
Full text loading...
A Glance Toward the Future: Where Do We Go from Here?, Page 1 of 2
< Previous page Next page > /docserver/preview/fulltext/10.1128/9781555816896/9781555815370_Chap17-1.gif /docserver/preview/fulltext/10.1128/9781555816896/9781555815370_Chap17-2.gifAbstract:
In environments where growth can be fast and production of proteins and metabolites is rapid, the stable isotope probing (SIP) approach is at its best. Rapid incorporation of stable isotopes into DNA, RNA, protein, and/or metabolites will be used routinely in medical and dental research, perhaps drawing these fields far closer toward environmental microbiology than they have been in the past. Eukaryotes evolved in a sea of Bacteria and Archaea, and it would be astounding if there were not many interdependent metabolic interactions that describe the total organism as a eukaryotic/bacterial/archaeal conglomerate. This understanding will be one of the great accomplishments of the next decades and will be greatly enhanced by SIP technologies at nearly every level (DNA, RNA, protein, and metabolites). The differences between hydrogen transfer and electron transfer could be significant and offer some major challenges to the understanding of microbial ecology: challenges that may be solved in part via the application of SIP approaches and others that will require new ways of thinking and experimentation. Several papers have appeared recently on extracellular electron transport. It is clear from the work in several laboratories that microbes have mechanisms available to them to donate electrons directly to solid surfaces and to take electrons directly from solid surfaces raising the possibility that an energy realm previously not thought possible by most microbiologists could exist in sedimentary environments, utilizing various types of extracellular electron transport mechanisms to deliver energy in the form of electrons among energy sources, cells, and electron acceptors.