Chapter 10 : Genomics of and Other Members of the Genus

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

Genomics of and Other Members of the Genus , Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555816902/9781555814571_Chap10-1.gif /docserver/preview/fulltext/10.1128/9781555816902/9781555814571_Chap10-2.gif


Analyses of over 400 strains suggested that populations adapted to different niches exist. This study identified one 1/2a strain that was dominant among the strains collected from the food-processing plants. It is clear that the patterns and markers identified by these different genomic techniques in strains are an invaluable basis for developing powerful tools for rapidly tracing listeriosis outbreaks and for conducting effective surveillance of food-processing environments. The ongoing sequencing projects aimed at determining the complete genome sequence of one representative of each species of the genus by the Institut Pasteur and the German PathoGenomiK network. The determination of the complete genome sequence of an additional 18 strains of by the Broad Institute can be the driving force for understanding the function of the many factors encoded by the genome, whether involved in virulence or not, and to understanding strain-specific differences in niche adaptation and virulence. The sequencing of hundreds of genomes and communities, like those resident in food production environments, will allow us to move from population genetics to population genomics.

Citation: Buchrieser C, Glaser P. 2011. Genomics of and Other Members of the Genus , p 125-145. In Fratamico P, Liu Y, Kathariou S (ed), Genomes of Foodborne and Waterborne Pathogens. ASM Press, Washington, DC. doi: 10.1128/9781555816902.ch10
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of Figure 1
Figure 1

Phylogenetic tree of the genus This tree is based on the concatenated nucleic acid sequences of 16S and 23S rRNA, The bar indicates 10% estimated sequence divergence. Reproduced with permission from reference .

Citation: Buchrieser C, Glaser P. 2011. Genomics of and Other Members of the Genus , p 125-145. In Fratamico P, Liu Y, Kathariou S (ed), Genomes of Foodborne and Waterborne Pathogens. ASM Press, Washington, DC. doi: 10.1128/9781555816902.ch10
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

Schematic representation of the infection cycle of The successive steps are: entry ( ), lysis of the vacuole ( ), intracellular replication ( ), intracellular movements ( ), cell-to-cell spread ( ), formation and lysis ( ) of the two-membrane vacuole. Virulence factors involved at the different steps are indicated. Adapted from reference .

Citation: Buchrieser C, Glaser P. 2011. Genomics of and Other Members of the Genus , p 125-145. In Fratamico P, Liu Y, Kathariou S (ed), Genomes of Foodborne and Waterborne Pathogens. ASM Press, Washington, DC. doi: 10.1128/9781555816902.ch10
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3
Figure 3

Comparison of the virulence gene cluster in all sequenced genomes. Schematic presentation of the virulence gene cluster in and its comparison to the orthologous region in Orthologous genes among the different spp. are depicted in the same color or shading pattern. The gene cluster is flanked by the housekeeping genes (black arrows) and in all six species of and are also present in Known virulence genes or potentially regulated by PrfA are depicted in medium gray. Freely adapted from references , and .

Citation: Buchrieser C, Glaser P. 2011. Genomics of and Other Members of the Genus , p 125-145. In Fratamico P, Liu Y, Kathariou S (ed), Genomes of Foodborne and Waterborne Pathogens. ASM Press, Washington, DC. doi: 10.1128/9781555816902.ch10
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4
Figure 4

Comparison of the locus and the flanking regions in and and its hypothetical ancestral organization. EGD, F6854, CLIP80459, F2365, H7858: strain designations. Clip 11262: strain designation. Orthologous genes are depicted in the same color. Dark gray, locus; dotted lines indicate specific regions with respect to the other genomes: gene names of EGDe; gene names of CLIP80459; gene names of F2365; gene names of H7858; gene names of CLIP11262. Asterisks indicate pseudogenes. Reproduced with permission from reference .

Citation: Buchrieser C, Glaser P. 2011. Genomics of and Other Members of the Genus , p 125-145. In Fratamico P, Liu Y, Kathariou S (ed), Genomes of Foodborne and Waterborne Pathogens. ASM Press, Washington, DC. doi: 10.1128/9781555816902.ch10
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Angelidis, A. S., and, G. M. Smith. 2003. Role of the glycine betaine and carnitine transporters in adaptation of Listeria monocytogenes to chill stress in defined medium. Appl. Environ. Microbiol. 69: 74927498.
2. Angelidis, A. S., and, G. M. Smith. 2003. Three transporters mediate uptake of glycine betaine and carnitine by Listeria monocytogenes in response to hyperosmotic stress. Appl. Environ. Microbiol. 69: 10131022.
3. Aureli, P.,, G. C. Fiorucci,, D. Caroli,, G. Marchiaro,, O. Novara,, L. Leone, and, S. Salmaso. 2000. An outbreak of febrile gastroenteritis associated with corn contaminated by Listeria monocytogenes. N. Engl. J. Med. 342: 12361241.
4. Bania, J.,, A. Zarczynska,, J. Molenda,, A. Dabrowska,, K. Kosek-Paszkowska, M. Wieckowska-Szakiel, and, B. Rozalska. 2009. Subtyping of Listeria monocytogenes isolates by actA gene sequencing, PCR-fingerprinting, and cell-invasion assay. Folia Microbiol (Prague) 54: 1724.
5. Barabote, R. D., and, M. H. Saier. 2005. Comparative genomic analyses of the bacterial phosphotransferase system. Microbiol. Mol. Biol. Rev. 69: 608634.
6. Becker, L. A.,, S. N. Evans,, R. W. Hutkins, and, A. K. Benson. 2000. Role of sigma(B) in adaptation of Listeria monocytogenes to growth at low temperature. J. Bacterial. 182: 70837087.
7. Begley, M.,, C. Kerr, and, C. Hill. 2009. Exposure to bile influences biofilm formation by Listeria monocytogenes. Gut Pathog. 1: 11.
8. Bibb, W. F.,, B. Schwartz,, B. G. Gellin,, B. D. Plikaytis, and, R. E. Weaver. 1989. Analysis of Listeria monocytogenes by multilocus enzyme electrophoresis and application of the method to epidemiologic investigations. Int. J. Food Microbiol. 8: 233239.
9. Borucki, M. K.,, S. H. Kim,, D. R. Call,, S. C. Smole, and, F. Pagotto. 2004. Selective discrimination of Listeria monocytogenes epidemic strains by a mixed-genome DNA microarray compared to discrimination by pulsed-field gel electrophoresis, ribotyping, and multilocus sequence typing. J. Clin. Microbiol. 42: 52705276.
10. Borucki, M. K.,, M. J. Krug,, W. T. Muraoka, and, D. R. Call. 2003. Discrimination among Listeria monocytogenes isolates using a mixed genome DNA microarray. Vet. Microbiol. 92: 351362.
11. Brehm, K.,, M. T. Ripio,, J. Kreft, and, J. A. Vazquez-Boland. 1999. The bvr locus of Listeria monocytogenes mediates virulence gene repression by beta-glucosides. J. Bacterial. 181: 50245032.
12. Brosch, R.,, B. Catimel,, G. Milon,, C. Buchrieser,, E. Vindel, and, J. Rocourt. 1993. Virulence heterogeneity of Listeria monocytogenes strains from various sources (Food, Human, Animal) in immunocompetent mice and its association with typing characteristics. J. Food Prot. 56: 296301.
13. Brosch, R.,, J. Chen, and, J. B. Luchansky. 1994. Pulsed-field fingerprinting of listeriae : identification of genomic divisions for Listeria monocytogenes and their correlation with serovar. Appl. Environ. Microbiol. 60: 25842592.
14. Bublitz, M.,, C. Holland,, C. Sabet,, J. Reichelt,, P. Cossart,, D. W. Heinz,, H. Bierne, and, W. D. Schubert. 2008. Crystal structure and standardized geometric analysis of InlJ, a list-erial virulence factor and leucine-rich repeat protein with a novel cysteine ladder. J. Mol. Biol. 378: 8796.
15. Bublitz, M.,, L. Polle,, C. Holland,, D. W. Heinz,, M. Nimtz, and, W. D. Schubert. 2009. Structural basis for autoinhibition and activation of Auto, a virulence-associated peptidoglycan hydrolase of Listeria monocytogenes. Mol. Microbiol. 71: 15091522.
16. Buchrieser, C. 2007. Biodiversity of the species Listeria monocytogenes and the genus Listeria. Microbes Infect. 9: 11471155.
17. Buchrieser, C.,, C. Rusniok,, F. Kunst,, P. Cossart, and, P. Glaser. 2003. Comparison of the genome sequences of Listeria monocytogenes and Listeria innocua: clues for evolution and pathogenicity. FEMS Immunol. Med. Microbiol. 35: 207213.
18. Cabanes, D.,, P. Dehoux,, O. Dussurget,, L. Frangeul, and, P. Cossart. 2002. Surface proteins and the pathogenic potential of Listeria monocytogenes. Trends Microbiol. 5: 238245.
19. Cabanes, D.,, O. Dussurget,, P. Dehoux, and, P. Cossart. 2004. Auto, a surface associated autolysin of Listeria monocytogenes required for entry in eukaryotic cells and virulence. Mol. Microbiol. 51: 16011614.
20. Cabanes, D.,, S. Sousa,, A. Cebria,, M. Lecuit,, F. Garcia-del Portillo, and, P. Cossart. 2005. Gp96 is a receptor for a novel Listeria monocytogenes virulence factor, Vip, a surface protein. EMBO J. 24: 28272738.
21. Cai, S., and, M. Wiedmann. 2001. Characterization of the prfA virulence gene cluster insertion site in non-hemolytic Listeria spp.: probing the evolution of the Listeria virulence gene island. Curr. Microbiol. 43: 271277.
22. Call, R. D.,, M. K. Boroucki, and, T. E. Besser. 2003. Mixed-genome microarrays reveal multiple serotype and lineage-Specific differences among strains of Listeria monocytogenes. J. Clin. Microbiol. 41: 632639.
23. Camejo, A.,, C. Buchrieser,, E. Couve,, F. Carvalho,, O. Reis,, P. Ferreira,, S. Sousa,, P. Cossart, and, D. Cabanes. 2009. In vivo transcriptional profiling of Listeria monocytogenes and mutagenesis identify new virulence factors involved in infection. PLoS Pathog. 5: e1000449.
24. Cataldo, G.,, M. P. Conte,, F. Chiarini,, L. Seganti,, M. G. Ammendolia,, F. Superti, and, C. Longhi. 2007. Acid adaptation and survival of Listeria monocytogenes in Italian-style soft cheeses. J. Appl. Microbiol. 103: 185193.
25. Chakraborty, X,, T. Hain, and, E. Domann. 2000. Genome organization and the evolution of the virulence gene locus in Listeria species. Int. J. Med. Microbiol. 2: 167174.
26. Chan, Y. C.,, K. J. Boor, and, M. Wiedmann. 2007. SigmaB-dependent and sigmaB-independent mechanisms contribute to transcription of Listeria monocytogenes cold stress genes during cold shock and cold growth. Appl. Environ. Microbiol. 73: 60196029.
27. Chan, Y. C.,, Y. Hu,, S. Chaturongakul,, K. D. Files,, B. M. Bowen,, K. J. Boor, and, M. Wiedmann. 2008. Contributions of two-component regulatory systems, alternative sigma factors, and negative regulators to Listeria monocytogenes cold adaptation and cold growth. J. Food Prot. 71: 420425.
28. Chico-Calero, I.,, M. Suarez,, B. Gonzalez-Zorn, M. Scortti,, J. Slaghuis,, W. Goebel,, The European Listeria Consortium, and J. A. Vazquez-Boland. 2002. Hpt, a bacterial homolog of the microsomal glucose- 6-phosphate translocase, mediates rapid intracellular proliferation in Listeria. Proc. Natl. Acad. Sci. USA 99: 431436.
29. Ciesielski, C. A.,, A. W. Hightower,, S. K. Parsons, and, C. V. Broome. 1988. Listeriosis in the United States: 1980-1982. Arch. Intern. Med. 148: 14161419.
30. Cossart, P. 1998. Interactions of the bacterial pathogen Listeria monocytogenes with mammalian cells: bacterial factors, cellular ligands, and signaling. Folia Microbiol. 4 3: 291303.
31. Cossart, P. and M. Lecuit. 1998. Interactions of Listeria monocytogenes with mammalian cells during entry and actin-based movement: bacterial factors, cellular ligands and signaling. EMBO J. 17: 3797806.
32. Cotter, P. D.,, N. Emerson,, C. G. M. Gahan, and, C. Hill. 1999. Identification and disruption of lisRK, an genetic locus encoding a two-component signal transduction system involved in stress tolerance and virulence in Listeria monocytogenes. J. Bact. 181: 68406843.
33. Cotter, P. D.,, G. M. Gahan, and, C. Hill. 2001. A glutamate de-carboxylase system protects Listeria monocytogenes in gastric fluid. Mol. Microbiol. 40: 465475..
34. Cotter, P. D.,, C. M. Guinane, and, C. Hill. 2002. The LisRK signal transduction system determines the sensitivity of Listeria monocytogenes to nisin and cephalosporins. Antimicrob. Agents Chemother. 46: 27842790.
35. Cotter, P. D.,, S. Ryan,, C. G. Gahan, and, C. Hill. 2005. Presence of GadD1 glutamate decarboxylase in selected Listeria monocytogenes strains is associated with an ability to grow at low pH. Appl. Environ. Microbiol. 71: 28322839.
36. Cummins, A. J.,, A. K. Fielding, and, J. McLauchlin. 1994. Listeria ivanovii infection in a patient with AIDS. J. Infect. 28: 8991.
37. D’Amico, D. J., and, C. W. Donnelly. 2008. Enhanced detection of Listeria spp. in farmstead cheese processing environments through dual primary enrichment, PCR, and molecular subtyping. J. Food Prot. 71: 22392248.
38. Dalton, C. B.,, C. C. Austyin,, J. Sobel,, P. S. Hayes,, W. F. Bibb,, L. M. Graves,, B. Swaminathan,, M. E. Proctor, and, P. M. Griffin. 1997. An outbreak of gastroenteritis and fever due to Listeria monocytogenes in milk. N. Engl. J. Med. 336: 100105.
39. Davis, M. J.,, P. J. Coote, and, C. P. O’Byrne. 1996. Acid tolerance in Listeria monocytogenes: the adaptive acid tolerance response (ATR) and growth-phase-dependent acid resistance. Microbiology 142: 29752982.
40. Djordjevic, D.,, M. Wiedmann, and, L. A. McLandsborough. 2002. Microtiter plate assay for assessment of Listeria monocytogenes biofilm formation. Appl. Environ. Microbiol. 68: 29502958.
41. Domann, E.,, J. Wehland,, M. Rohde,, S. Pistor,, M. Hartl,, W. Goebel,, M. Leimeister-Wächter,, M. Wuenscher, and, T. Chakraborty. 1992. A novel bacterial gene in Listeria monocytogenes required for host cell microfilament interaction with homology to the proline-rich region of vinculin. EMBO J. 11: 19811990.
42. Dominguez-Bernal, G.,, S. Muller-Altrock,, B. Gonzalez-Zorn,, M. Scortti,, P. Herrmann,, H. J. Monzo,, L. Lacharme,, J. Kreft, and, J. A. Vazquez-Boland. 2006. A spontaneous genomic deletion in Listeria ivanovii identifies LIPI-2, a species-Specific pathogenicity island encoding sphingomyelinase and numerous internalins. Mol. Microbiol. 59: 415432.
43. Dominguez, L.,, V. Briones,, M. Blanco,, F. J. Fernandez-Garayzabal,, J. L. Blanco,, J. A. Vazquez, and, G. Suarez. 1989. Direct isolation (without enrichment) of Listeria monocytogenes in milk. Acta Microbiol. Hung. 36: 297301.
44. Dons, L.,, E. Erikson,, Y. Jin,, M. E. Rottenberg,, K. Kristenson,, C. N. Larsen,, J. Bresciani, and, J. O. Olsen. 2004. Role of flagellin and the two-component system CheA/CheY system of Listeria monocytogenes in host cell invasion and virulence. Infect. Immun. 72: 32373244.
45. Doumith, M.,, C. Buchrieser,, P. Glaser,, C. Jacquet, and, P. Martin. 2004. Differentiation of the major Listeria monocytogenes sero-vars by multiplex PCR. J. Clin. Microbiol. 42: 38193822.
46. Doumith, M.,, C. Cazalet,, N. Simoes,, L. Frangeul,, C. Jaquet,, F. Kunst,, P. Martin,, P. Cossart,, P. Glaser, and, C. Buchrieser. 2004. New aspects regarding evolution and virulence of Listeria monocytogenes revealed by comparative genomics. Infect. Immun. 72: 10721083.
47. Doumith, M.,, C. Jacquet,, P. Gerner-Smidt, L. M. Graves,, S. Loncarevic,, T. Mathisen,, A. Morvan,, C. Salcedo,, M. Torpdahl,, J. A. Vazquez, and, P. Martin. 2005. Multicenter validation of a multiplex PCR assay for differentiating the major Listeria monocytogenes serovars 1/2a, 1/2b, 1/2c, and 4b: toward an international standard. J. Food Prot. 68: 26482650.
48. Dramsi, S.,, I. Biswas,, E. Maguin,, L. Braun,, P. Mastroeni, and, P. Cossart. 1995. Entry of Listeria monocytogenes into hepa-tocytes requires expression of InlB, a surface protein of the internalin multigene family. Mol. Microbiol. 16: 251261.
49. Dramsi, S.,, P. Dehoux,, M. Lebrun,, P. L. Goossens, and, P. Cossart. 1997. Identification of four new members of the internalin multigene family of Listeria monocytogenes EGD. Infect. Immun. 65: 16151625.
50. Dramsi, S.,, M. Lebrun, and, P. Cossart. 1996. Molecular and genetic determinants involved in invasion of mammalian cells by Listeria monocytogenes. Curr. Top. Microbiol. Immunol. 209: 6177.
51. Engelbrecht, F.,, G. Dominguez-Bernal,, J. Hess,, C. Dickneite,, L. Greiffenberg,, R. Lampidis,, D. Raffelsbauer,, J. J. D. Daniels,, J. Kreft,, S. H. E. Kaufmann,, J. -A. Vasquez-Boland, and, W. Goebel. 1998. A novel PrfA-regulated chromosomal locus, which is specific for Listeria ivanovii, encodes two small, secreted internalins and contributes to virulence in mice. Mol. Microbiol. 30: 405417..
52. Evans, M. R.,, B. Swaminathan,, L. M. Graves,, E. Altermann,, T. R. Klaenhammer,, R. C. Fink,, S. Kernodle, and, S. Kathariou. 2004. Genetic markers unique to Listeria monocytogenes sero-type 4b differentiate epidemic clone II (hot dog outbreak strains) from other lineages. Appl. Environ. Microbiol. 70: 23832390.
53. Farber, J. M., and, P. I. Peterkin. 1991. Listeria monocytogenes, a food-borne pathogen. Microbiol. Rev. 55: 476511.
54. Felicio, M. T.,, T. Hogg,, P. Gibbs,, P. Teixeira, and, M. Wiedmann. 2007. Recurrent and sporadic Listeria monocytogenes contamination in alheiras represents considerable diversity, including virulence-attenuated isolates. Appl. Environ. Microbiol. 73: 38873895.
55. Flanary, P. L.,, R. D. Allen,, L. Dons, and, S. Kathariou. 1999. Insertional inactivation of the Listeria monocytogenes cheYA operon abolishes response to oxygen gradients and reduces the number of flagella. Can. J. Microbiol. 45: 646652.
56. Franciosa, G.,, A. Maugliani,, C. Scalfaro,, F. Floridi, and, P. Aureli. 2009. Expression of internalin A and biofilm formation among Listeria monocytogenes clinical isolates. Int. J. Immunopathol. Pharmacol. 22: 183193.
57. Francis, G. A.,, J. Scollard,, A. Meally,, D. J. Bolton,, C. G. Gahan,, P. D. Cotter,, C. Hill, and, D. O’Beirne. 2007. The glutamate decarboxylase acid resistance mechanism affects survival of Listeria monocytogenes LO28 in modified atmosphere-packaged foods. J. Appl. Microbiol. 103: 23162324.
58. Gaillard, J.-L.,, P. Berche,, C. Frehel,, E. Gouin, and, P. Cossart. 1991. Entry of Listeria monocytogenes into cells is mediated by internalin, a repeat protein reminiscent of surface antigens from Gram-positive cocci. Cell 65: 11271141.
59. Gellin, B. G.,, C. V. Broome,, W. F. Bibb,, R. E. Weaver,, S. Gaventa, and, L. Mascola. 1991. The epidemiology of listeriosis in the United States—1986. Listeriosis Study Group. Am. J. Epidemiol. 133: 392401.
60. Geoffroy, C.,, J. Raveneau,, J. L. Beretti,, A. Lecroisey,, J. A. Vazquez-Boland,, J. E. Alouf, and, P. Berche. 1991. Purification and characterization of an extracellular 29-Kilodalton phos-pholipase C from Listeria monocytogenes. Infect. Immun. 59: 23822388.
61. Glaser, P.,, L. Frangeul,, C. Buchrieser,, C. Rusniok,, A. Amend,, F. Baquero,, P. Berche,, H. Bloecker,, P. Brandt,, T. Chakraborty,, A. Charbit,, F. Chetouani,, E. Couve,, A. de Daruvar,, P. Dehoux,, E. Domann,, G. Dominguez-Bernal,, E. Duchaud,, L. Durant,, O. Dussurget,, K. D. Entian,, H. Fsihi,, F. G. Portillo,, P. Garrido,, L. Gautier,, W. Goebel,, N. Gomez-Lopez,, T. Hain,, J. Hauf,, D. Jackson,, L. M. Jones,, U. Kaerst,, J. Kreft,, M. Kuhn,, F. Kunst,, G. Kurapkat,, E. Madueno,, A. Maitournam,, J. M. Vicente,, E. Ng,, H. Nedjari,, G. Nordsiek,, S. Novella,, B. de Pablos,, J. C. Perez-Diaz,, R. Purcell,, B. Remmel,, M. Rose,, T. Schlueter,, N. Simoes,, A. Tierrez,, J. A. Vazquez-Boland,, H. Voss,, J. Wehland, and, P. Cossart. 2001. Comparative genomics of Listeria species. Science 294: 849852.
62. Gottschalk, S.,, I. Bygebjerg-Hove,, M. Bonde,, P. K. Nielsen,, T. H. Nguyen,, A. Gravesen, and, B. H. Kallipolitis. 2008. The two-component system CesRK controls the transcriptional induction of cell envelope-related genes in Listeria monocytogenes in response to cell wall-acting antibiotics. J. Bacterial. 19 0: 47724776.
63. Gouin, E.,, J. Mengaud, and, P. Cossart. 1994. The virulence gene cluster of Listeria monocytogenes is also present in Listeria ivanovii, an animal pathogen, and Listeria seeligeri, a nonpathogenic species. Infect. Immun. 62: 35503553.
64. Goulet, V.,, C. Hedberg,, A. Le Monnier, and, H. de Valk. 2008. Increasing incidence of listeriosis in France and other European countries. Emerg. Infect. Dis. 14: 734740.
65. Graves, L.,, B. Swaminathan,, M. Reeves,, S. B. Hunter,, R. E. Weaver,, B. D. Plikaytis, and, A. Schuchat. 1994. Comparison of ribotyping and multilocus enzyme electrophoresis for sub-typing of Listeria monocytogenes isolates. J. Clin. Microbiol. 32: 29362943.
66. Graves, L. M.,, L. O. Helsel,, R. E. Morey,, A. G. Steigerwalt,, S. Roof,, R. Orsi,, E. Fortes,, S. Millilo,, M. Wiedmann, and, B. Swaminathan. Listeria marthii sp. nov.: a new species of Listeria Isolated from natural environment. Int. J. Syst. Bacterial. in press.
67. Grif, K.,, I. Hein,, M. Wagner,, E. Brandl,, O. Mpamugo,, J. McLauchlin,, M. P. Dierich, and, F. Allerberger. 2001. Prevalence and characterization of Listeria monocytogenes in the feces of healthy Austrians. Wien. Klin. Wochenschr. 113: 737742.
68. Grif, K.,, G. Patscheider,, M. P. Dierich, and, F. Allerberger. 2003. Incidence of fecal carriage of Listeria monocytogenes in three healthy volunteers: a one-year prospective stool survey. Eur. J. Clin. Microbiol. Infect. Dis. 22: 1620.
69. Hain, T.,, C. Steinweg, and, T. Chakraborty. 2006. Comparative and functional genomics of Listeria spp. J. Biotechnol. 126: 3751.
70. Hain, T.,, C. Steinweg,, C. X Kuenne,, A. Billion,, R. Ghai,, S. S. Chatterjee,, E. Domann,, U. Kärst,, A. Goesmann,, X Bekel,, D. Bartels,, O. Kaiser,, F. Meyer,, A. Pühler,, B. Weisshaar,, J. Wehland,, C. Liang,, X Dandekar,, R. Lampidis,, J. Kreft,, W. Goebel, and, T. Chakraborty. 2006. Whole-genome sequence of Listeria welshimeri reveals common steps in genome reduction with Listeria innocua as compared to Listeria monocytogenes. J. Bacterial. 188: 74057415.
71. Handa-Miya, S.,, B. Kimura,, H. Takahashi,, M. Sato,, X Ishikawa, K. Igarashi, and, T. Fugii. 2007. Nonsense-mutated inlA and prfA not widely distributed in Listeria monocytogenes isolates from ready-to-eat seafood products in Japan. Int. J. Food Microbiol. 117: 312318.
72. Hong, E.,, M. Doumith,, S. Duperrier,, I. Giovannacci,, A. Morvan,, P. Glaser,, C. Buchrieser,, C. Jacquet, and, M. Martin. 2007. Genetic diversity of Listeria monocytogenes populations present in patients and in pork products at the store distribution level in France in 2000-2001. Int. J. Food Microbiol. 114: 187194.
73. Ivanov, I. 1962. Untersuchungen uber die Listeriose der Schafe in Bulgarien. Monatsh. Veterinärmed. 17: 729736.
74. Jacquet, C.,, M. Doumith,, J. I. Gordon,, P. M. Martin,, P. Cossart, and, M. Lecuit. 2004. A molecular marker for evaluating the pathogenic potential of foodborne Listeria monocytogenes. J. Infect. Dis. 189: 20942100.
75. Jacquet, C.,, E. Gouin,, D. Jeannel,, P. Cossart, and, J. Rocourt. 2002. Expression of ActA, Ami, InlB, and listeriolysin O in Listeria monocytogenes of human and food origin. Appl. Environ. Microbiol. 68: 616622.
76. Jonquieres, R.,, H. Bierne,, J. Mengaud, and, P. Cossart. 1998. The inlA gene of Listeria monocytogenes LO28 harbors a nonsense mutation resulting in release of internalin. Infect. Immun. 66: 34203422.
77. Jydegaard-Axelsen, A. M.,, P. E. Hoiby,, K. Holmstrom,, N. Russell, and, S. Knochel. 2004. CO2- and anaerobiosis-induced changes in physiology and gene expression of different Listeria monocytogenes strains. Appl. Environ. Microbiol. 70: 41114117.
78. Kallipolitis, B. H.,, H. Ingmer,, C. G. Gahan,, C. Hill, and, L. Sogaard-Andersen. 2003. CesRK, a two-component signal transduction system in Listeria monocytogenes, responds to the presence of cell wall-acting antibiotics and affects beta-lactam resistance. Antimicrob. Agents Chemother. 47: 34213429.
79. Kalmokoff, M. L.,, J. W. Austin,, X. D. Wan,, G. Sanders,, S. Banerjee, and, J. M. Farber. 2001. Adsorption, attachment and biofilm formation among isolates of Listeria monocytogenes using model conditions. J. Appl. Microbiol. 91: 725734.
80. Kathariou, S. 2003. Foodborne outbreaks of listeriosis and epidemic-associated lineages of Listeria monocytogenes, p. 243-256. In M. E. Torrence and, R. E. Isaacson (ed.), Mi-crobial Food Safety in Animal Agriculture. Iowa State University Press, Ames, IA.
81. Kim, J. W., and, S. Kathariou. 2009. Temperature-dependent phage resistance of Listeria monocytogenes epidemic clone II. Appl. Environ. Microbiol. 75: 24332438.
82. Kim, J. W.,, R. M. Siletzky, and, S. Kathariou. 2008. Host ranges of Listeria-specific bacteriophages from the turkey processing plant environment in the United States. Appl. Environ. Microbiol. 74: 66236630.
83. Kingdon, G. C., and, C. P. Sword. 1970. Effects of Listeria monocytogenes hemolysin on phagocytic cells and lysosmes. Infect. Immun. 1: 356362.
84. Kocks, C.,, E. Gouin,, M. Tabouret,, P. Berche,, H. Ohayon, and, P. Cossart. 1992. Listeria monocytogenes-induced actin assembly requires the actA gene product, a surface protein. Cell 68: 521531.
85. Kotrba, P.,, M. Inui, and, H. Yukawa. 2001. Bacterial phos-photransferase system (PTS) in carbohydrate uptake and control of carbon metabolism. J. Biosci. Bioeng. 92: 502517.
86. Kreft, J.,, J.-A. Vazquez-Boland,, S. Altrock,, G. Dominguez-Bernal, and, W. Goebel. 2002. Pathogenicity islands and other virulence elements in Listeria. Curr. Top. Microbiol. Immunol. 264: 109125.
87. Larsen, H. E., and, H. P. R. Seeliger. 1996. Presented at the Proceedings of the Third International Symposium on List-eriosis, Bilthoven, The Netherlands.
88. Leclercq, A.,, D. Clermont,, C. Bizet,, P. A. D. Grimont,, A. Le Flèche-Matéos,, S. Roche,, C. Buchrieser,, V. Cadet-Daniel,, A. Le Monnier,, M. Lecuit, and, F. Allerberger. 2009. Listeria rocourtiae sp. nov. Int. J. Syst. Evol. Microbiol. [Epub ahead of print.] doi:10.1099/ijs.0.017376-0.
89. Lecuit, M.,, S. Vandormael-Pournin,, J. Lefort,, M. Huerre,, P. Gounon,, C. Dupuy,, C. Babinet, and, P. Cossart. 2001. A transgenesis model for listeriosis: role of internalin in crossing the intestinal barrier. Science 5522: 17221725.
90. Leimeister-Wächter, M.,, C. Haffner,, E. Domann,, W. Goebel, and, T. Chakraborty. 1990. Identification of a gene that positively regulates expression of listeriolysin, the major virulence factor of Listeria monocytogenes. Proc. Natl. Acad. Sci. USA 87: 83368340.
91. Lessing, M. P.,, G. D. Curtis, and, I. C. Bowler. 1994. Listeria ivanovii infection. J. Infect. 29: 230231.
92. Linden, S. K.,, H. Bierne,, C. Sabet,, C. W. Png,, T. H. Florin,, M. A. McGuckin, and, P. Cossart. 2008. Listeria monocytogenes internalins bind to the human intestinal mucin MUC2. Arch. Microbiol. 190: 101104.
93. Lindstedt, B. A.,, W. Tham,, M. L. Danielsson-Tham,, T. Vardund,, S. Helmersson, and, G. Kapperud. 2008. Multiple-locus variable-number tandem-repeats analysis of Listeria monocytogenes using multicolour capillary electrophoresis and comparison with pulsed-field gel electrophoresis typing. J. Microbiol. Methods 72: 141148.
94. Liu, D.,, M. L. Lawrence,, L. Gorski,, R. E. Mandrell,, A. J. Ainsworth, and, F. W. Austin. 2006. Listeria monocytogenes serotype 4b strains belonging to lineages I and III possess distinct molecular features. J. Clin. Microbiol. 44: 214217.
95. Liu, D.,, M. L. Lawrence,, M. Wiedmann,, L. Gorski,, R. E. Mandrell,, A. J. Ainsworth, and, F. W. Austin. 2006. Listeria monocytogenes subgroups IIIA, IIIB, and IIIC delineate genetically distinct populations with varied pathogenic potential. J. Clin. Microbiol. 44: 42294233.
96. Loessner, M. J.,, R. B. Inman,, P. Lauer, and, R. Calendar. 2000. Complete nucleotide sequence, molecular analysis and genome structure of bacteriophage A118 of Listeria monocytogenes: implications for phage evolution. Mol. Microbiol. 2: 324340.
97. Lomonaco, S.,, Y. Chen, and, S. J. Knabel. 2008. Analysis of additional virulence genes and virulence gene regions in Listeria monocytogenes confirms the epidemiologic relevance of multi-virulence-locus sequence typing. J. Food Prot. 71: 25592566.
98. Lunden, J. M.,, M. K. Miettinen,, T. J. Autio, and, H. J. Korkeala. 2000. Persistent Listeria monocytogenes strains show enhanced adherence to food contact surface after short contact times. J. Food Prot. 63: 12041207.
99. Mackaness, G. B. 1962. Cellular resistance to infection. J. Exp. Med. 116: 381406.
100. Mackaness, G. B. 1964. The immunological basis of acquired cellular resistance. J. Exp. Med. 120: 105120.
101. Mackaness, G. B. 1969. The influence of immunologically committed lymphoifd cells on macrophage activity in vivo. J. Exp. Med. 129: 973996.
102. Mandin, P.,, H. Fsihi,, O. Dussurget,, M. Vergassola,, E. Milo-hanic, A. Toledo-Arana, I. Lasa, J. Johansson, and, P. Cossart. 2005. VirR, a response regulator critical for Listeria monocytogenes virulence. Mol. Microbiol. 57: 13671380.
103. McClure, P. J.,, T. M. Kelly, and, T. A. Roberts. 1991. The effects of temperature, pH, sodium chloride and sodium nitrite on the growth of Listeria monocytogenes. Int. J. Food Microbiol. 14: 7791.
104. Mengaud, J.,, J. Chenevert,, C. Geoffroy,, J. L. Gaillard, and, P. Cossart. 1987. Identification of the structural gene encoding the SH-activated hemolysin of Listeria monocytogenes: listeriolysin O is homologous to streptolysin O and pneumolysin. Infect. Immun. 55: 32253227.
105. Mengaud, J.,, S. Dramsi,, E. Gouin,, B. J. Vazquez,, G. Milon, and, P. Cossart. 1991. Pleiotropic control of Listeria monocytogenes virulence factors by a gene that is autoregulated. Mol. Microbiol. 5: 22732283.
106. Milillo, S. R.,, J. M. Badamo, and, M. Wiedmann. 2009. Contributions to selected phenotypic characteristics of large species- and lineage-specific genomic regions in Listeria monocytogenes. Food Microbiol. 26: 212223.
107. Milillo, S. R., and, M. Wiedmann. 2008. Contributions of six lineage-specific internalin-like genes to invasion efficiency of Listeria monocytogenes. Foodborne Pathog. Dis. 6: 5770.
108. Moorhead, S. M., and, G. A. Dykes. 2004. Influence of the sigB gene on the cold stress survival and subsequent recovery of two Listeria monocytogenes serotypes. Int. J. Food Microbiol. 91: 6372.
109. Murray, E. G. D.,, R. E. Webb, and, M. B. R. Swann. 1926. A disease of rabbits characterized by a large mononuclear leucocytosis, caused by a hitherto undescribed bacillus Bacterium monocytogenes (n. sp.). J. Pathol. Bacterial. 29: 407439.
110. Nelson, K. E.,, D. E. Fouts,, E. F. Mongodin,, J. Ravel,, R. T. DeBoy,, J. F. Kolonay,, D. A. Rasko,, S. V. Angiuoli,, S. R. Gill,, I. T. Paulsen,, J. Peterson,, O. White,, W. C. Nelson,, W. Nierman,, M. J. Beanan,, L. M. Brinkac,, S. C. Daugherty,, R. J. Dodson,, A. S. Durkin,, R. Madupu,, D. H. Haft,, J. Selengut,, S. Van Aken,, H. Khouri,, N. Fedorova,, H. Forberger,, B. Tran,, S. Kathariou,, L. D. Wonderling,, G. A. Uhlich,, D. O. Bayles,, J. B. Luchansky, and, C. M. Fraser. 2004. Whole genome comparisons of serotype 4b and 1/2a strains of the food-borne pathogen Listeria monocytogenes reveal new insights into the core genome components of this species. Nucleic Acids Res. 32: 23862395.
111. Nightingale, K. K.,, R. A. Ivy,, A. J. Ho,, E. D. Fortes,, B. L. Njaa,, R. M. Peters, and, M. Wiedmann. 2008. inlA premature stop codons are common among Listeria monocytogenes isolates from foods and yield virulence-attenuated strains that confer protection against fully virulent strains. Appl. Environ. Microbiol. 74: 65706583.
112. Nightingale, K. K.,, K. Windham,, K. E. Martin,, M. Yeung, and, M. Wiedmann. 2005. Select Listeria monocytogenes subtypes commonly found in foods carry distinct nonsense mutations in inlA, leading to expression of truncated and secreted internalin A, and are associated with a reduced invasion phenotype for human intestinal epithelial cells. Appl. Environ. Microbiol. 71: 87648772.
113. Nightingale, K. K.,, K. Windham, and, M. Wiedmann. 2005. Evolution and molecular phylogeny of Listeria monocytogenes isolated from human and animal listeriosis cases and foods. J. Bacterial. 187: 55375551.
114. Norwood, D. E., and, A. Gilmour. 1999. Adherence of Listeria monocytogenes strains to stainless steel coupons. J. Appl. Microbiol. 86: 576582.
115. Norwood, D. E., and, A. Gilmour. 2001. The differential adherence capabilities of two Listeria monocytogenes strains in monoculture and multispecies biofilms as a function of temperature. Lett. Appl. Microbiol. 33: 320324.
116. O’Driscoll, B.,, C. G. Gahan, and, C. Hill. 1996. Adaptive acid tolerance response in Listeria monocytogenes: isolation of an acid-tolerant mutant which demonstrates increased virulence. Appl. Environ. Microbiol. 62: 16931698.
117. Olier, M.,, F. Pierre,, J. P. Lemaitre,, C. Divies,, A. Rousset, and, J. Guzzo. 2002. Assessment of the pathogenic potential of two Listeria monocytogenes human faecal carriage isolates. Microbiology 148: 18551862.
118. Olier, M.,, F. Pierre,, S. Rousseaux,, J. P. Lemaitre,, A. Rousset,, P. Piveteau, and, J. Guzzo. 2003. Expression of truncated Internalin A is involved in impaired internalization of some Listeria monocytogenes isolates carried asymptomatically by humans. Infect. Immun. 71: 12171224.
119. Orsi, R. H.,, D. R. Ripoll,, M. Yeung,, K. K. Nightingale, and, M. Wiedmann. 2007. Recombination and positive selection contribute to evolution of Listeria monocytogenes inlA. Microbiology 153: 26662678.
120. Pan, Y.,, F. Breidt, Jr., and, S. Kathariou. 2006. Resistance of Listeria monocytogenes biofilms to sanitizing agents in a simulated food processing environment. Appl. Environ. Microbiol. 72: 77117717.
121. Pichler, J.,, P. Much,, S. Kasper,, R. Fretz,, B. Auer,, J. Kathan,, M. Mann,, S. Huhulescu,, W. Ruppitsch,, A. Pietzka,, K. Silberbauer,, C. Neumann,, E. Gschiel,, A. de Martin,, A. Schuetz,, J. Gindl,, E. Neugschwandtner, and, F. Allerberger. 2009. An outbreak of febrile gastroenteritis associated with jellied pork contaminated with Listeria monocytogenes. Wien. Klin. Wochenschr. 121: 149156.
122. Piffaretti, J. C.,, H. Kressebuch,, M. Aeschbacher,, J. Bille,, E. Bannerman,, J. M. Musser,, R. K. Selander, and, J. Rocourt. 1989. Genetic characterization of clones of the bacterium Listeria monocytogenes causing epidemic disease. Proc. Natl. Acad. Sci. USA 86: 38183822.
123. Pinner, R. W.,, A. Schuchat,, B. Swaminathan,, P. S. Hayes,, K. A. Deaver,, R. E. Weaver,, B. D. Plikaytis,, M. Reeves,, C. V. Broome, and, J. D. Wenger. 1992. Role of foods in sporadic listeriosis. II. Microbiologic and epidemiologic investigation. JAMA 267: 20812082.
124. Pizarro-Cerda, J., and, P. Cossart. 2006. Subversion of cellular functions by Listeria monocytogenes. J. Pathol. 208: 215223.
125. Racz, P.,, E. Kaiserling,, K. Tenner, and, H. H. Wuthe. 1973. Experimental Listeria cystitis. II. Further evidence of the epithelial phase in experimental Listeria infection. An electron microscopic study. Virchows Arch. B Cell Pathol. 13: 2437.
126. Racz, P.,, K. Tenner, and, E. Mérö. 1972. Experimental Listeria enteritis. I. An electron microscopic study of the epithelial phase in experimental Listeria infection. Lab. Investig. 26: 694700.
127. Racz, P.,, K. Tenner, and, K. Szivessy. 1970. Electron microscopic studies in experimental keratoconjunctivitis listeriosa. I. Penetration of Listeria monocytogenes into corneal epithelial cells. Acta Microbiol. Acad. Sci. Hung. 17: 221236.
128. Raffelsbauer, D.,, A. Bubert,, F. Engelbrecht,, J. Scheinpflug,, A. Simm,, J. Hess,, S. H. Kaufmann, and, W. Goebel. 1998. The gene cluster inlC2DE of Listeria monocytogenes contains additional new internalin genes and is important for virulence in mice. Mol. Gen. Genet. 260: 144158.
129. Ragon, M.,, T. Wirth,, F. Hollandt,, R. Lavenir,, M. Lecuit,, A. Le Monnier, and, S. Brisse. 2008. A new perspective on Listeria monocytogenes evolution. PLoS Pathog. 4: e1000146.
130. Raimann, E.,, B. Schmid,, R. Stephan, and, T. Tasara. 2009. The Alternative sigma factor sigma(L) of L. monocytogenes promotes growth under diverse environmental stresses. Foodborne Pathog. Dis. 6: 583591.
131. Riedel, C. U.,, I. R. Monk,, P. G. Casey,, M. S. Waidmann,, C. G. Gahan, and, C. Hill. 2009. AgrD-dependent quorum sensing affects biofilm formation, invasion, virulence and global gene expression profiles in Listeria monocytogenes. Mol. Microbiol. 71: 11771189.
132. Rieu, A.,, R. Briandet,, O. Habimana,, D. Garmyn,, J. Guzzo, and, P. Piveteau. 2008. Listeria monocytogenes EGD-e biofilms: no mushrooms but a network of knitted chains. Appl. Environ. Microbiol. 74: 44914497.
133. Rieu, A.,, S. Weidmann,, D. Garmyn,, P. Piveteau, and, J. Guzzo. 2007. Agr system of Listeria monocytogenes EGD-e: role in adherence and differential expression pattern. Appl. Environ. Microbiol. 73: 61256133.
134. Roberts, A.,, K. Nightingale,, G. Jeffers,, E. Fortes,, J. M. Kongo, and, M. Wiedmann. 2006. Genetic and phenotypic characterization of Listeria monocytogenes lineage III. Microbiology 152: 685693.
135. Rocourt, J.,, P. Boerlin,, F. Grimont,, C. Jacquet, and, J.-C. Piffaretti. 1992. Assignment of Listeria grayi and Listeria murrayi to a single species, Listeria grayi, with a revised description of Listeria grayi. Int. J. Syst. Bacterial. 42: 6973.
136. Rocourt, J., and, P. A. D. Grimont. 1983. Listeria welshimeri sp. nov. and Listeria seeligeri sp. nov. Int. J. Syst. Bacterial. 33: 866869.
137. Rocourt, J.,, U. Wehmeyer, and, E. Stackebrandt. 1987. Transfer of Listeria denitrificans to a new genus, Jonesia gen. nov., as Jonesia denitrificans comb. nov. Int. J. Syst. Bacterial. 37: 266270.
138. Rousseaux, S.,, M. Olier,, J. P. Lamaitre,, P. Piveteau, and, J. Guzzo. 2004. Use of PCR-restriction fragment polymorphism of inlA for rapid screening of Listeria monocytogenes strains deficient in the ability to invade Caco-2 cells. Appl. Environ. Microbiol. 70: 21802185.
139. Ryan, S.,, M. Begley,, C. G. Gahan, and, C. Hill. 2009. Molecular characterization of the arginine deiminase system in Listeria monocytogenes: regulation and role in acid tolerance. Environ. Microbiol. 11: 432445.
140. Sabet, C.,, M. Lecuit,, D. Cabanes,, P. Cossart, and, H. Bierne. 2005. LPXTG protein InlJ, a newly identified internalin involved in Listeria monocytogenes virulence. Infect. Immun. 73: 69126922.
141. Schlech, W. F.,, P. M. Lavigne,, R. A. Bortolussi,, A. C. Allen,, E. V. Haldane,, A. J. Wort,, A. W. Hightower,, S. E. Johnson,, S. H. King,, E. S. Nicholls, and, C. V. Broome. 1983. Epidemic listeriosis—evidence for transmission by food. N. Engl. J. Med. 308: 203206.
142. Schmid, M. W.,, E. Y. Ng,, R. Lampidis,, M. Emmerth,, M. Walcher,, J. Kreft,, W. Goebel,, M. Wagner, and, K. H. Schleifer. 2005. Evolutionary history of the genus Listeria and its virulence genes. Syst. Appl. Microbiol. 28: 118.
143. Schuchat, A.,, K. A. Deaver,, J. D. Wenger,, B. D. Plikaitis,, L. Mascola,, R. W. Pinner,, A. L. Reingold, and, C. V. Broome. 1992. Role of foods in sporadic listeriosis. I. A case control study of dietary risk factors. JAMA 267: 20412045.
144. Schuchat, A.,, B. Swaminathan, and, C. V. Broome. 1991. Epidemiology of human listeriosis. Clin. Microbiol. Rev. 4: 169183.
145. Seeliger, H. P. R., and, K. Höhne. 1979. Serotyping of Listeria monocytogenes and related species. In T. Bergan and, J. R. Norris (ed.), Methods in Microbiology, vol. 13. Academic Press, London, UK.
146. Seeliger, H. P. R., and, D. Jones. 1986. Listeria, p. 1235-1245. In P. H. A. Sneath,, N. S. Mair,, N. E. Sharpe, and, J. G. Holt (ed.), Bergey’s Manual of Sytematic Bacterialogy, vol. 2. The Williams and Wilkins Co., Baltimore, MD.
147. Seeliger, H. P. R.,, J. Rocourt,, A. Schrettenbrunner,, P. A. D. Grimont, and, D. Jones. 1984. Listeria ivanovii sp. nov. Int. J. Syst. Bacterial. 34: 336337.
148. Shen, Y.,, M. Naujokas,, M. Park, and, K. Ireton. 2000. InlB-dependent internalization of Listeria is mediated by the Met recptor tyrosine kinase. Cell 103: 501510.
149. Snapir, Y. M.,, E. Vaisbein, and, F. Nassar. 2006. Low virulence but potentially fatal outcome- Listeria ivanovii. Eur. J. Intern. Med. 17: 286287.
150. Sohier, R.,, F. Benazet, and, M. Piéchaud. 1948. Sur un germe du genre Listeria apparemment non pathogène. Ann. Inst. Pasteur 74: 5457.
151. Sperry, K. E.,, S. Kathariou,, J. S. Edwards, and, L. A. Wolf. 2008. Multiple-locus variable-number tandem-repeat analysis as a tool for subtyping Listeria monocytogenes strains. J. Clin. Microbiol. 46: 14351450.
152. Stover, C. K.,, X. Q. Pham,, A. L. Erwin,, S. D. Mizoguchi,, P. Warrener,, M. J. Hickey,, F. S. Brinkman,, W. O. Hufnagle,, D. J. Kowalik,, M. Lagrou,, R. L. Garber,, L. Goltry,, E. Tolentino,, S. Westbrock-Wadman,, Y. Yuan,, L. L. Brody,, S. N. Coulter,, K. R. Folger,, A. Kas,, K. Larbig,, R. Lim,, K. Smith,, D. Spencer,, G. K. Wong,, Z. Wu,, I. T. Paulsen,, J. Reizer,, M. H. Saier,, R. E. Hancock,, S. Lory, and, M. V. Olson. 2000. Complete genome sequence of Pseudomonas aeruginosa PA01, an opportunistic pathogen. Nature 406: 959964.
153. Stuart, S. E., and, H. J. Welshimer. 1973. Intrageneric related-ness of Listeria Pirie. Int. J. Syst. Bacterial. 23: 814.
154. Stuart, S. E., and, H. J. Welshimer. 1974. Taxonomic reexamination of Listeria Pirie and tranfer of Listeria grayi and Listeria murrayi to a new genus Murraya. Int. J. Syst. Bacterial. 24: 177185.
155. Tappero, J. W.,, A. Schuchat,, K. A. Deaver,, L. Mascola, and, J. D. Wenger. 1995. Reduction in the incidence of human listeriosis in the United States. Effectiveness of prevention efforts? The Listeriosis Study Group. JAMA 273: 11181122.
156. Tilney, L. G., and, D. A. Portnoy. 1989. Actin filaments and the growth, movement, and spread of the intracellular bacterial parasite Listeria monocytogenes. J. Cell Biol. 109: 15971608.
157. Tsai, Y. H.,, R. H. Orsi,, K. K. Nightingale, and, M. Wiedmann. 2006. Listeria monocytogenes internalins are highly diverse and evolved by recombination and positive selection. Infect. Genet. Evol. 9: 9.
158. Vasconcelos, R. M.,, A. E. Almeida,, E. Hofer,, N. M. Silva, and, V. A. Marin. 2008. Multiplex-PCR serotyping of Listeria monocytogenes isolated from human clinical specimens. Mem. Inst. Oswaldo Cruz 103: 836838.
159. Vazquez-Boland, J.-A., M. Kuhn,, P. Berche,, T. Chakraborty,, G. Dominguez-Bernal,, W. Goebel,, B. Gonzalez-Zorn,, J. Wehland, and, J. Kreft. 2001. Listeria pathogenesis and molecular virulence determinants. Clin. Microbiol. Rev. 14: 157.
160. Voetsch, A. C.,, F. J. Angulo,, T. F. Jones,, M. R. Moore,, C. Nadon,, P. McCarthy,, B. Shiferaw,, M. B. Megginson,, S. Hurd,, B. J. Anderson,, A. Cronquist,, D. J. Vugia,, C. Medus,, S. Segler,, L. M. Graves,, R. M. Hoekstra, and, P. M. Griffin. 2007. Reduction in the incidence of invasive listeriosis in foodborne diseases active surveillance network sites, 1996-2003. Clin. Infect. Dis. 44: 513520.
161. Volokhov, D. V.,, S. Duperrier,, A. A. Neverov,, J. George,, C. Buchrieser, and, A. D. Hitchins. 2007. Internalin gene in natural atypically hemolytic Listeria innocua strains suggests descent from L. monocytogenes. Appl. Environ. Microbiol. 73: 17961806.
162. Ward, T. J.,, L. Gorski,, M. K. Borucki,, R. E. Mandrell,, J. Hutchins, and, K. Pupedis. 2004. Intraspecific phylogeny and lineage group identification based on the prfA virulence gene cluster of Listeria monocytogenes. J. Bacterial. 186: 49945002.
163. Welshimer, H. J., and, A. L. Meredith. 1971. Listeria murrayi sp. n.: a nitrate-reducing mannitol-fermenting Listeria. Int. J. Syst. Bacterial. 21: 37.
164. Wemekamp-Kamphuis, H. H.,, J. A. Wouters,, P. P. de Leeuw,, T. Hain,, T. Chakraborty, and, T. Abee. 2004. Identification of sigma factor sigma B-controlled genes and their impact on acid stress, high hydrostatic pressure, and freeze survival in Listeria monocytogenes EGD-e. Appl. Environ. Microbiol. 70: 34573466.
165. Yildirim, S.,, W. Lin,, A. D. Hitchins,, L. A. Jaykus,, E. Altermann,, T. R. Klaenhammer, and, S. Kathariou. 2004. Epidemic clone I-Specific genetic markers in strains of Listeria monocytogenes serotype 4b from foods. Appl. Environ. Microbiol. 70: 41584164.
166. Zhang, C.,, M. Zhang,, J. Ju,, J. Nietfeldt,, J. Wise,, P. M. Terry,, M. Olson,, S. D. Kachman,, M. Wiedmann,, M. Samadpour, and, A. K. Benson. 2003. Genome diversification in phylogenetic lineages I and II of Listeria monocytogenes: identification of segments unique to lineage II populations. J. Bacterial. 185: 55735584.


Generic image for table
Table 1

General features of published genome sequences

Citation: Buchrieser C, Glaser P. 2011. Genomics of and Other Members of the Genus , p 125-145. In Fratamico P, Liu Y, Kathariou S (ed), Genomes of Foodborne and Waterborne Pathogens. ASM Press, Washington, DC. doi: 10.1128/9781555816902.ch10
Generic image for table
Table 2

General features and sequencing status of 18 L. draft genomes sequenced by the Broad Institute

Citation: Buchrieser C, Glaser P. 2011. Genomics of and Other Members of the Genus , p 125-145. In Fratamico P, Liu Y, Kathariou S (ed), Genomes of Foodborne and Waterborne Pathogens. ASM Press, Washington, DC. doi: 10.1128/9781555816902.ch10
Generic image for table
Table 3

lineage specific marker genes

Citation: Buchrieser C, Glaser P. 2011. Genomics of and Other Members of the Genus , p 125-145. In Fratamico P, Liu Y, Kathariou S (ed), Genomes of Foodborne and Waterborne Pathogens. ASM Press, Washington, DC. doi: 10.1128/9781555816902.ch10

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error