Chapter 3 : Genome Rearrangements in

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

Genome Rearrangements in , Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555816902/9781555814571_Chap03-1.gif /docserver/preview/fulltext/10.1128/9781555816902/9781555814571_Chap03-2.gif


A small number of serovars are host specific, only causing infection in one host species or a few closely related species. The diseases caused by broad-host-range and host-restricted serovars also differ. Rearrangements can occur via recombination between short repeat sequences, but most large chromosomal rearrangements in bacteria occur by recombination between repeated sequences with several kbp of homology. IS200 is the most common IS element in , it transposes infrequently. Thus, in contrast to many bacteria that have a high background of transposition-mediated rearrangements, most genome rearrangements in are due to recombination. In contrast to the broad-host-range serovars, isolates of host-specific serovars have large-scale chromosomal rearrangements resulting from recombination between the operons. Inversions and translocations change the order of the chromosomal regions between the operons from the conserved arrangement type found in the broad-host-range serovars to one of over fifty arrangement types identified so far in host-specific serovars. Comparative genomics has revealed that many host-specific pathogens show greater genome plasticity than closely related bacteria that live in a wider variety of environmental conditions. Although the genome rearrangements in other bacteria are often mediated by active transposons, it seems likely that the observed differences in genome plasticity are simply determined by the selective constraints of their distinct ecological niches. Genome rearrangements also have practical implications for foodborne pathogens, as they can complicate the identification and tracking of outbreak strains.

Citation: Matthews T, Maloy S. 2011. Genome Rearrangements in , p 41-48. In Fratamico P, Liu Y, Kathariou S (ed), Genomes of Foodborne and Waterborne Pathogens. ASM Press, Washington, DC. doi: 10.1128/9781555816902.ch3
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of Figure 1
Figure 1

Genetic map of serovar Typhimurium and chromosomes showing that except for an inversion in the terminus region, the order of shared genes is highly conserved.

Citation: Matthews T, Maloy S. 2011. Genome Rearrangements in , p 41-48. In Fratamico P, Liu Y, Kathariou S (ed), Genomes of Foodborne and Waterborne Pathogens. ASM Press, Washington, DC. doi: 10.1128/9781555816902.ch3
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

Chromosomal rearrangements through homologous recombination between direct and indirect repeats. (A) Unequal exchange between direct repeats on sister chromosomes results in one sister chromosome containing a duplication and the other containing a deletion (not shown). (B) Recombination between direct repeats on the same chromosome results in a levitation of the intervening region (B1). A translocation occurs when recombination with a homologous repeat somewhere else on the chromosome integrates the levitating region back into the chromosome (B2). (C) Recombination between inverted repeats results in an inversion of the intervening region.

Citation: Matthews T, Maloy S. 2011. Genome Rearrangements in , p 41-48. In Fratamico P, Liu Y, Kathariou S (ed), Genomes of Foodborne and Waterborne Pathogens. ASM Press, Washington, DC. doi: 10.1128/9781555816902.ch3
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3
Figure 3

Conserved physical map of broad-host-range serovars. The location and orientation of the seven operons are indicated by arrows. Numbers represent the regions between each of the operons. The order of the regions shown here is the conserved arrangement type 1234567. The origin of chromosome replication is indicated by a circle, and the location of the terminus region (approximately 180° from the origin) is indicated.

Citation: Matthews T, Maloy S. 2011. Genome Rearrangements in , p 41-48. In Fratamico P, Liu Y, Kathariou S (ed), Genomes of Foodborne and Waterborne Pathogens. ASM Press, Washington, DC. doi: 10.1128/9781555816902.ch3
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4
Figure 4

Recombination events that change the arrangement type from the conserved arrangement type (1234567) to the most common arrangement type observed in strains belonging to the Typhi serovar (1′ 235647). Recombination between the and operons inverts Region 1 (including the terminus) region to 1′. Levitation of region 4 leaves behind the hybrid operon, and translocation of region 4 into the operon yields the hybrid and operons.

Citation: Matthews T, Maloy S. 2011. Genome Rearrangements in , p 41-48. In Fratamico P, Liu Y, Kathariou S (ed), Genomes of Foodborne and Waterborne Pathogens. ASM Press, Washington, DC. doi: 10.1128/9781555816902.ch3
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Abee, X,, W. van Schaik, and, R. Siezen. 2004. Impact of genomics on microbial food safety. Trends Biotechnol. 22: 653660.
2. Alokam, S.,, S. L. Liu,, K. Said, and, K. E. Sanderson. 2002. Inversions over the terminus region in Salmonella and Escherichia coli: IS200s as the sites of homologous recombination inverting the chromosome of Salmonella enterica serovar Typhi. J. Bacteriol. 184: 61906197.
3. Anderson, P., and, J. Roth. 1981. Spontaneous tandem genetic duplications in Salmonella typhimurium arise by unequal recombination between rRNA (rrn) cistrons. Proc. Natl. Acad. Sci. USA 78: 31133117.
4. Bergthorsson, U.,, D. Andersson, and, J. Roth. 2007. Ohno’s dilemma: evolution of new genes under continuous selection. Proc. Natl. Acad. Sci. USA 104: 1700417009.
5. Bhagwat A., and M. Bhagwat. 2008. Methods and tools for comparative genomics of foodborne pathogens. Foodborne Pathog. Dis. 5: 487497
6. Blattner, F.,, G. Plunkett, III,, C. Bloch,, N. Perna,, V. Burland,, M. Riley,, J. Collado-Vides,, J. Glasner,, C. Rode,, G. Mayhew,, J. Gregor,, N. Davis,, H. Kirkpatrick,, M. Goeden,, D. Rose,, B. Mau, and, Y. Shao. 1997. The complete genome sequence of Escherichia coli K-12. Science 277: 14531462.
7. Camacho, E., and, J. Casadesus. 2001. Genetic mapping by duplication segregation in Salmonella enterica. Genetics 157: 491502.
8. Capiaux, H.,, F. Cornet,, J. Corre,, M. Guijo,, K. Perals,, J. Rebollo, and, J. Louarn. 2001. Polarization of the Escherichia coli chromosome. A view from the terminus. Biochimie 83: 161170.
9. Casadesus, J., and, J. Roth. 1989. Absence of insertions among spontaneous mutants of Salmonella typhimurium. Mol. Gen. Genet. 21 6: 210216.
10. Crump, J., and, E. Mintz. 2010. Global trends in typhoid and paratyphoid fever. Emerging Infect. 50: 241246.
11. Deng, W.,, S. Liou,, G. Plunkett, III,, G. Mayhew,, D. Rose,, V. Burland,, V. Kodoyiann,, D. Schwartz, and, F. Blattner. 2003. Comparative genomics of Salmonella enterica serovar Typhi strains Ty2 and CT18. J. Bacteriol. 185: 23302337.
12. Duggin, I. G., and, S. D. Bell. 2009. Termination structures in the Escherichia coli chromosome replication fork trap. J. Mol. Biol. 387: 532539.
13. Duggin, I. G.,, R. G. Wake,, S. D. Bell, and, T. M. Hill. 2008. The replication fork trap and termination of chromosome replication. Mol. Microbiol. 70: 13231333.
14. Edlund, X, and, S. Normark. 1981. Recombination between short DNA homologies causes tandem duplication. Nature 292: 269271.
15. Edwards, R.,, G. Olsen, and, S. Maloy. 2002. Comparative genomics of closely related salmonellae. Trends Microbiol. 10: 9499.
16. Esnault, E.,, M. Valens,, O. Espeli, and, F. Boccard. 2007. Chromosome structuring limits genome plasticity in Escherichia coli. PLoS Genet. 3: e226.
17. Garcia-Russell, N.,, T. Harmon,, T. Le,, N. Amaladas,, R. Mathewson, and, A. Segall. 2004. Unequal access of chromosomal regions to each other in Salmonella: probing chromosome structure with phage lambda integrase-mediated long-range rearrangements. Mol. Microbiol. 52: 329344.
18. Guibourdenche, M.,, P. Roggentin,, M. Mikoleit,, P. Fields,, J. Bockemühl, P. Grimont, and, F. Weill. 2010. Supplement 2003-2007 (No. 47) to the White-Kauffmann-Le Minor scheme. Res. Microbiol. 161: 2629.
19. Haack, K. R., and, J. R. Roth. 1995. Recombination between chromosomal IS200 elements supports frequent duplication formation in Salmonella typhimurium. Genetics 141: 12451252.
20. Helm, R. A.,, A. G. Lee,, H. D. Christman, and, S. Maloy. 2003. Genomic rearrangements at rrn operons in Salmonella. Genetics 165: 951959.
21. Helm R. A., and, S. Maloy. 2001. A rapid approach to determine the rrn arrangement in Salmonella serovars. Appl. Environ. Microbiol. 67: 32953298.
22. Helm, R. A.,, S. Porwollik,, A. E. Stanley,, S. Maloy,, M. McClel-land,, W. Rabsch, and, A. Eisenstark. 2004. Pigeon-associated strains of Salmonella enterica serovar Typhimurium phage type DT2 have genomic rearrangements at rRNA operons. Infect. Immun. 72: 73387341.
23. Hill, C. W.,, R. H. Grafstrom,, B. W. Harnish, and, B. S. Hill-man. 1977. Tandem duplications resulting from recombination between ribosomal RNA genes in Escherichia coli. J. Mol. Biol. 116: 407428.
24. Hill, C. W., and, J. A. Gray. 1988. Effects of chromosomal inversion on cell fitness in Escherichia coli K-12. Genetics 119: 771778.
25. Hill, C. W., and, B. W. Harnish. 1981. Inversions between ribosomal RNA genes of Escherichia coli. Proc. Natl. Acad. Sci. USA 78: 70697072.
26. Hill, C. W., and, B. W. Harnish. 1982. Transposition of a chromosomal segment bounded by redundant rRNA genes into other rRNA genes in Escherichia coli. J. Bacteriol. 149: 449457.
27. Hill, C. W. 1999. Large genomic sequence repetitions in bacteria: lessons from rRNA operons and Rhs elements. Res. Microbiol. 150: 665674.
28. Hill, T. M. 1996. Features of the chromosomal terminus region, p. 1602-1614. In F. C. Neidhardt,, R. Curtiss III,, J. L. Ingraham,, E. C. C. Lin,, K. B. Low,, B. Magasanik,, W. S. Reznikoff,, M. Riley,, M. Schaechter, and, H. E. Umbarger (ed.), Escherichia coli and Salmonella: Cellular and Molecular Biology, 2nd ed. ASM Press, Washington, DC.
29. Holt, K.,, N. Thomson,, J. Wain,, G. Langridge,, R. Hasan,, Z. Bhutta,, M. Quail,, H. Norbertczak,, D. Walker,, M. Simmonds,, B. White,, N. Bason,, K. Mungall,, G. Dougan, and, J. Parkhill. 2009. Pseudogene accumulation in the evolutionary histories of Salmonella enterica serovars Paratyphi A and Typhi. BMC Genomics 10: 36.
30. House, D.,, A. Bishop,, C. Parry,, G. Dougan, and, J. Wain. 2001. Typhoid fever: pathogenesis and disease. Curr. Opin. Infect. Dis. 14: 573578.
31. Huang, D. B., and, H. L. DuPont. 2005. Problem pathogens: extraintestinal complications of Salmonella enterica serotype Typhi infection. Lancet Infect. Dis. 5: 341348.
32. Hughes, D. 2000. Co-evolution of the tuf genes links gene conversion with the generation of chromosomal inversions. J. Mol. Biol. 297: 355364.
33. Iguchi, A.,, S. Iyoda,, J. Terajima,, H. Watanabe, and, R. Osawa. 2006. Spontaneous recombination between homologous prophage regions causes large-scale inversions within the Escherichia coli 0157:H7 chromosome. Gene 372: 199207.
34. Kothapalli, S.,, S. Nair,, S. Alokam,, T. Pang,, R. Khakhria,, D. Woodward,, W. Johnson,, B. A. Stocker,, K. E. Sanderson, and, S. L. Liu. 2005. Diversity of genome structure in Salmonella enterica serovar Typhi populations. J. Bacteriol. 187: 26382650.
35. Lehner, A. F., and, C. W. Hill. 1980. Involvement of ribosomal ribonucleic acid operons in Salmonella typhimurium chromosomal rearrangements. J. Bacteriol. 143: 492498.
36. Liu, G. R.,, A. Rahn,, W. Q. Liu,, K. E. Sanderson,, R. N. Johnston, and, S. L. Liu. 2002. The evolving genome of Salmonella enterica serovar Pullorum. J. Bacteriol. 184: 26262633.
37. Liu, S. L.,, A. Hessel,, H. Y. Cheng, and, K. E. Sanderson. 1994. The XbaI-BlnI- CeuI genomic cleavage map of Salmonella paratyphi B. J. Bacteriol. 176: 10141024.
38. Liu, G. R.,, W. Q. Liu,, R. N. Johnston,, K. E. Sanderson,, S. X. Li, and, S. L. Liu. 2006. Genome plasticity and oriter rebalancing in Salmonella typhi. Mol. Biol. Evol. 23: 365371.
39. Liu, S., and, K. Sanderson. 1995. I-CeuI reveals conservation of the genome of independent strains of Salmonella typhimurium. J. Bacteriol. 1 77: 33553357.
40. Liu, S., and, K. Sanderson. 1995. The chromosome of Salmonella paratyphi A is inverted by recombination between rrnH and rrnG. J. Bacteriol. 177: 65856592.
41. Liu, S., and, K. Sanderson. 1996. Highly plastic chromosomal organization in Salmonella typhi. Proc. Natl. Acad. Sci. USA 93: 1030310308.
42. Liu, S., and, K. Sanderson. 1998. Homologous recombination between rrn operons rearranges the chromosome in host-specialized species of Salmonella. FEMS Microbiol. Lett. 164: 275281.
43. Liu, W.,, Y. Feng,, Y. Wang,, Q. Zou,, F. Chen,, J. Guo,, Y. Peng,, Y. Jin,, Y. Li,, S. Hu,, R. Johnston,, G. Liu, and, S. Liu. 2009. Salmonella paratyphi C: genetic divergence from Salmonella choleraesuis and pathogenic convergence with Salmonella typhi. PLoS One 4: e4510.
44. Liu, W.,, G. Liu,, J. Li,, G. Xu,, D. Qi,, X. He,, J. Deng,, F. Zhang,, R. Johnston, and, S. Liu. 2007. Diverse genome structures of Salmonella paratyphi C. BMC Genomics 8: 290.
45. Lobry, J. R., and, J. M. Louarn. 2003. Polarisation of prokary-otic chromosomes. Curr. Opin. Microbiol 6: 101108.
46. Maloy, S., and, G. Mora. Submitted for publication.
47. Matthews T. D., and S. Malloy. 2010. Fitness effects of replichore imbalance in Salmonella enterica. J Bacteriol In press.
48. McClelland, M.,, K. Sanderson,, J. Spieth,, S. Clifton,, P. Latreille,, L. Courtney,, S. Porwollik,, J. Ali,, M. Dante,, F. Du,, S. Hou,, D. Layman,, S. Leonard,, C. Nguyen,, K. Scott,, A. Holmes,, N. Gre-wal,, E. Mulvaney,, E. Ryan,, H. Sun,, L. Florea,, W. Miller,, T. Stoneking,, M. Nhan,, R. Waterston, and, R. Wilson. 2001. Complete genome sequence of Salmonella enterica serovar Typhimurium LT2. Nature 413: 852856.
49. Miesel, L.,, A. Segall, and, J. R. Roth. 1994. Construction of chromosomal rearrangements in Salmonella by transduction: inversions of non-permissive segments are not lethal. Genetics 137: 919932.
50. Miesel, L. 2011. Barriers to the formation of inversion rearrangements in Salmonella, p. 233-243. In S. Maloy,, K. T. Hughes, and, J. Casadesús (ed.), The Lure of Bacteriol Genetics: a Tribute to John Roth. ASM Press, Washington, DC.
51. Neylon, C.,, A. V. Kralicek,, T. M. Hill, and, N. E. Dixon. 2005. Replication termination in Escherichia coli: structure and antihelicase activity of the Tus-Ter complex. Microbiol Mol. Biol Rev. 69: 501526.
52. Ng, I.,, S. Liu, and, K. Sanderson. 1999. Role of genomic rearrangements in producing new ribotypes of Salmonella typhi. J. Bacteriol. 181: 35363541.
53. Ochman, H., and, A. C. Wilson. 1987. Evolution in bacteria: evidence for a universal substitution rate in cellular genomes. J. Mol. Evol. 26: 7486.
54. Ochman, H., and, A. C. Wilson. 1987. Evolutionary history of enteric bacteria, p. 1649-1654. In F. C. Neidhardt,, R. Curtiss III,, J. L. Ingraham,, E. C. C. Lin,, K. B. Low,, B. Magasanik,, W. S. Reznikoff,, M. Riley,, M. Schaechter, and, H. E. Umbarger (ed.), Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology, ASM Press, Washington, DC.
55. Parkhill, J.,, G. Dougan,, K. James,, N. Thomson,, D. Pickard,, J. Wain,, C. Churcher,, K. Mungall,, S. Bentley,, M. Holden,, M. Sebaihia,, S. Baker,, D. Basham,, K. Brooks,, T. Chillingworth,, P. Connerton,, A. Cronin,, P. Davis,, R. Davies,, L. Dowd,, N. White,, J. Farrar,, T. Feltwell,, N. Hamlin,, A. Haque,, T. Hien,, S. Holroyd,, K. Jagels,, A. Krogh,, T. Larsen,, S. Leather,, S. Moule,, P. O’Gaora,, C. Parry,, M. Quail,, K. Rutherford,, M. Simmonds,, J. Skelton,, K. Stevens,, S. Whitehead, and, B. Barrell. 2001. Complete genome sequence of a multiple drug resistant Salmonella enterica serovar Typhi CT18. Nature 413: 848852.
56. Parry, C.,, T. Hien,, G. Dougan,, N. White, and, J. Farrar. 2002. Typhoid fever. N. Engl. J. Med 347: 17701782.
57. Rabsch, W.,, H. L. Andrews,, R. A. Kingsley,, R. Prager,, H. Tschape,, L. G. Adams, and, A. J. Bäumler. 2002. Salmonella enterica serotype Typhimurium and its host-adapted variants. Infect. Immun. 70: 22495225.
58. Raleigh, E., and, N. Kleckner. 1984. Multiple IS10 rearrangements in Escherichia coli. J. Mol. Biol. 173: 437461.
59. Reams, A.,, E. Kofoid,, M. Savageau, and, J. Roth. 2010. Duplication frequency in a population of Salmonella enterica rapidly approaches steady state with or without recombination. Genetics. 10.1534/genetics.109.111963.
60. Rocha, E. 2004. Order and disorder in bacterial genomes. Curr. Opin. Microbiol. 7: 519527.
61. Sanderson, K., and, P. Hartman. 1978. Linkage map of Salmonella typhimurium, edition V. Microbiol. Rev. 42: 471519.
62. Schmid, M. B., and, J. R. Roth. 1983. Selection and endpoint distribution of bacterial inversion mutations. Genetics 105: 539557.
63. Schmid, M., and, J. Roth. 1987. Gene location affects expression level in Salmonella typhimurium. J. Bacteriol. 169: 28722875.
64. Segall, A.,, M. J. Mahan, and, J. R. Roth. 1988. Rearrangement of the bacterial chromosome: forbidden inversions. Science 241: 13141318.
65. Segall, A. M., and, J. R. Roth. 1989. Recombination between homologies in direct and inverse orientation in the chromosome of Salmonella: intervals which are nonpermissive for inversion formation. Genetics 122: 737747.
66. Shu, S.,, E. Setianingrum,, L. Zhao,, Z. Li,, H. Xu,, Y. Kawamura, and, T. Ezaki. 2000. I-CeuI fragment analysis of the Shigella species: evidence for large-scale chromosome rearrangement in S. dysenteriae and S. flexneri. FEMS Microbiol. Lett. 182: 9398.
67. Sonti, R., and, J. Roth. 1989. Role of gene duplication in the adaptation of Salmonella typhimurium to growth on limiting carbon sources. Genetics 123: 1928.
68. Stevens, M.,, T. Humphrey, and, D. Maskell. 2009. Molecular insights into farm animal and zoonotic Salmonella infections. Phil. Trans. R. Soc. G. 364: 27092723.
69. Thomson N., D. Clayton,, D. Windhorst,, G. Vernikos,, S. Davidson,, C. Churcher,, M. Quail,, M. Stevens,, M. Jones,, M. Watson,, A. Barron,, A. Layton,, D. Pickard,, R. Kingsley,, A. Bignell,, L. Clark,, B. Harris,, D. Ormond,, Z. Abdellah,, K. Brooks,, I. Cherevach,, T. Chillingworth,, J. Woodward,, H. Norberczak,, A. Lord,, Arrowsmith, K. Jagels,, S. Moule,, K. Mungall,, M. Sanders,, S. Whitehead,, J. Chabalgoity,, D. Maskell,, T. Humphrey,, M. Roberts,, P. Barrow,, G. Dougan, and, J. Parkhill. 2008. Comparative genome analysis of Salmonella Enteritidis PT4 and Salmonella Gallinarum 287/91 provides insights into evolutionary and host adaptation pathways. Genome Res. 18: 16241637.
70. Warriner K, and A. Namvar. 2010. The tricks learnt by human enteric pathogens from phytopathogens to persist within the plant environment. Curr. Opin. Biotechnol. 21: 131136.
71. Wigley, P.,, A. Berchieri,, Jr., K. L. Page,, A. L. Smith, and, P. A. Barrow. 2001. Salmonella enterica serovar Pullorum persists in splenic macrophages and in the reproductive tract during persistent, disease-free carriage in chickens. Infect. Immun. 69: 78737879.
72. Wu, K.,, G. Liu,, W. Liu,, A. Wang,, S. Zhan,, K. Sanderson,, R. Johnston, and, S. Liu. 2005. The genome of Salmonella enterica serovar Gallinarum: distinct insertions/deletions and rare rearrangements. J. Bacteriol. 187: 47204727.


Generic image for table
Table 1

Chromosome arrangement types observed in serovars

Citation: Matthews T, Maloy S. 2011. Genome Rearrangements in , p 41-48. In Fratamico P, Liu Y, Kathariou S (ed), Genomes of Foodborne and Waterborne Pathogens. ASM Press, Washington, DC. doi: 10.1128/9781555816902.ch3

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error