Chapter 8 : Genomics of the Enteropathogenic Yersiniae

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

Genomics of the Enteropathogenic Yersiniae, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555816902/9781555814571_Chap08-1.gif /docserver/preview/fulltext/10.1128/9781555816902/9781555814571_Chap08-2.gif


The study of the genome indirectly reveals enteric features of (and ). This chapter describes the salient features of postgenomic studies on and and relates this to our understanding of the diversity and evolution of virulence for these species. The enteropathogenic yersiniae are ubiquitous in the environment, and are a common cause of animal infections, and they have been isolated from cattle, sheep, pigs, domesticated animals, and avian species. Various other adhesion- and invasion-associated factors such as Ail and the Myf fimbriae have also been reported in enteropathogenic yersiniae. B12 is an essential cofactor for several reactions, including 1,2-propanediol degradation. Although the true significance of tetrathionate respiration operon in is unknown, in Salmonella, 1,2-propanediol is an important source of energy, and mutants unable to make B12 are significantly attenuated in their ability to grow in macrophages. With respect to the enteropathogenic yersiniae, the natural deselection highlights many known genes required for the enteropathogenicity by (and ), but also highlighted many previously unsuspected candidates. Perhaps the most striking aspect of the evolution of Yersinia is the extremely rapid emergence of from , and genome analysis shows how this has happened.

Citation: McNally A, Thomson N, Wren B. 2011. Genomics of the Enteropathogenic Yersiniae, p 101-111. In Fratamico P, Liu Y, Kathariou S (ed), Genomes of Foodborne and Waterborne Pathogens. ASM Press, Washington, DC. doi: 10.1128/9781555816902.ch8
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of Figure 1
Figure 1

Line diagram to represent the whole genome differences of the A summary of the observed gene differences between representative members of the yersiniae (as defined by reciprocal FASTA analysis). Branches are not intended to infer phylogenetic distance. For text color, see key.

Citation: McNally A, Thomson N, Wren B. 2011. Genomics of the Enteropathogenic Yersiniae, p 101-111. In Fratamico P, Liu Y, Kathariou S (ed), Genomes of Foodborne and Waterborne Pathogens. ASM Press, Washington, DC. doi: 10.1128/9781555816902.ch8
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Achtman, M.,, K. Zurth,, G. Morelli,, G. Torrea,, A. Guiyoule, and, E. Carniel. 1999. Yersinia pestis, the cause of plague, is a recently emerged clone of Yersinia pseudotuberculosis. Proc. Natl. Acad. Sci. USA 96: 1404314048.
2. Andersson, S. G.,, A. Zomorodipour,, J. O. Andersson,, T. Sicheritz-Ponten,, U. C. Alsmark,, R. M. Podowski,, A. K. Naslund,, A. S. Eriksson,, H. H. Winkler, and, C. G. Kurland. 1998. The genome sequence of Rickettsia prowazekii and the origin of mitochondria. Nature 396: 133140.
3. Bottone, E. J. 1997. Yersinia enterocolitica: the charisma continues. Clin. Microbiol. Rev. 10: 257276.
4. Boyd, A. P.,, N. Grosdent,, S. Totemeyer,, C. Geuijen,, S. Bleves,, M. Iriarte,, I. Lambermont,, J. N. Octave, and, G. R. Cornelis. 2000. Yersinia enterocolitica can deliver Yop proteins into a wide range of cell types: development of a delivery system for heterologous proteins. Eur. J. Cell Biol. 79: 659671.
5. Brem, D.,, C. Pelludat,, A. Rakin,, C. A. Jacobi, and, J. Heesemann. 2001. Functional analysis of yersiniabactin transport genes of Yersinia enterocolitica. Microbiology 147: 11151127.
6. Buchrieser, C.,, M. Prentice, and, E. Carniel. 1998. The 102-kilobase unstable region of Yersinia pestis comprises a high-pathogenicity island linked to a pigmentation segment which undergoes internal rearrangement. J. Bacteriol. 180: 23212329.
7. Carniel, E.,, I. Guilvout, and, M. Prentice. 1996. Characterization of a large chromosomal “high-pathogenicity island” in bio-type IB Yersinia enterocolitica. J. Bacteriol. 178: 67436751.
8. Chain, P. S.,, E. Carniel,, F. W. Larimer,, J. Lamerdin,, P. O. Stoutland,, W. M. Regala,, A. M. Georgescu,, L. M. Vergez,, M. L. Land,, V. L. Motin,, R. R. Brubaker,, J. Fowler,, J. Hin-nebusch,, M. Marceau,, C. Medigue,, M. Simonet,, V. Chenal-Francisque,, B. Souza,, D. Dacheux,, J. M. Elliott,, A. Derbise,, L. J. Hauser, and, E. Garcia. 2004. Insights into the evolution of Yersinia pestis through whole-genome comparison with Yersinia pseudotuberculosis. Proc. Natl. Acad. Sci. USA 101: 1382613831.
9. Chain, P. S.,, P. Hu,, S. A. Malfatti,, L. Radnedge,, F. Larimer,, L. M. Vergez,, P. Worsham,, M. C. Chu, and, G. L. Andersen. 2006. Complete genome sequence of Yersinia pestis strains Antiqua and Nepal51 6: evidence of gene reduction in an emerging pathogen. J. Bacteriol. 188: 44534463.
10. Cole, S. X,, K. Eiglmeier,, J. Parkhill,, K. D. James,, N. R. Thomson,, P. R. Wheeler,, N. Honore,, T. Garnier,, C. Churcher,, D. Harris,, K. Mungall,, D. Basham,, D. Brown,, T. Chillingworth,, R. Connor,, R. M. Davies,, K. Devlin,, S. Duthoy,, T. Feltwell,, A. Fraser,, N. Hamlin,, S. Holroyd,, T. Hornsby,, K. Jagels,, C. Lac-roix,, J. Maclean,, S. Moule,, L. Murphy,, K. Oliver,, M. A. Quail,, M. A. Rajandream,, K. M. Rutherford,, S. Rutter,, K. Seeger,, S. Simon,, M. Simmonds,, J. Skelton,, R. Squares,, S. Squares,, K. Stevens,, K. Taylor,, S. Whitehead,, J. R. Woodward, and, B. G. Barrell. 2001. Massive gene decay in the leprosy bacillus. Nature 409: 10071011.
11. Collyn, F.,, A. Billault,, C. Mullet,, M. Simonet, and, M. Marceau. 2004. YAPI, a new Yersinia pseudotuberculosis pathogenicity island. Infect. Immun. 72: 47844790.
12. Cornelis, G. R., and, H. Wolf-Watz. 1997. The Yersinia Yop virulon: a bacterial system for subverting eukaryotic cells. Mol. Microbiol. 23: 861867.
13. Darwin, A. J., and, V. L. Miller. 1999. Identification of Yersinia enterocolitica genes affecting survival in an animal host using signature-tagged transposon mutagenesis. Mol. Microbiol. 32: 5162.
14. Daubin, V., and, H. Ochman. 2004. Bacteriol genomes as new gene homes: the genealogy of ORFans in E. coli. Genome Res. 14: 10361042.
15. Delor, I., and, G. R. Cornelis. 1992. Role of Yersinia enterocolitica Yst toxin in experimental infection of young rabbits. Infect. Immun. 60: 42694277.
16. Delor, I.,, A. Kaeckenbeeck,, G. Wauters, and, G. R. Cornelis. 1990. Nucleotide sequence of yst, the Yersinia enterocolitica gene encoding the heat-stable enterotoxin, and prevalence of the gene among pathogenic and nonpathogenic yersiniae. Infect. Immun. 58: 29832988.
17. Deng, W.,, V. Burland,, G. Plunkett, III,, A. Boutin,, G. F. Mayhew,, P. Liss,, N. T. Perna,, D. J. Rose,, B. Mau,, S. Zhou,, D. C. Schwartz,, J. D. Fetherston,, L. E. Lindler,, R. R. Brubaker,, G. V. Plano,, S. C. Straley,, K. A. McDonough,, M. L. Nilles,, J. S. Matson,, F. R. Blattner, and, R. D. Perry. 2002. Genome sequence of Yersinia pestis KIM. J. Bacteriol. 184: 46014611.
18. Doyle, M. P. 1990. Pathogenic Escherichia coli, Yersinia enterocolitica, and Vibrio parahaemolyticus. Lancet 336: 11111115.
19. Eitel, J., and, P. Dersch. 2002. The YadA Protein of Yersinia pseudotuberculosis mediates high-efficiency uptake into human cells under environmental conditions in which invasin is repressed. Infect. Immun. 70: 48804891.
20. Eppinger, M.,, M. J. Rosovitz,, W. F. Fricke,, D. A. Rasko,, G. Kokorina,, C. Fayolle,, L. E. Lindler,, E. Carniel, and, J. Ravel. 2007. The complete genome sequence of Yersinia pseudotuberculosis IP31758, the causative agent of Far East scarlet-like fever. PLoS Genetics 3: e142.
21. Fearnley, C.,, S. L. On,, B. Kokotovich,, G. Manning,, T. Cheasty, and, D. G. Newell. 2005. Application of fluorescent amplified fragment length polymorphism to the comparison of human and animal Yersinia enterocolitica. Appl. Environ. Microbiol. 71: 49514959.
22. Finlay, B. B., and, S. Falkow. 1988. Comparison of the invasion strategies used by Salmonella cholerae-Suis, Shigella flexneri and Yersinia enterocolitica to enter cultured animal cells:endosome acidification is not required for bacterial invasion or intracellular replication. Biochimie 70: 10891099.
23. Fredriksson-Ahomaa, M.,, J. Bjorkroth,, S. Hielm, and, H. Korkeala. 2000. Prevalence and characterization of pathogenic Yersinia enterocolitica in pig tonsils from different slaughterhouses. Food Microbiol. 17: 93101.
24. Fredriksson-Ahomaa, M.,, S. Hallanvuo,, T. Korte,, A. Siitonen, and, H. Korkeala. 2001. Correspondence of genotypes of sporadic Yersinia enterocolitica bioserotype 4/O : 3 strains from human and porcine sources. Epidemiol. Infect. 127: 3747.
25. Fredriksson-Ahomaa, M.,, S. Hielm, and, H. Korkeala. 1999. High prevalence of yadA-positive Yersinia enterocolitica in pig tongues and minced meat at the retail level in Finland. J. Food Prot. 62: 123127.
26. Fredriksson-Ahomaa, M.,, T. Korte, and, H. Korkeala. 2001. Transmission of Yersinia enterocolitica 4/O: 3 to pets via contaminated pork. Lett. Appl. Microbiol. 32: 375378.
27. Fuchs, T. M.,, G. Bresolin,, L. Marcinowski,, J. Schachtner, and, S. Scherer. 2008. Insecticidal genes of Yersinia spp.: taxonomical distribution, contribution to toxicity towards Manduca sexta and Galleria mellonella, and evolution. BMC Microbiol. 8: 214.
28. Grosdent, N.,, I. Maridonneau-Parini,, M. P. Sory, and, G. R. Cornelis. 2002. Role of Yops and adhesins in resistance of Yersinia enterocolitica to phagocytosis. Infect. Immun. 70: 41654176.
29. Hares, M. C.,, S. J. Hinchliffe,, P. C. Strong,, I. Eleftherianos,, A. J. Dowling,, R. H. ffrench-Constant, and, N. Waterfield. 2008. The Yersinia pseudotuberculosis and Yersinia pestis toxin complex is active against cultured mammalian cells. Microbiol. 154: 35033517.
30. Hartley, D. M., J. G. Morris, Jr., and, D. L. Smith. 2006. Hyperinfectivity: a critical element in the ability of V. cholerae to cause epidemics? PLoS Med. 3: e7.
31. Howard, S. L.,, M. W. Gaunt,, J. Hinds,, A. A. Witney,, R. Stabler, and, B. W. Wren. 2006. Application of comparative phylogenomics to study the evolution of Yersinia enterocolitica and to identify genetic differences relating to pathogenicity. J. Bacteriol. 188: 36453653.
32. Hudson, K. J., J. B. Bliska, and, A. H. Bouton. 2005. Distinct mechanisms of integrin binding by Yersinia pseudotuberculosis adhesins determine the phagocytic response of host mac-rophages. Cell Microbiol. 7: 14741489.
33. Iriarte, M.,, J. C. Vanooteghem,, I. Delor,, R. Diaz,, S. Knutton, and, G. R. Cornelis. 1993. The Myf fibrillae of Yersinia enterocolitica. Mol. Microbiol. 9: 507520.
34. Iwobi, A.,, J. Heesemann,, E. Garcia,, E. Igwe,, C. Noelting, and, A. Rakin. 2003. Novel virulence-associated type II secretion system unique to high-pathogenicity Yersinia enterocolitica. Infect. Immun. 71: 18721879.
35. Klumpp, J., and, T. M. Fuchs. 2007. Identification of novel genes in genomic islands that contribute to Salmonella typhimurium replication in macrophages. Microbiology 153: 12071220.
36. Koczura, R., and, A. Kaznowski. 2003. Occurrence of the Yersinia high-pathogenicity island and iron uptake systems in clinical isolates of Klebsiella pneumoniae. Microb. Pathog. 35: 197202.
37. Koczura, R., and, A. Kaznowski. 2003. The Yersinia high-pathogenicity island and iron-uptake systems in clinical isolates of Escherichia coli. J. Med. Microbiol. 52: 637642.
38. McNally, A.,, T. Cheasty,, C. Fearnley,, R. W. Dalziel,, G. Paiba,, G. Manning, and, D. G. Newell. 2004. Comparison of the biotypes of Yersinia enterocolitica isolated from pigs, cattle and sheep at slaughter and from humans with yersiniosis in Great Britain during 1999-2000. Lett. Appl. Microbiol. 39: 103108.
39. Miller, V. L., and, S. Falkow. 1988. Evidence for two genetic loci in Yersinia enterocolitica that can promote invasion of epithelial cells. Infect. Immun. 56: 12421248.
40. Miller, V. L.,, J. J. Farmer,, W. E. Hill, and, S. Falkow. 1989. The ail locus is found uniquely in Yersinia enterocolitica se-rotypes commonly associated with disease. Infect. Immun. 57: 121131.
41. Milnes, A. S.,, I. Stewart,, F. A. Clifton-Hadley,, R. H. Davies,, D. G. Newell,, A. R. Sayers,, T. Cheasty,, C. Cassar,, A. Ridley,, A. J. Cook,, S. J. Evans,, C. J. Teale,, R. P. Smith,, A. McNally,, M. Toszeghy,, R. Futter,, A. Kay, and, G. A. Paiba. 2008. Intestinal carriage of verocytotoxigenic Escherichia coli 0157, Salmonella, thermophilic Campylobacter and Yersinia enterocolitica, in cattle, sheep and pigs at slaughter in Great Britain during 2003. Epidemiol. Infect. 136: 739751.
42. Mokracka, J.,, R. Koczura, and, A. Kaznowski. 2004. Yersinia-bactin and other siderophores produced by clinical isolates of Enterobacter spp. and Citrobacter spp. FEMS Immunol. Med. Microbiol. 40: 5155.
43. Nakao, H.,, H. Watanabe,, S. Nakayama, and, T. Takeda. 1995. yst gene expression in Yersinia enterocolitica is positively regulated by a chromosomal region that is highly homologous to Escherichia coli host factor 1 gene (hfq). Mol. Microbiol. 18: 859865.
44. Nesbakken, X, K. Eckner,, H. K. Hoidal, and, O. J. Rotterud. 2003. Occurrence of Yersinia enterocolitica and Campylobacter spp. in slaughter pigs and consequences for meat inspection, slaughtering, and dressing procedures. Int. J. Food Microbiol. 80: 231240.
45. Parkhill, J.,, G. Dougan,, K. D. James,, N. R. Thomson,, D. Pickard,, J. Wain,, C. Churcher,, K. L. Mungall,, S. D. Bentley,, M. T. Holden,, M. Sebaihia,, S. Baker,, D. Basham,, K. Brooks,, T. Chillingworth,, P. Connerton,, A. Cronin,, P. Davis,, R. M. Davies,, L. Dowd,, N. White,, J. Farrar,, T. Feltwell,, N. Hamlin,, A. Haque,, T. T. Hien,, S. Holroyd,, K. Jagels,, A. Krogh,, T. S. Larsen,, S. Leather,, S. Moule,, P. O’Gaora,, C. Parry,, M. Quail,, K. Rutherford,, M. Simmonds,, J. Skelton,, K. Stevens,, S. White-head, and, B. G. Barrell. 2001. Complete genome sequence of a multiple drug resistant Salmonella enterica serovar Typhi CT18. Nature 413: 848852.
46. Parkhill, J.,, M. Sebaihia,, A. Preston,, L. D. Murphy,, N. Thomson,, D. E. Harris,, M. T. Holden,, C. M. Churcher,, S. D. Bentley,, K. L. Mungall,, A. M. Cerdeno-Tarraga,, L. Temple,, K. James,, B. Harris,, M. A. Quail,, M. Achtman,, R. Atkin,, S. Baker,, D. Basham,, N. Bason,, I. Cherevach,, T. Chillingworth,, M. Collins,, A. Cronin,, P. Davis,, J. Doggett,, T. Feltwell,, A. Goble,, N. Hamlin,, H. Hauser,, S. Holroyd,, K. Jagels,, S. Leather,, S. Moule,, H. Norberczak,, S. O’Neil,, D. Ormond,, C. Price,, E. Rabbinowitsch,, S. Rutter,, M. Sanders,, D. Saunders,, K. Seeger,, S. Sharp,, M. Simmonds,, J. Skelton,, R. Squares,, S. Squares,, K. Stevens,, L. Unwin,, S. Whitehead,, B. G. Barrell, and, D. J. Maskell. 2003. Comparative analysis of the genome sequences of Bordetella pertussis, Bordetella parapertussis and Borde-tella bronchiseptica. Nat. Genet. 35: 3240.
47. Parkhill, J.,, B. W. Wren,, N. R. Thomson,, R. W. Titball,, M. T. Holden,, M. B. Prentice,, M. Sebaihia,, K. D. James,, C. Churcher,, K. L. Mungall,, S. Baker,, D. Basham,, S. D. Bentley,, K. Brooks,, A. M. Cerdeno-Tarraga,, T. Chillingworth,, A. Cronin,, R. M. Davies,, P. Davis,, G. Dougan,, T. Feltwell,, N. Hamlin,, S. Holroyd,, K. Jagels,, A. V. Karlyshev,, S. Leather,, S. Moule,, P. C. Oyston,, M. Quail,, K. Rutherford,, M. Simmonds,, J. Skelton,, K. Stevens,, S. Whitehead, and, B. G. Barrell. 2001. Genome sequence of Yersinia pestis, the causative agent of plague. Nature 413: 523527.
48. Pelludat, C.,, A. Rakin,, C. A. Jacobi,, S. Schubert, and, J. Heesemann. 1998. The yersiniabactin biosynthetic gene cluster of Yersinia enterocolitica: organization and siderophore-dependent regulation. J. Bacteriol. 180: 538546.
49. Pepe, J. C., and, V. L. Miller. 1993. Yersinia enterocolitica invasin—a primary role in the initiation of infection. Proc. Natl. Acad. Sci. USA 90: 64736477.
50. Petermann, S. R.,, J. S. Sherwood, and, C. M. Logue. 2008. The Yersinia high pathogenicity island is present in Salmonella enterica Subspecies I isolated from turkeys. Microb. Pathog. 45: 110114.
51. Pierson, D. E., and, S. Falkow. 1993. The ail gene of Yersinia enterocolitica has a role in the ability of the organism to survive serum killing. Infect. Immun. 61: 18461852.
52. Prentice, M.,, D. Cope, and, R. A. Swann. 1991. The epidemiology of Yersinia enterocolitica infection in the British Isles 1983-1988. Contrib. Microbiol. Immunol. 12: 1725.
53. Rakin, A.,, C. Noelting,, S. Schubert, and, J. Heesemann. 1999. Common and specific characteristics of the high-pathogenicity island of Yersinia enterocolitica. Infect. Immun. 67: 52655274.
54. Ramamurthy, X,, K. Yoshino,, X. Huang,, G. Balakrish Nair,, E. Carniel,, X Maruyama,, H. Fukushima, and, T. Takeda. 1997. The novel heat-Stable enterotoxin subtype gene (ystB) of Yersinia enterocolitica: nucleotide sequence and distribution of the yst genes. Microb. Pathog. 23: 189200.
55. Rosqvist, R.,, M. Skurnik, and, H. Wolf-Watz. 1988. Increased virulence of Yersinia pseudotuberculosis by two independent mutations. Nature 334: 522524.
56. Sadosky, A. B.,, L. A. Wiater, and, H. A. Shuman. 1993. Identification of Legionella pneumophila genes required for growth within and killing of human macrophages. Infect. Immun. 61: 53615373.
57. Schubert, S.,, B. Picard,, S. Gouriou,, J. Heesemann, and, E. Denamur. 2002. Yersinia high-pathogenicity island contributes to virulence in Escherichia coli causing extraintestinal infections. Infect. Immun. 70: 53355337.
58. Schubert, S.,, J. L. Sorsa,, S. Cuenca,, D. Fischer,, C. A. Jacobi, and, J. Heesemann. 2000. HPI of high-virulent Yersinia is found in E. coli strains causing urinary tract infection. Structural, functional aspects, and distribution. Adv. Exp. Med. Biol. 485: 6973.
59. Schulte, R.,, S. Kerneis,, S. Klinke,, H. Bartels,, S. Preger,, J. P. Kraehenbuhl,, E. Pringault, and, I. B. Autenrieth. 2000. Translocation of Yersinia enterocolitica across reconstituted intestinal epithelial monolayers is triggered by Yersinia invasin binding to beta 1 integrins apically expressed on M- like cells. Cell Microbiol. 2: 173185.
60. Skurnik, M.,, A. Peippo, and, E. Ervela. 2000. Characterization of the O-antigen gene clusters of Yersinia pseudotuberculosis and the cryptic O-antigen gene cluster of Yersinia pestis shows that the plague bacillus is most closely related to and has evolved from Y. pseudotuberculosis serotype O:1b. Mol. Microbiol. 37: 316330.
61. Song, Y.,, Z. Tong,, J. Wang,, L. Wang,, Z. Guo,, Y. Han,, J. Zhang,, D. Pei,, D. Zhou,, H. Qin,, X. Pang,, Y. Han,, J. Zhai,, M. Li,, B. Cui,, Z. Qi,, L. Jin,, R. Dai,, F. Chen,, S. Li,, C. Ye,, Z. Du,, W. Lin,, J. Wang,, J. Yu,, H. Yang,, J. Wang,, P. Huang, and, R. Yang. 2004. Complete genome sequence of Yersinia pestis strain 91001, an isolate avirulent to humans. DNA Res. 11: 179197.
62. Tennant, S. M.,, N. A. Skinner,, A. Joe, and, R. M. Robins-Browne. 2005. Homologues of insecticidal toxin complex genes in Yersinia enterocolitica biotype 1A and their contribution to virulence. Infect. Immun. 73: 68606867.
63. Thomson, N.,, M. Holden, and, J. Parkhill. 2005. Brothers in arms. Nat. Rev. Microbiol. 3: 100101.
64. Thomson, N. R.,, S. Howard,, B. W. Wren,, M. T. Holden,, L. Crossman,, G. L. Challis,, C. Churcher,, K. Mungall,, K. Brooks,, T. Chillingworth,, T. Feltwell,, Z. Abdellah,, H. Hauser,, K. Jag-els,, M. Maddison,, S. Moule,, M. Sanders,, S. Whitehead,, M. A. Quail,, G. Dougan,, J. Parkhill, and, M. B. Prentice. 2006. The complete genome sequence and comparative genome analysis of the high pathogenicity Yersinia enterocolitica strain 8081. PLoS Genet. 2: e206.
65. Trulzsch, K.,, A. Roggenkamp,, M. Aepfelbacher,, G. Wilharm,, K. Ruckdeschel, and, J. Heesemann. 2003. Analysis of chaper-one-dependent Yop secretion/translocation and effector function using a mini-virulence plasmid of Yersinia enterocolitica. Int. J. Med. Microbiol. 293: 167177.
66. Waterfield, N.,, M. Hares,, S. Hinchliffe,, B. Wren, and, R. ffrench-Constant. 2007. The insect toxin complex of Yersinia. Adv. Exp. Med. Biol. 603: 247257.
67. Welsh, R. D.,, R. W. Ely, and, R. J. Holland. 1992. Epizootic of Yersinia pseudotuberculosis in a wildlife park. J. Am. Vet. Med. Assoc. 201: 142144.
68. Wojciech, L.,, Z. Staroniewicz,, A. Jakubczak, and, M. Ugorski. 2004. Typing of Yersinia enterocolitica isolates by ITS profiling, REP- and ERIC-PCR. J. Vet. Med. B. Infect. Dis. Vet. Public Health 51: 238244.
69. Wren, B. W 2003. The Yersiniae—a model genus to study the rapid evolution of bacterial pathogens. Nat. Rev. Microbiol. 1: 5564.


Generic image for table
Table 1

Current and ongoing genome projects

Citation: McNally A, Thomson N, Wren B. 2011. Genomics of the Enteropathogenic Yersiniae, p 101-111. In Fratamico P, Liu Y, Kathariou S (ed), Genomes of Foodborne and Waterborne Pathogens. ASM Press, Washington, DC. doi: 10.1128/9781555816902.ch8
Generic image for table
Table 2

Properties of all the published genomes

Citation: McNally A, Thomson N, Wren B. 2011. Genomics of the Enteropathogenic Yersiniae, p 101-111. In Fratamico P, Liu Y, Kathariou S (ed), Genomes of Foodborne and Waterborne Pathogens. ASM Press, Washington, DC. doi: 10.1128/9781555816902.ch8
Generic image for table
Table 3

Selected CO92 pseudogenes that are likely to be important in the pathogenesis of the enteropathogenic yersiniae

Citation: McNally A, Thomson N, Wren B. 2011. Genomics of the Enteropathogenic Yersiniae, p 101-111. In Fratamico P, Liu Y, Kathariou S (ed), Genomes of Foodborne and Waterborne Pathogens. ASM Press, Washington, DC. doi: 10.1128/9781555816902.ch8

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error