Chapter 12 : DNA stable Isotope Probing and Gene Mining

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

DNA stable Isotope Probing and Gene Mining, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555816896/9781555815370_Chap12-1.gif /docserver/preview/fulltext/10.1128/9781555816896/9781555815370_Chap12-2.gif


This chapter reviews the state of the art in isolation of new and valuable industrial enzymes from natural biodiversity, and discusses the strengths and weaknesses of each approach and shows how results with DNA stable isotope probing (DNA-SIP) indicate that this technique has substantial promise for improving the effectiveness of strategies for discovering new and valuable enzymes. The many successes of microbial enzymes from extreme environments as biocatalysts have generated an increasing demand for new, robust, and highly specific enzymes to perform all manner of transformations. Metagenomics has emerged as a powerful approach to access genes from uncultivated microbes by direct cloning of microbial DNA extracted from the environment. The study by Jeon and colleagues combined DNA-SIP and traditional microbiological methods to discover novel microorganisms involved in the degradation of the polyaromatic pollutant naphthalene. This study is an excellent example of how such techniques could be combined to discover new enzymes. The DNA-SIP gene mining approach allows the enrichment and recovery of functional genes from active and potentially uncultivated microorganisms and therefore is of great interest to the biotechnology industry. DNA-SIP is a powerful approach that can be used to enrich target genes for gene mining and thus improve and facilitate their screening in clone libraries. DNA-SIP can be combined with recent mutagenesis techniques such as gene shuffling in order to create large numbers of potentially novel biocatalysts.

Citation: Moussard H, Smith T, Murrell J. 2011. DNA stable Isotope Probing and Gene Mining, p 259-276. In Murrell J, Whiteley A (ed), Stable Isotope Probing and Related Technologies. ASM Press, Washington, DC. doi: 10.1128/9781555816896.ch12
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of FIGURE 1

Flow chart illustrating the DNA-SIP gene mining approach. Starting from the SIP incubation of environmental samples followed by purification of the “heavy” DNA (C-DNA), three routes are then available to identify novel genes: (1) through PCR detection using functional gene primers; (2) through sequence-based or function-based screening of large- or small-insert metagenomic libraries; and (3) through mining of metabolic homologous genes in the genome of active microorganisms (if genome is available in databases). As a downstream application, various re-engineering strategies can also be carried out for creating protein diversity (e.g., in order to obtain highly selective and efficient biocatalysts for catalytic processes under various conditions).

Citation: Moussard H, Smith T, Murrell J. 2011. DNA stable Isotope Probing and Gene Mining, p 259-276. In Murrell J, Whiteley A (ed), Stable Isotope Probing and Related Technologies. ASM Press, Washington, DC. doi: 10.1128/9781555816896.ch12
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2

Schematic representation of cost-effective production of complex C-labeled compounds from plant or microbial biomass. In the first step, plants or microorganisms are incubated with simple and readily available C-labeled compounds (e.g., C-labeled carbon dioxide, bicarbonate, or glucose). Following incubation, complex C-labeled components of the plant (long carbohydrate biopolymers such as lignin and cellulose) or the microorganisms (e.g., membrane lipids and proteins or chitin from the cell wall of fungi) are extracted and are now available to be used for DNA-SIP experiments and gene mining of enzymes responsible for the degradation of these labeled substrates (e.g., cellulases, xylanases, ligninases, proteases, lipases, chitinases).

Citation: Moussard H, Smith T, Murrell J. 2011. DNA stable Isotope Probing and Gene Mining, p 259-276. In Murrell J, Whiteley A (ed), Stable Isotope Probing and Related Technologies. ASM Press, Washington, DC. doi: 10.1128/9781555816896.ch12
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Amann, R. I.,, W. Ludwig, and, K. H. Schleifer. 1995. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol. Rev. 59: 143169.
2. Arnold, F. H. 1998. When blind is better: protein design by evolution. Nat. Biotechnol. 16: 617618.
3. Bayer, T. S.,, D. M. Widmaier,, K. Temme,, E. A. Mirsky,, D. V. Santi, and, C. A. Voigt. 2009. Synthesis of methyl halides from biomass using engineered microbes. J. Am. Chem. Soc. 131: 65086515.
4. Bernard, L.,, C. Mougel,, P.-A. Maron,, V. Nowak,, J. Lévêque,, C. Henault,, F. Z. Haichar,, O. Berge,, C. Marol,, J. Balesdent,, F. Gibiat,, P. Lemanceau, and, L. Ranjard. 2007. Dynamics and identification of soil microbial populations actively assimilating carbon from 13C-labelled wheat residue as estimated by DNA- and RNA-SIP techniques. Environ. Microbiol. 9: 752764.
5. Bershtein, S.,, K. Goldin, and, D. S. Tawfik. 2008. Intense neutral drifts yield robust and evolvable consensus proteins. J. Mol. Biol. 379: 10291044.
6. Borodina, E.,, M. J. Cox,, I. R. McDonald, and, J. C. Murrell. 2005. Use of DNA-stable isotope probing and functional gene probes to investigate the diversity of methyl chloride-utilizing bacteria in soil. Environ. Microbiol. 7: 13181328.
7. Borodina, E.,, T. Nichol,, M. G. Dumont,, T. J. Smith, and, J. C. Murrell. 2007. Mutagenesis of the “leucine gate” to explore the basis of catalytic versatility in soluble methane monooxygenase. Appl. Environ. Microbiol. 73: 64606467.
8. Cary, S. C.,, I. R. McDonald,, J. E. Barrett, and, D. A. Cowan. 2010. On the rocks: the microbiology of Antarctic Dry Valley soils. Nat. Rev. Microbiol. 8: 129138.
9. Chen, Y., and, J. C. Murrell. 2010. When metagenomics meets stable isotope probing: progress and perspectives. Trends Microbiol. 18: 157163.
10. Chen, Y.,, M. G. Dumont,, J. D. Neufeld,, L. Bodrossy,, N. Stralis-Pavese,, N. P. McNamara,, N. Ostle,, M. J. Briones, and, J. C. Murrell. 2008. Revealing the uncultivated majority: combining DNA stable-isotope probing, multiple displacement amplification and metagenomic analyses of uncultivated Methylocystis in acidic peatlands. Environ. Microbiol. 10: 26092622.
11. Coleman, N. V.,, N. B. Bui, and, A. J. Holmes. 2006. Soluble diiron monooxygenase gene diversity in soils, sediments and ethene enrichments. Environ. Microbiol. 8: 12281239.
12. Cottrell, M. T.,, J. A. Moore, and, D. L. Kirchman. 1999. Chitinases from uncultured marine microorganisms. Appl. Environ. Microbiol. 65: 25532557.
13. Cowan, D. A. 2000. Microbial genomes—the untapped resource. Trends Biotechnol. 18: 1416.
14. Crameri, A.,, S. A. Raillard,, E. Bermudez, and, W. P. Stemmer. 1998. DNA Shuffling of a family of genes from diverse species accelerates directed evolution. Nature 391: 288291.
15. Curtis, T. P.,, W. T. Sloan, and, J. W. Scannell. 2002. Estimating prokaryotic diversity and its limits. Proc. Natl. Acad. Sci. USA 99: 1049410499.
16. Daniel, R. 2004. The soil metagenome—a rich resource for the discovery of novel natural products. Curr. Opin. Biotechnol. 15: 199204.
17. Daniel, R. 2005. The metagenomics of soil. Nat. Rev. Microbiol. 3: 470478.
18. Demain, A., and, J. Adrio, 2008. Contributions of microorganisms to industrial biology. Mol. Biotechnol. 38: 4155.
19. Demirjian, D. C.,, F. Morís-Varas, and, C. S. Cassidy. 2001. Enzymes from extremophiles. Curr. Opin. Chem. Biol. 5: 144151.
20. DeRito, C. M., and, E. L. Madsen. 2009. Stable isotope probing reveals Trichosporon yeast to be active in situ in soil phenol metabolism. ISME J. 3: 477485.
21. DeRito, C. M.,, G. M. Pumphrey, and, E. L. Madsen. 2005. Use of field-based stable isotope probing to identify adapted populations and track carbon flow through a phenol-degrading soil microbial community. Appl. Environ. Microbiol. 71: 78587865.
22. Dickinson, K.,, V. Keer,, C. A. Hitchcock, and, D. J. Adams. 1991. Microsomal chitinase activity from Candida albicans. Biochim. Biophys. Acta 1073: 177182.
23. Dumont, M. G.,, S. M. Radajewski,, C. B. Miguez,, I. R. McDonald, and, J. C. Murrell. 2006. Identification of a complete methane monooxygenase operon from soil by combining stable isotope probing and metagenomic analysis. Environ. Microbiol. 8: 12401250.
24. Ferrer, M.,, A. Beloqui,, K. N. Timmis, and, P. N. Golyshin. 2009. Metagenomics for mining new genetic resources of microbial communities. J. Mol. Microbiol. Biotechnol. 16: 109123.
25. Gale, E. F. 1951. Bacteria as chemical agents, p. 5. In The Chemical Activities of Bacteria, 3rd ed. Academic Press Inc., New York, NY.
26. Gerday, C.,, M. Aittaleb,, M. Bentahir,, J. P. Chessa,, P. Claverie,, T. Collins,, S. D’Amico,, J. Dumont,, G. Garsoux,, D. Georlette,, A. Hoyoux,, T. Lon-hienne,, M. A. Meuwis, and, G. Feller. 2000. Cold-adapted enzymes: from fundamentals to biotechnology. Trends Biotechnol. 18: 103107.
27. Glazer, A. N., and, H. Nikaido. 2007. Microbial Biotechnology: Fundamentals of Applied Microbiology, 2nd ed. Cambridge University Press, Cambridge, United Kingdom.
28. Gustafsson, C.,, S. Govindarajan, and, J. Minshull, 2004. Codon bias and heterologous protein expression. Trends Biotechnol. 22: 346353.
29. Handelsman, J. 2004. Metagenomics: application of genomics to uncultured microorganisms. Microbiol. Mol. Biol. Rev. 68: 669685.
30. Herrmann, S.,, S. Kleinsteuber,, A. Chatzinotas,, S. Kuppardt,, T. Lueders,, H. H. Richnow, and, C. Vogt. 2009. Functional characterization of an anaerobic benzene-degrading enrichment culture by DNA stable isotope probing. Environ. Microbiol. 12: 401411.
31. Ho, S. N.,, H. D. Hunt,, R. M. Horton,, J. K. Pullen, and, L. R. Pease. 1989. Site-directed mutagenesis by overlap extension using the polymerase chain reaction. Gene 77: 5159.
32. Holmes, A. J., and, N. V. Coleman. 2008. Evolutionary ecology and multidisciplinary approaches to prospecting for monooxygenases as biocatalysts. Antonie Van Leeuwenhoek 94: 7584.
33. Jackel, C.,, P. Kast, and, D. Hilvert, 2008. Protein design by directed evolution. Annu. Rev. Biophys. 37: 153173.
34. Jeon, C. O.,, W. Park,, P. Padmanabhan,, C. DeRito,, J. R. Snape, and, E. L. Madsen. 2003. Discovery of a bacterium, with distinctive dioxygenase, that is responsible for in situ biodegradation in contaminated sediment. Proc. Natl. Acad. Sci. USA 100: 1359113596.
35. Jones, M.,, D. Singleton,, D. Carstensen,, S. Powell,, J. Swanson,, F. Pfaender, and, M. Aitken. 2008. Effect of incubation conditions on the enrichment of pyrene-degrading bacteria identified by stable-isotope probing in an aged, PAH-contaminated soil. Microb. Ecol. 56: 341349.
36. Kalyuzhnaya, M. G.,, A. Lapidus,, N. Ivanova,, A. C. Copeland,, A. C. McHardy,, E. Szeto,, A. Salamov,, I. V. Grigoriev,, D. Suciu,, S. R. Levine,, V. M. Markowitz,, I. Rigoutsos,, S. G. Tringe,, D. C. Bruce,, P. M. Richardson,, M. E. Lidstrom, and, L. Chistoserdova. 2008. High-resolution metagenomics targets specific functional types in complex microbial communities. Nat. Biotechnol. 26: 10291034.
37. Klaus-Joerger, T.,, R. Joerger,, E. Olsson, and, C. G. Granqvist. 2001. Bacteria as workers in the living factory: metal-accumulating bacteria and their potential for materials science. Trends Biotechnol. 19: 1520.
38. Kunapuli, U.,, T. Lueders, and, R. U. Meckenstock. 2007. The use of stable isotope probing to identify key iron-reducing microorganisms involved in anaerobic benzene degradation. ISME J. 1: 643653.
39. Leahy, J. G.,, P. J. Batchelor, and, S. M. Morcomb. 2003. Evolution of the soluble diiron monooxygenases. FEMS Microbiol. Rev. 27: 449479.
40. Leigh, M. B.,, V. H. Pellizari,, O. Uhlik,, R. Sutka,, J. Rodrigues,, N. E. Ostrom,, J. Zhou, and, J. M. Tiedje. 2007. Biphenyl-utilizing bacteria and their functional genes in a pine root zone contaminated with polychlorinated biphenyls (PCBs). ISME J. 1: 134148.
41. Li, L. L.,, S. R. McCorkle,, S. Monchy,, S. Taghavi, and, D. van der Lelie. 2009. Bioprospecting meta-genomes: glycosyl hydrolases for converting biomass. Biotechnol. Biofuels 2: 10.
42. Liou, J. S.,, C. M. DeRito, and, E. L. Madsen. 2008. Field-based and laboratory stable isotope probing surveys of the identities of both aerobic and anaerobic benzene-metabolizing microorganisms in freshwater sediment. Environ. Microbiol. 10: 19641977.
43. Lorenz, P., and, J. Eck, 2005. Metagenomics and industrial applications. Nat. Rev. Microbiol. 3: 510516.
44. Luo, C.,, S. Xie,, W. Sun,, X. Li, and, A. M. Cupples. 2009. Identification of a novel toluene-degrading bacterium from the candidate phylum TM7, as determined by DNA stable isotope probing. Appl. Environ. Microbiol. 75: 46444647.
45. Madigan, M. T. 2000. Bacterial habitats of extremophiles, p. 61. In J. Seckbach (ed.), Journey to diverse Microbial worlds: adaptation to exotic environments. Dordrecht, The Netherlands: Kluwer Academic Publishers.
46. Madigan, M. T., and, B. L. Marrs. 1997. Extremophiles. Sci Am. 276: 8287.
47. Miller, L. G.,, K. L. Warner,, S. M. Baesman,, R. S. Oremland,, I. R. McDonald,, S. Radajewski, and, J. C. Murrell. 2004. Degradation of methyl bromide and methyl chloride in soil microcosms: use of stable C isotope fractionation and stable isotope probing to identify reactions and the responsible microorganisms. Geochim. Cosmochim. Acta 68: 32713283.
48. Murrell, J. C., and, T. J. Smith. 2010. Biochemistry and molecular biology of methane monooxygenase, p. 1045–1055. In K. N. Timmis (ed.), Handbook of Hydrocarbon and Lipid Microbiology. Springer-Verlag, Berlin, Germany.
49. Neufeld, J. D.,, Y. Chen,, M. G. Dumont, and, J. C. Murrell. 2008. Marine methylotrophs revealed by stable-isotope probing, multiple displacement amplification and metagenomics. Environ. Microbiol. 10: 15261535.
50. Nies, D. H. 1999. Microbial heavy-metal resistance. Appl. Microbiol. Biotechnol. 51: 730750.
51. Oka, A. R.,, C. D. Phelps,, L. M. McGuinness,, A. Mumford,, L. Y. Young, and, L. J. Kerkhof. 2008. Identification of critical members in a sulfidogenic benzene-degrading consortium by DNA stable isotope probing. Appl. Environ. Microbiol. 74: 64766480.
52. Okuta, A.,, K. Ohnishi, and, S. Harayama, 1998. PCR isolation of catechol 2,3-dioxygenase gene fragments from environmental samples and their assembly into functional genes. Gene 212: 221228.
53. Padmanabhan, P.,, S. Padmanabhan,, C. DeRito,, A. Gray,, D. Gannon,, J. R. Snape,, C. S. Tsai,, W. Park,, C. Jeon, and, E. L. Madsen. 2003. Respiration of 13C-labeled substrates added to soil in the field and subsequent 16S rRNA gene analysis of 13C-labeled soil DNA. Appl. Environ. Microbiol. 69: 16141622.
54. Pumphrey, G. M., and, E. L. Madsen. 2008. Field-based stable isotope probing reveals the identities of benzoic acid-metabolizing microorganisms and their in situ growth in agricultural soil. Appl. Environ. Microbiol. 74: 41114118.
55. Radajewski, S.,, P. Ineson,, N. R. Parekh, and, J. C. Murrell. 2000. Stable-isotope probing as a tool in microbial ecology. Nature 403: 646649.
56. Rappé, M. S., and, S. J. Giovannoni. 2003. The uncultured microbial diversity. Annu. Rev. Microbiol. 57: 369394.
57. Ricke, P.,, M. Kube,, S. Nakagawa,, C. Erkel,, R. Reinhardt, and, W. Liesack. 2005. First genome data from uncultured upland soil cluster alpha methanotrophs provide further evidence for a close phylogenetic relationship to Methylocapsa acidiphila B2 and for high-affinity methanotrophy involving particulate methane monooxygenase. Appl. Environ. Microbiol. 71: 74727482.
58. Riesenfield, C. S.,, P. D. Schloss, and, J. Handelsman. 2004. Metagenomics: genomic analysis of microbial communities. Annu. Rev. Genet. 38: 525552.
59. Roh, H.,, C. P. Yu,, M. E. Fuller, and, K. H. Chu. 2009. Identification of hexahydro-1,3,5-trinitro-1,3,5-triazine-degrading microorganisms via 15N-stable isotope probing. Environ. Sci. Technol. 43: 25052511.
60. Rohwerder, T.,, T. Gehrke,, K. Kinzler, and, W. Sand. 2003. Bioleaching review part A: progress in bioleaching: fundamentals and mechanisms of bacterial metal sulfide oxidation. Appl. Microbiol. Biotechnol. 63: 239248.
61. Romero, P. A., and, F. H. Arnold. 2009. Exploring protein fitness landscapes by directed evolution. Nat. Rev. Mol. Cell. Biol. 10: 866876.
62. Rothschild, L. J., and, R. L. Mancinelli. 2001. Life in extreme environments. Nature 409: 10921101.
63. Schloss, P. D., and, J. Handelsman. 2003. Biotechnological prospects from metagenomics. Curr. Opin. Biotechnol. 14: 303310.
64. Schmeisser, C.,, H. Steele, and, W. R. Streit. 2007. Metagenomics, biotechnology with non-culturable microbes. Appl. Microbiol. Biotechnol. 75: 955962.
65. Schwarz, S.,, T. Waschkowitz, and, R. Daniel, 2006. Enhancement of gene detection frequencies by combining DNA-based stable-isotope probing with the construction of metagenomic DNA libraries. World J. Microbiol. Biotechnol. 22: 363367.
66. Singleton, D. R.,, M. Hunt,, S. N. Powell,, R. Frontera-Suau, and, M. D. Aitken. 2007. Stable-isotope probing with multiple growth substrates to determine substrate specificity of uncultivated bacteria. J. Microbiol. Methods 69: 180187.
67. Singleton, D. R.,, S. N. Powell,, R. Sangaiah,, A. Gold,, L. M. Ball, and, M. D. Aitken. 2005. Stable-isotope probing of bacteria capable of degrading salicylate, naphthalene, or phenanthrene in a bioreactor treating contaminated soil. Appl. Environ. Microbiol. 71: 12021209.
68. Singleton, D. R.,, R. Sangaiah,, A. Gold,, L. M. Ball, and, M. D. Aitken. 2006. Identification and quantification of uncultivated Proteobacteria associated with pyrene degradation in a bioreactor treating PAH-contaminated soil. Environ. Microbiol. 8: 17361745.
69. Smith, T. J.,, S. E. Slade,, N. P. Burton,, J. C. Murrell, and, H. Dalton. 2002. Improved system for protein engineering of the hydroxylase component of soluble methane monooxygenase. Appl. Environ. Microbiol. 68: 52655273.
70. Steele, H. L.,, K. E. Jaeger,, R. Daniel, and, W. R. Streit. 2009. Advances in recovery of novel biocatalysts from metagenomes. J. Mol. Microbiol. Biotechnol. 16: 2537.
71. Straathof, A. J.,, S. Panke, and, A. Schmid. 2002. The production of fine chemicals by biotransformations. Curr. Opin. Biotechnol. 13: 548556.
72. Sul, W. J.,, J. Park,, J. F. Quensen, III,, J. L. M. Rodrigues,, L. Seliger,, T. V. Tsoi,, G. J. Zylstra, and, J. M. Tiedje. 2009. DNA-Stable isotope probing integrated with metagenomics for retrieval of biphenyl dioxygenase genes from polychlorinated biphenyl-contaminated river sediment. Appl. Environ. Microbiol. 75: 55015506.
73. Thompson, I. P.,, C. J. van der Gast,, L. Ciric, and, A. C. Singer. 2005. Bioaugmentation for bioremediation: the challenge of strain selection. Environ. Microbiol. 7: 909915.
74. Tuffin, M.,, D. Anderson,, C. Heath, and, D. A. Cowan. 2009. Metagenomic gene discovery: how far have we moved into novel sequence space? Biotechnol. J. 4: 16711683.
75. Turner, P.,, G. Mamo, and, E. N. Karlsson. 2007. Potential and utilization of thermophiles and thermostable enzymes in biorefining. Microb. Cell Fact. 6: 9.
76. Uchiyama, T., and, K. Watanabe, 2006. Improved inverse PCR scheme for metagenome walking. Bio-Techniques 41: 183188.
77. Uchiyama, T., and, K. Miyazaki, 2009. Functional metagenomics for enzyme discovery: challenges to efficient screening. Curr. Opin. Biotechnol. 20: 616622.
78. Uhlik, O.,, K. Jecna,, M. B. Leigh,, M. Mackova, and, T. Macek. 2009a. DNA-based stable isotope probing: a link between community structure and function. Sci. Total Environ. 407: 36113619.
79. Uhlik, O.,, K. Jecna,, M. Mackova,, C. Vlcek,, M. Hroudova,, K. Demnerova,, V. Paces, and, T. Macek. 2009b. Biphenyl-metabolizing bacteria in the rhizosphere of horseradish and bulk soil contaminated by polychlorinated biphenyls as revealed by stable isotope probing. Appl. Environ. Microbiol. 75: 64716477.
80. Villalobos, A.,, J. E. Ness,, C. Gustafsson,, J. Minshull, and, S. Govindarajan. 2006. Gene Designer: a synthetic biology tool for constructing artificial DNA segments. BMC Bioinformatics 7: 285.
81. Whitman, W. B.,, D. C. Coleman, and, W. J. Wiebe. 1998. Prokaryotes: the unseen majority. Proc. Natl. Acad. Sci. USA 95: 65786583.
82. Woese, C. 1998. The universal ancestor. Proc. Natl. Acad. Sci. USA 95: 68546859.
83. Yamada, K.,, T. Terahara,, S. Kurata,, T. Yokomaku,, S. Tsuneda, and, S. Harayama. 2008. Retrieval of entire genes from environmental DNA by inverse PCR with pre-amplification of target genes using primers containing locked nucleic acids. Environ. Microbiol. 10: 978987.
84. Yu, C. P., and, K. H. Chu. 2005. A quantitative assay for linking microbial community function and structure of a naphthalene-degrading microbial consortium. Environ. Sci. Technol. 39: 96119619.
85. Yuen, C. M., and, D. R. Liu. 2007. Dissecting protein structure and function using directed evolution. Nat. Methods 4: 995997.


Generic image for table

Examples of studies that have used DNA-SIP for gene mining

Citation: Moussard H, Smith T, Murrell J. 2011. DNA stable Isotope Probing and Gene Mining, p 259-276. In Murrell J, Whiteley A (ed), Stable Isotope Probing and Related Technologies. ASM Press, Washington, DC. doi: 10.1128/9781555816896.ch12

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error