions with marine Methylomicrobium in deep-water coral reef sediment off the coast of Norway. FEMS Microbiol. Ecol. 66: 320330.
78. Jezbera, J.,, K. Hornak, and, K. Simek, 2005. Food selection by bacterivorous protists: insight from the analysis of the food vacuole content by means of fluorescence in situ hybridization. FEMS Microbiol. Ecol. 52: 351363.
79. Jones, D. L.,, C. Nguyen, and, R. D. Finlay. 2009. Carbon flow in the rhizosphere: carbon trading at the soil-root interface. Plant Soil 321: 533.
80. Jones, R. I. 2000. Mixotrophy in planktonic protists: an overview. Freshw. Biol. 45: 219226.
81. Juergens, K., and, C. Matz, 2002. Predation as a shaping force for the phenotypic and genotypic composition of planktonic bacteria. Antonie van Leeuwenhoek 81: 413434.
82. Jurkevitch, E. J. 2006. The genus Bdellovibrio, p. 12–30. In M. Dworkin,, S. Falkow,, E. Rosenberg,, K.-H. Schleifer, and, E. Stackebrandt (ed.), The Prokaryotes. Springer, New York, NY.
83. Kaden, J.,, A. S. Galushko, and, B. Schink. 2002. Cysteine-mediated electron transfer in syntrophic acetate oxidation by cocultures of Geobacter sulfurreducens and Wolinella succinogenes. Arch. Microbiol. 178: 5358.
84. Kalyuzhnaya, M.,, C. McHardy,, E. Szeto,, A. Sala-Mov,, I. V. Grigoriev,, D. Suciu,, S. R. Levine,, V. M. Markowitz,, I. Rigoutsos,, S. G. Tringe,, D. C. Bruce,, P. M. Richardson,, M. E. Lidstrom, and, L. Chistoserdova. 2008. High-resolution metagenomics targets specific functional types in complex microbial communities. Nat. Biotechnol. 26: 10291034.
85. Karl, D.,, A. Michaels,, B. Bergman,, D. Capone,, E. Carpenter,, R. Letelier,, F. Lipschultz,, H. Paerl,, D. Sigman, and, L. Stal. 2002. Dinitrogen fixation in the world’s oceans. Biogeochem. 57: 4798.
86. Karl, D. M. 2007. Microbial oceanography: paradigms, processes and promise. Nat. Rev. Microbiol. 5: 759769.
87. Karl, D. M. 2002. Nutrient dynamics in the deep blue sea. Trends Microbiol. 10: 410418.
88. Kirkpatrick, J.,, B. Oakley,, C. Fuchsman,, S. Srini-vasan,, J. T. Staley, and, J. W. Murray. 2006. Diversity and distribution of Planctomycetes and related bacteria in the suboxic zone of the Black Sea. Appl. Environ. Microbiol. 72: 30793083.
89. Kittelmann, S., and, M. W. Friedrich. 2008a. Identification of novel perchloroethene-respiring microorganisms in anoxic river sediment by RNA-based stable isotope probing. Environ. Microbiol. 10: 3146.
90. Kittelmann, S., and, M. W. Friedrich. 2008b. Novel uncultured Chloroflexi dechlorinate perchloroethene to trans-dichloroethene in tidal flat sediments. Environ. Microbiol. 10: 15571570.
91. Knittel, K., and, A. Boetius, 2009. Anaerobic oxidation of methane: progress with an unknown process. Ann. Rev. Microbiol. 63: 311334.
92. Knittel, K.,, A. Boetius,, A. Lemke,, H. Eilers,, K. Lochte,, O. Pfannkuche,, P. Linke, and, R. Amann. 2003. Activity, distribution, and diversity of sulfate reducers and other bacteria in sediments above gas hydrate (Cascadia margin, Oregon). Geo-microbiol. J. 20: 269294.
93. Knittel, K.,, T. Losekann,, A. Boetius,, R. Kort, and, R. Amann. 2005. Diversity and distribution of methanotrophic archaea at cold seeps. Appl. Environ. Microbiol. 71: 467479.
94. Knowles, R. 2005. Denitrifiers associated with methanotrophs and their potential impact on the nitrogen cycle. Ecol. Engin. 24: 441446.
95. Kosaka, T.,, S. Kato,, T. Shimoyama,, S. Ishii,, T. Abe, and, K. Watanabe. 2008. The genome of Peloto-maculum thermopropionicum reveals niche-associated evolution in anaerobic microbiota. Genome Res. 18: 442448.
96. Kosaka, T.,, T. Uchiyama,, S. Ishii,, M. Enoki,, H. Imachi,, Y. Kamagata,, A. Ohashi,, H. Harada,, H. Ikenaga, and, K. Watanabe. 2006. Reconstruction and regulation of the central catabolic pathway in the thermophilic propionate-oxidizing syntroph Pelotomaculum thermopropionicum. J. Bacteriol. 188: 202210.
97. Kovatcheva-Datchary, P.,, M. Egert,, A. Maathuis,, M. Rajilic-Stojanovic,, A. A. de Graaf,, H. Smidt,, W. M. De Vos, and, K. Venema. 2009. Linking phylogenetic identities of bacteria to starch fermentation in an in vitro model of the large intestine by RNA-based stable isotope probing. Environ. Microbiol. 11: 914926.
98. Kunapuli, U.,, T. Lueders, and, R. U. Mecken-Stock. 2007. The use of stable isotope probing to identify key iron-reducing microorganisms involved in anaerobic benzene degradation. ISME J. 1: 643653.
99. Le Quere, C.,, S. P. Harrison,, I. C. Prentice,, E. T. Buitenhuis,, O. Aumont,, L. Bopp,, H. Claustre,, L. C. Da Cunha,, R. Geider,, X. Giraud,, C. Klaas,, K. E. Kohfeld,, L. Legendre,, M. Manizza,, T. Platt,, R. B. Rivkin,, S. Sathyendranath,, J. Uitz,, A. J. Watson, and, D. Wolf-Gladrow. 2005. Ecosystem dynamics based on plankton functional types for global ocean biogeochemistry models. Glob. Change Biol. 11: 20162040.
100. Leake, J. R.,, N. J. Ostle,, J. I. Rangel-Castro, and, D. Johnson. 2006. Carbon fluxes from plants through soil organisms determined by field 13CO 2 pulse-labelling in an upland grassland. Appl. Soil Ecol. 33: 152175.
101. Lear, G.,, S. J. Turner, and, G. D. Lewis. 2009. Effect of light regimes on the utilisation of an exogenous carbon source by freshwater biofilm bacterial communities. Aqua. Ecol. 43: 207220.
102. Lechene, C. P.,, Y. Luyten,, G. Mcmahon, and, D. L. Distel. 2007. Quantitative imaging of nitrogen fixation by individual bacteria within animal cells. Science 317: 15631566.
103. Legendre, L., and, R. B. Rivkin. 2008. Planktonic food webs: microbial hub approach. Mar. Ecol. Prog. Ser. 365: 289309.
104. Leigh, M. B.,, V. H. Pellizari,, O. Uhlik,, R. Sutka,, J. Rodrigues,, N. E. Ostrom,, J. H. Zhou, and, J. M. Tiedje. 2007. Biphenyl-utilizing bacteria and their functional genes in a pine root zone contaminated with polychlorinated biphenyls (PCBs). ISME J. 1: 134148.
105. Li, T. L.,, L. Mazeas,, A. Sghir,, G. Leblon, and, T. Bouchez. 2009. Insights into networks of functional microbes catalysing methanization of cellulose under mesophilic conditions. Environ. Microbiol. 11: 889904.
106. Li, T.,, T. D. Wu,, L. Mazeas,, L. Toffin,, J. L Guerquin-Kern,, G. Leblon, and, T. Bouchez. 2008. Simultaneous analysis of microbial identity and function using NanoSIMS. Environ. Microbiol. 10: 580588.
107. Liou, J. S. C.,, C. M. DeRito, and, E. L. Madsen. 2008. Field-based and laboratory stable isotope probing surveys of the identities of both aerobic and anaerobic benzene-metabolizing microorganisms in freshwater sediment. Environ. Microbiol. 10: 19641977.
108. Little, A. E. F.,, C. J. Robinson,, S. B. Peterson,, K. E. Raffa, and, J. Handelsman. 2008. Rules of engagement: interspecies interactions that regulate microbial communities. Ann. Rev. Microbiol. 62: 375401.
109. Liu, Y. T.,, D. L. Balkwill,, H. C. Aldrich,, G. R. Drake, and, D. R. Boone. 1999. Characterization of the anaerobic propionate-degrading syntrophs Smithella propionica gen. nov., sp. nov. and Syntropho-bacter wolinii. Int. J. Syst. Bacteriol. 49: 545556.
110. Loesekann, T.,, K. Knittel,, T. Nadalig,, B. Fuchs,, H. Niemann,, A. Boetius, and, R. Amann. 2007. Diversity and abundance of aerobic and anaerobic methane oxidizers at the Haakon Mosby mud volcano, Barents Sea. Appl. Environ. Microbiol. 73: 33483362.
111. Lopez-Garcia, P.,, F. Gaill, and, D. Moreira. 2002. Wide bacterial diversity associated with tubes of the vent worm Riftia pachyptila. Environ. Microbiol. 4: 204215.
112. Loreau, M.,, S. Naeem,, P. Inchausti,, J. Bengtsson,, J. P. Grime,, A. Hector,, D. U. Hooper,, M. A. Huston,, D. Raffaelli,, B. Schmid,, D. Tilman, and, D. A. Wardle. 2001. Biodiversity and ecosystem functioning: current knowledge and future challenges. Science 294: 804808.
113. Lovley, D. R.,, E. J. P. Phillips,, D. J. Lonergan, and, P. K. Widman. 1995. Fe(III) and S° reduction by Pelobacter carbinolicus. Appl. Environ. Microbiol. 61: 21322138.
114. Lu, Y. H.,, W. R. Abraham, and, R. Conrad. 2007. Spatial variation of active microbiota in the rice rhizosphere revealed by in situ stable isotope probing of phospholipid fatty acids. Environ. Microbiol. 9: 474481.
115. Lu, Y. H., and, R. Conrad. 2005. In situ stable isotope probing of methanogenic archaea in the rice rhizo-sphere. Science 309: 10881090.
116. Lu, Y. H.,, T. Lueders,, M. W. Friedrich, and, R. Conrad. 2005. Detecting active methanogenic populations on rice roots using stable isotope probing. Environ. Microbiol. 7: 326336.
117. Lu, Y. H.,, D. Rosencrantz,, W. Liesack, and, R. Conrad. 2006. Structure and activity of bacterial community inhabiting rice roots and the rhizosphere. Environ. Microbiol. 8: 13511360.
118. Lueders, T.,, R. Kindler,, A. Miltner,, M. W. Friedrich, and, M. Kaestner. 2006. Identification of bacterial micropredators distinctively active in a soil microbial food web. Appl. Environ. Microbiol. 72: 53425348.
119. Lueders, T.,, B. Pommerenke, and, M. W. Friedrich. 2004a. Stable-isotope probing of microorganisms thriving at thermodynamic limits: syntrophic propionate oxidation in flooded soil. Appl. Environ. Microbiol. 70: 57785786.
120. Lueders, T.,, B. Wagner,, P. Claus, and, M. W. Friedrich. 2004b. Stable isotope probing of rRNA and DNA reveals a dynamic methylotroph community and trophic interactions with fungi and protozoa in oxic rice field soil. Environ. Microbiol. 6: 6072.
121. Lynd, L. R.,, P. J. Weimer,, W. H. Van Zyl, and, I. S. Pretorius. 2002. Microbial cellulose utilization: fundamentals and biotechnology. Microbiol. Mol. Biol. Rev. 66: 506577.
122. Madrid, V. M.,, G. T. Taylor,, M. I. Scranton, and, A. Y. Chistoserdov. 2001. Phylogenetic diversity of bacterial and archaeal communities in the anoxic zone of the Cariaco Basin. Appl. Environ. Microbiol. 67: 16631674.
123. Madsen, E. L. 2006. The use of stable isotope probing techniques in bioreactor and field studies on bioremediation. Curr. Opin. Biotechnol. 17: 9297.
124. Manefield, M.,, R. Griffiths,, N. P. Mcnamara,, D. Sleep,, N. Ostle, and, A. Whiteley. 2007. Insights into the fate of a 13C labelled phenol pulse for stable isotope probing (SIP) experiments. J. Microbiol. Methods 69: 340344.
125. Manefield, M.,, A. S. Whiteley,, N. Ostle,, P. Ineson, and, M. J. Bailey. 2002a. Technical considerations for RNA-based stable isotope probing: an approach to associating microbial diversity with microbial community function. Rapid Commun. Mass Spectrom. 16: 21792183.
126. Manefield, M.,, A. S. Whiteley,, R. I. Griffiths, and, M. J. Bailey. 2002b. RNA stable isotope probing, a novel means of linking microbial community function to phylogeny. Appl. Environ. Microbiol. 68: 53675373.
127. Mann, E. L., and, S. W. Chisholm. 2000. Iron limits the cell division rate of Prochlorococcus in the eastern equatorial Pacifc. Limnol. Oceanogr. 45: 10671076.
128. Massana, R.,, F. Unrein,, R. Rodriguez-Martinez,, I. Forn,, T. Lefort,, J. Pinhassi, and, F. Not. 2009. Grazing rates and functional diversity of uncultured heterotrophic flagellates. ISME J. 3: 588596.
129. McInerney, M. J., and, M. P. Bryant. 1981. Anaerobic degradation of lactate by syntrophic associations of Methanosarcina barkeri and Desulfovibrio species and effect of H 2 on acetate degradation. Appl. Environ. Microbiol. 41: 346354.
130. McInerney, M. J.,, L. Rohlin,, H. Mouttaki,, U. Kim,, R. S. Krupp,, L. Rios-Hernandez,, J. Sieber,, C. G. Struchtemeyer,, A. Bhattacharyya,, J. W. Campbell, and, R. P. Gunsalus. 2007. The genome of Syntrophus aciditrophicus: Life at the thermodynamic limit of microbial growth. Proc. Natl. Acad. Sci. U.S.A. 104: 76007605.
131. McInerney, M. J.,, J. R. Sieber, and, R. P. Gunsalus. 2009. Syntrophy in anaerobic global carbon cycles. Curr. Opin. Biotechnol. 20: 623632.
132. McInerney, M. J.,, C. G. Struchtemeyer,, J. Sieber,, H. Mouttaki,, A. J. M. Stams,, B. Schink,, L. Rohlin, and, R. P. Gunsalus. 2008. Physiology, ecology, phylogeny, and genomics of microorganisms capable of syntrophic metabolism. Ann. NY Acad. Sci. 1125: 5872.
133. Menes, R. J., and, D. Travers. 2006. Detection of fatty acid beta-oxidizing syntrophic bacteria by fluorescence in situ hybridization. Wat. Sci. Technol. 54: 3339.
134. Menes, R. J., and, L. Muxi. 2002. Anaerobaculum mobile sp. nov., a novel anaerobic, moderately thermophilic, peptide-fermenting bacterium that uses crotonate as an electron acceptor, and emended description of the genus Anaerobaculum. Int. J. Syst. Evol. Microbiol. 52: 157164.
135. Meulepas, R. J. W.,, C. G. Jagersma,, J. Gieteling,, C. J. N. Buisman,, A. J. M. Stams, and, P. N. L. Lens. 2009. Enrichment of anaerobic methanotrophs in sulfate-reducing membrane bioreactors. Biotechnol. Bioeng. 104: 458470.
136. Michaelis, W.,, R. Seifert,, K. Nauhaus,, T. Treude,, V. Thiel,, M. Blumenberg,, K. Knittel,, A. Gieseke,, K. Peterknecht,, T. Pape,, A. Boetius,, R. Amann,, B. B. Jorgensen,, F. Widdel,, J. R. Peckmann,, N. V. Pimenov, and, M. B. Gulin. 2002. Microbial reefs in the Black Sea fueled by anaerobic oxidation of methane. Science 297: 10131015.
137. Middelburg, J. J.,, C. Barranguet,, H. T. S. Boschker,, P. M. J. Herman,, T. Moens, and, C. H. R. Heip. 2000. The fate of intertidal microphytobenthos carbon: an in situ C-13-labeling study. Limnol. Oceanogr. 45: 12241234.
138. Morris, S. A.,, S. Radajewski,, T. W. Willison, and, J. C. Murrell. 2002. Identification of the functionally active methanotroph population in a peat soil microcosm by stable-isotope probing. Appl. Environ. Microbiol. 68: 14461453.
139. Müller, N.,, B. M. Griffn,, U. Stingl, and, B. Schink. 2008. Dominant sugar utilizers in sediment of Lake Constance depend on syntrophic cooperation with methanogenic partner organisms. Environ. Microbiol. 10: 15011511.
140. Murase, J., and, P. Frenzel, 2007. A methane-driven microbial food web in a wetland rice soil. Environ. Microbiol. 9: 30253034.
141. Musat, N.,, H. Halm,, B. Winterholler,, P. Hoppe,, S. Peduzzi,, F. Hillion,, F. Horreard,, R. Amann,, B. B. Jorgensen, and, M. M. M. Kuypers. 2008. A single-cell view on the ecophysiology of anaerobic phototrophic bacteria. Proc. Natl. Acad. Sci. USA 105: 1786117866.
142. Musat, N.,, U. Werner,, K. Knittel,, S. Kolb,, T. Dodenhof,, J. E. E. Van Beusekom,, D. De Beer,, N. Dubilier, and, R. Amann. 2006. Microbial community structure of sandy intertidal sediments in the North Sea, Sylt-Romo Basin, Wadden Sea. System. Appl. Microbiol. 29: 333348.
143. Nauhaus, K.,, M. Albrecht,, M. Elvert,, A. Boetius, and, F. Widdel. 2007. In vitro cell growth of marine archaeal-bacterial consortia during anaerobic oxidation of methane with sulfate. Environ. Microbiol. 9: 187196.
144. Nealson, K. H., and, D. Saffarini. 1994. Iron and manganese in anaerobic respiration—environmental significance, physiology, and regulation. Annu. Rev. Microbiol. 48: 311343.
145. Neufeld, J. D.,, M. G. Dumont,, J. Vohra, and, J. C. Murrell. 2007a. Methodological considerations for the use of stable isotope probing in microbial ecology. Microb. Ecol. 53: 435442.
146. Neufeld, J. D.,, M. Wagner, and, J. C. Murrell. 2007b. Who eats what, where and when? Isotope-labelling experiments are coming of age. ISME J. 1: 103110.
147. Ng, T. K., and, J. G. Zeikus. 1982. Differential metabolism of cellobiose and glucose by Clostridium thermocellum and Clostridium thermohydrosulfuricum. J. Bacteriol. 150: 13911399.
148. Niemann, H.,, T. Losekann,, D. De Beer,, M. Elvert,, T. Nadalig,, K. Knittel,, R. Amann,, E. J. Sauter,, M. Schluter,, M. Klages,, J. P. Foucher, and, A. Boetius. 2006. Novel microbial communities of the Haakon Mosby mud volcano and their role as a methane sink. Nature 443: 854858.
149. Noll, M.,, P. Frenzel, and, R. Conrad, 2008. Selective stimulation of type I methanotrophs in a rice paddy soil by urea fertilization revealed by RNA-based stable isotope probing. FEMS Microbiol. Ecol. 65: 125132.
150. Nüsslein, B.,, K. J. Chin,, W. Eckert, and, R. Conrad. 2001. Evidence for anaerobic syntrophic acetate oxidation during methane production in the profundal sediment of subtropical Lake Kinneret (Israel). Environ. Microbiol. 3: 460470.
151. Nüsslein, B.,, W. Eckert, and, R. Conrad. 2003. Stable isotope biogeochemistry of methane formation in profundal sediments of Lake Kinneret (Israel). Limnol. Oceanogr. 48: 14391446.
152. O’Brien, H. E.,, J. L. Parrent,, J. A. Jackson,, J. M. Moncalvo, and, R. Vilgalys. 2005. Fungal community analysis by large-scale sequencing of environmental samples. Appl. Environ. Microbiol. 71: 55445550.
153. Orphan, V. J.,, K. U. Hinrichs,, W. Ussler, III,, C. K. Paull,, L. T. Taylor,, S. P. Sylva,, J. M. Hayes, and, E. F. DeLong. 2001a. Comparative analysis of methane-oxidizing Archaea and sulfate-reducing bacteria in anoxic marine sediments. Appl. Environ. Microbiol. 67: 19221934.
154. Orphan, V. J.,, C. H. House,, K. U. Hinrichs,, K. D. McKeegan, and, E. F. DeLong. 2001b. Methane-consuming archaea revealed by directly coupled isoto-pic and phylogenetic analysis. Science 293: 484487.
155. Orphan, V. J.,, C. H. House,, K. U. Hinrichs,, K. D. McKeegan, and, E. F DeLong 2002. Multiple archaeal groups mediate methane oxidation in anoxic cold seep sediments. Proc. Natl. Acad. Sci. USA 99: 76637668.
156. Orphan, V. J.,, K. A. Turk,, A. M. Green, and, C. H. House. 2009. Patterns of 15N assimilation and growth of methanotrophic ANME-2 archaea and sulfate-reducing bacteria within structured syn-trophic consortia revealed by FISH-SIMS. Environ. Microbiol. 11: 17771791.
157. Osaka, T.,, Y. Ebie,, S. Tsuneda, and, Y. Inamori. 2008. Identification of the bacterial community involved in methane-dependent denitrification in activated sludge using DNA stable-isotope probing. FEMS Microbiol. Ecol. 64: 494506.
158. Osaka, T.,, S. Yoshie,, S. Tsuneda,, A. Hirata,, N. Iwami, and, Y. Inamori. 2006. Identification of acetate- or methanol-assimilating bacteria under nitrate-reducing conditions by stable-isotope probing. Microb. Ecol. 52: 253266.
159. Ostle, N.,, A. S. Whiteley,, M. J. Bailey,, D. Sleep,, P. Ineson, and, M. Manefield. 2003. Active microbial RNA turnover in a grassland soil estimated using a 13CO 2 spike. Soil Biol. Biochem. 35: 877885.
160. Pace, M. L.,, J. J. Cole,, S. R. Carpenter, and, J. F. Kitchell. 1999. Trophic cascades revealed in diverse ecosystems. Trends Ecol. Evol. 14: 483488.
161. Paerl, H. W. 1984. Transfer of N 2 and CO 2 fixation products from Anabaena oscillarioides to associated bacteria during inorganic carbon sufficiency and defciency. J. Phycol. 20: 600608.
162. Paine, R. T. 1980. Food webs—linkage, interaction strength and community infrastructure—the 3rd Tansley Lecture. J. Animal Ecol. 49: 667685.
163. Partensky, F.,, W. R. Hess, and, D. Vaulot. 1999. Prochlorococcus, a marine photosynthetic prokaryote of global significance. Microbiol. Mol. Biol. Rev. 63: 106127.
164. Pernthaler, J. 2005. Predation on prokaryotes in the water column and its ecological implications. Nat. Rev. Microbiol. 3: 537546.
165. Persson, L. 1999. Trophic cascades: abiding heterogeneity and the trophic level concept at the end of the road. Oikos 85: 385397.
166. Peterson, B. J., and, B. Fry. 1987. Stable isotopes in ecosystem studies. Annu. Rev. Ecol. Syst. 18: 293320.
167. Popa, R.,, P. K. Weber,, J. Pett-Ridge,, J. A. Finzi,, S. J. Fallon,, I. D. Hutcheon,, K. H. Nealson, and, D. G. Capone. 2007. Carbon and nitrogen fixation and metabolite exchange in and between individual cells of Anabaena oscillarioides. ISME J. 1: 354360.
168. Prosser, J. I.,, J. I. Rangel-Castro, and, K. Killham. 2006. Studying plant-microbe interactions using stable isotope technologies. Curr. Opin. Biotechnol. 17: 98102.
169. Qiu, Q.,, R. Conrad, and, Y. Lu, 2009. Cross-feeding of methane carbon among bacteria on rice roots revealed by DNA-stable isotope probing. Environ. Microbiol. Rep. 1: 355361.
170. Radajewski, S.,, P. Ineson,, N. R. Parekh, and, J. C. Murrell. 2000. Stable-isotope probing as a tool in microbial ecology. Nature 403: 646649.
171. Radajewski, S.,, I. R. McDonald, and, J. C. Murrell. 2003. Stable-isotope probing of nucleic acids: a window to the function of uncultured microorganisms. Curr. Opin. Biotechnol. 14: 296302.
172. Radajewski, S.,, G. Webster,, D. S. Reay,, S. A. Morris,, P. Ineson,, D. B. Nedwell,, J. I. Prosser, and, J. C. Murrell. 2002. Identification of active methylotroph populations in an acidic forest soil by stable-isotope probing. Microbiology 148: 23312342.
173. Raghoebarsing, A. A.,, A. Pol,, K. van de Pas-Schoonen,, A. J. P. Smolders,, K. F. Ettwig,, W. I. Rijpstra,, S. Schouten,, J. S. S. Damste,, H. J. M. Op Den Camp,, M. S. M. Jetten, and, M. Strous 2006. A microbial consortium couples anaerobic methane oxidation to denitrification. Nature 440: 918921.
174. Raghoebarsing, A. A.,, A. J. P. Smolders,, M. C. Schmid,, W. I. C. Rijpstra,, M. Wolters-Arts,, J. Derksen,, M. S. M. Jetten,, S. Schouten,, J. S. S. Damste,, L. P. M. Lamers,, J. G. M. Roelofs,, H. J. M. Op Den Camp, and, M. Strous. 2005. Methanotrophic symbionts provide carbon for photosynthesis in peat bogs. Nature 436: 11531156.
175. Rangel-Castro, J. I.,, K. Killham,, N. Ostle,, G. W. Nicol,, I. C. Anderson,, C. M. Scrimgeour,, P. Ineson,, A. Meharg, and, J. I. Prosser. 2005. Stable isotope probing analysis of the influence of liming on root exudate utilization by soil microorganisms. Environ. Microbiol. 7: 828838.
176. Rasche, F.,, T. Lueders,, M. Schloter,, S. Schaefer,, F. Buegger,, A. Gattinger,, R. C Hood-Nowotny, and, A. Sessitsch. 2009. DNA-based stable isotope probing enables the identification of active bacterial endophytes in potatoes. New Phytologist 181: 802807.
177. Raskin, L.,, J. M. Stromley,, B. E. Rittmann, and, D. A. Stahl. 1994. Group-specific 16S rRNA hybridization probes to describe natural communities of methanogens. Appl. Environ. Microbiol. 60: 12321240.
178. Raven, J. A. 1997. Phagotrophy in phototrophs. Limnol. Oceanogr. 42: 198205.
179. Reeburgh, W. S. 2007. Oceanic methane biogeochemistry. Chem. Rev. 107: 486513.
180. Reichenbach, H. 1992a. The genus Lysobacter, p. 3256–3275. In A. Balows,, H. G. Trüper,, M. Dworkin,, W. Harder, and, K.-H. Schleifer (ed.), The Prokaryotes. Springer, New York, NY.
181. Reichenbach, H. 1992b. The order Cytophagales, p. 3631–3675. In A. Balows,, H. G. Trüper,, M. Dworkin,, W. Harder, and, K.-H. Schleifer (ed.), The Prokaryotes. Springer, New York, NY.
182. Reichenbach, H. 1999. The ecology of the myxobacteria. Environ. Microbiol. 1: 1521.
183. Roh, H.,, C. P. Yu,, M. E. Fuller, and, K. H. Chu. 2009. Identification of hexahydro-1,3,5-trinitro-1,3,5-triazine-degrading microorganisms via N-15-stable isotope probing. Environ. Sci. Technol. 43: 25052511.
184. Ronn, R.,, A. E. McCaig,, B. S. Griffiths, and, J. I. Prosser. 2002. Impact of protozoan grazing on bacterial community structure in soil microcosms. Appl. Environ. Microbiol. 68: 60946105.
185. Rusch, A.,, M. Huettel,, C. E. Reimers,, G. L. Taghon, and, C. M. Fuller. 2003. Activity and distribution of bacterial populations in Middle Atlantic Bight shelf sands. FEMS Microbiol. Ecol. 44: 89100.
186. Sakai, S.,, H. Imachi,, S. Hanada,, A. Ohashi,, H. Harada, and, Y. Kamagata. 2008. Methanocella paludicola gen. nov., sp nov., a methane-producing archaeon, the first isolate of the lineage “Rice Cluster I,” and proposal of the new archaeal order Methanocellales ord. nov. Int. J. Syst. Evol. Microbiol. 58: 929936.
187. Scheu, S. 2001. Plants and generalist predators as links between the below-ground and above-ground system. Basic Appl. Ecol. 2: 313.
188. Scheu, S. 2002. The soil food web: structure and perspectives. Eur. J. Soil Biol. 38: 1120.
189. Scheuermayer, M.,, T. A. M. Gulder,, G. Bringmann, and, U. Hentschel. 2006. Rubritalea marina gen. nov., sp nov., a marine representative of the phylum “Verrucomicrobia,” isolated from a sponge (Porifera). Int. J. Syst. Evol. Microbiol. 56: 21192124.
190. Schink, B. 1997. Energetics of syntrophic cooperation in methanogenic degradation. Microbiol. Mol. Biol. Rev. 61: 262280.
191. Schink, B. 2002. Synergistic interactions in the microbial world. Antonie van Leeuwenhoek 81: 257261.
192. Schink, B. 2006. The genus Pelobacter, p. 5–11. In M. Dworkin,, S. Falkow,, E. Rosenberg,, K.-H. Schleifer, and, E. Stackebrandt (ed.), The Prokaryotes. Springer, New York, NY.
193. Schink, B., and, M. Friedrich, 1994. Energetics of syntrophic fatty acid oxidation. FEMS Microbiol. Rev. 15: 8594.
194. Schink, B., and, A. J. M. Stams. 2006. Syntrophism among prokaryotes, p. 309–335. In M. Dworkin,, S. Falkow,, E. Rosenberg,, K.-H. Schleifer, and, E. Stackebrandt (ed.), The Prokaryotes. Springer, New York, NY.
195. Schwarz, J. I. K.,, T. Lueders,, W. Eckert, and, R. Conrad. 2007. Identification of acetate-utilizing Bacteria and Archaea in methanogenic profundal sediments of Lake Kinneret (Israel) by stable isotope probing of rRNA. Environ. Microbiol. 9: 223237.
196. Seitz, H. J.,, B. Schink,, N. Pfennig, and, R. Conrad. 1990. Energetics of syntrophic ethanol oxidation in defined chemostat cocultures 1. Energy requirement for hydrogen production and hydrogen oxidation. Arch. Microbiol. 155: 8288.
197. Sekiguchi, Y.,, H. Imachi,, A. Susilorukmi,, M. Muramatsu,, A. Ohashi,, H. Harada,, S. Hanada, and, Y. Kamagata. 2006. Tepidanaerobacter syntrophicus gen. nov., sp nov., an anaerobic, moderately thermophilic, syntrophic alcohol- and lactate-degrading bacterium isolated from thermophilic digested sludges. Int. J. Syst. Evol. Microbiol. 56: 16211629.
198. Sekiguchi, Y.,, Y. Kamagata,, K. Nakamura,, A. Ohashi, and, H. Harada. 1999. Fluorescence in situ hybridization using 16S rRNA-targeted oligo-nucleotides reveals localization of methanogens and selected uncultured bacteria in mesophilic and ther-mophilic sludge granules. Appl. Environ. Microbiol. 65: 12801288.
199. Shimkets, L. J.,, J. P. Dworkin, and, H. Reichen-Bach. 2006. The Myxobacteria, p. 31–115. In M. Dworkin,, S. Falkow,, E. Rosenberg,, K.-H. Schleifer, and, E. Stackebrandt (ed.), The Prokaryotes. Springer, New York, NY.
200. Singleton, D. R.,, M. Hunt,, S. N. Powell,, R. Frontera-Suau, and, M. D. Aitken. 2007. Stable-isotope probing with multiple growth substrates to determine substrate specificity of uncultivated bacteria. J. Microbiol. Methods 69: 180187.
201. Singleton, D. R.,, R. Sangaiah,, A. Gold,, L. M. Ball, and, M. D. Aitken. 2006. Identification and quantification of uncultivated Proteobacteria associated with pyrene degradation in a bioreactor treating PAH-contaminated soil. Environ. Microbiol. 8: 17361745.
202. Sousa, D. Z.,, M. A. Pereira,, H. Smidt,, A. J. M. Stams, and, M. M. Alves. 2007. Molecular assessment of complex microbial communities degrading long chain fatty acids in methanogenic bioreactors. FEMS Microbiol. Ecol. 60: 252265.
203. Sousa, D. Z.,, H. Smidt,, M. M. Alves, and, A. J. M. Stams. 2009. Ecophysiology of syntrophic communities that degrade saturated and unsatu-rated long-chain fatty acids. FEMS Microbiol. Ecol. 68: 257272.
204. Strous, M., and, M. S. M. Jetten. 2004. Anaerobic oxidation of methane and ammonium. Annu. Rev. Microbiol. 58: 99117.
205. Sueoka, K.,, H. Satoh,, M. Onuki, and, T. Mino. 2009. Microorganisms involved in anaerobic phenol degradation in the treatment of synthetic coke-oven wastewater detected by RNA stable-isotope probing. FEMS Microbiol. Lett. 291: 169174.
206. Thauer, R. K.,, K. Jungermann, and, K. Decker. 1977. Energy conservation in chemotrophic anaerobic bacteria. Bacteriol. Rev. 41: 100180.
207. Treonis, A. M.,, N. J. Ostle,, A. W. Stott,, R. Primrose,, S. J. Grayston, and, P. Ineson. 2004. Identification of groups of metabolically-active rhizosphere microorganisms by stable isotope probing of PLFAs. Soil Biol. Biochem. 36: 533537.
208. Tsai, A. Y.,, K. P. Chiang,, Y. F. Chan,, Y. C. Lin, and, J. Chang. 2007. Pigmented nanoflagellates in the coastal western subtropical Pacific are important grazers on Synechococcus populations. J. Plankton Res. 29: 7177.
209. Unrein, F.,, R. Massana,, L. Alonso-Saez, and, J. M. Gasol. 2007. Significant year-round effect of small mixotrophic flagellates on bacterioplankton in an oligotrophic coastal system. Limnol. Oceanogr. 52: 456469.
210. Urakawa, H.,, K. Kita-Tsukamoto, and, K. Ohwada. 1999. Microbial diversity in marine sediments from Sagami Bay and Tokyo Bay, Japan, as determined by 16S rRNA gene analysis. Microbiology-Sgm. 145: 33053315.
211. Vandenkoornhuyse, P.,, S. Mahe,, P. Ineson,, P. Staddon,, N. Ostle,, J. B. Cliquet,, A. J. Francez,, A. H. Fitter, and, J. P. W. Young. 2007. Active root-inhabiting microbes identified by rapid incorporation of plant-derived carbon into RNA. Proc. Natl. Acad. Sci. USA 104: 1697016975.
212. Wagner, M. 2009. Single-cell ecophysiology of microbes as revealed by raman microspectroscopy or secondary ion mass spectrometry imaging. Annu. Rev. Microbiol. 63: 411429.
213. Wallrabenstein, C.,, E. Hauschild, and, B. Schink, 1995. Syntrophobacter pfennigii sp. nov., new syntrophically propionate-oxidizing anaerobe growing in pure culture with propionate and sulfate. Arch. Microbiol. 164: 346352.
214. Wardle, D. A.,, R. D. Bardgett,, J. N. Klironomos,, H. Setala,, W. H van Der Putten, and, D. H. Wall. 2004. Ecological linkages between aboveground and belowground biota. Science 304: 16291633.
215. Wardle, D. A., and, G. W. Yeates. 1993. The dual importance of competition and predation as regulatory forces in terrestrial ecosystems—evidence from decomposer food-webs. Oecologia 93: 303306.
216. Webster, N. S., and, A. P. Negri. 2006. Site-specific variation in Antarctic marine biofilms established on artificial surfaces. Environ. Microbiol. 8: 11771190.
217. Wegener, G.,, H. Niemann,, M. Elvert,, K. U. Hin-Richs, and, A. Boetius. 2008. Assimilation of methane and inorganic carbon by microbial communities mediating the anaerobic oxidation of methane. Environ. Microbiol. 10: 22872298.
218. Widdel, F.,, A. Boetius, and, R. Rabus, 2006. Anaerobic biodegradation of hydrocarbons including methane, p. 1028–1049. In M. Dworkin,, S. Falkow,, E. Rosenberg,, K.-H. Schleifer, and, E. Stackebrandt (ed.), The Prokaryotes. Springer, New York, NY.
219. Wuest, P. K.,, M. A. Horn, and, H. L. Drake. 2009. Trophic links between fermenters and methanogens in a moderately acidic fen soil. Environ. Microbiol. 11: 13951409.
220. Zavarzina, D. G.,, T. G. Sokolova,, T. P. Tourova,, N. A. Chernyh,, N. A. Kostrikina, and, E. A Bonch-Osmolovskaya. 2007. Thermincola ferriacetica sp. nov., a new anaerobic, thermophilic, facultatively chemolithoautotrophic bacterium capable of dissimilatory Fe(III) reduction. Extremophiles 11: 17.
221. Zellner, G.,, A. J. L. Macario, and, E. C. deMacario. 1997. A study of three anaerobic methanogenic bio-reactors reveals that syntrophs are diverse and different from reference organisms. FEMS Microbiol. Ecol. 22: 295301.


Generic image for table

Changes of Gibbs free energy for secondary fermentations and methane-forming reactions

Citation: Friedrich M. 2011. Trophic Interactions in Microbial Communities and Food Webs Traced by Stable Isotope Probing of Nucleic Acids, p 203-232. In Murrell J, Whiteley A (ed), Stable Isotope Probing and Related Technologies. ASM Press, Washington, DC. doi: 10.1128/9781555816896.ch10

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error