Chapter 11 :

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555816902/9781555814571_Chap11-1.gif /docserver/preview/fulltext/10.1128/9781555816902/9781555814571_Chap11-2.gif


It is expected that the increasing genetic information on in genome databases will pave the way for investigating its evolution, ecology, and virulence, and, finally, will contribute to the development of new strategies to control and prevent foodborne diseases caused by . This chapter talks about toxins and population structure of the group. Many bacterial genome sequences, including strains, are available in draft versions only and are missing a few percent of the sequence. The chapter deals with only complete genome sequences, and illustrates that species definition in the group remains an open question and it may well be that the discussion will gain momentum with daily growing genome information, especially of "borderline strains". It focuses on pan genome, core genome, accessory genome, and mobilome of the group. geomics suggest that the mobilome of this species group is important not only to model its evolution, but also to differentiate and detect the different pathotypes. It is clearly visible that the high number of and strains already known is improving research tools to study pathogenicity, ecology, and host and environmental adaptation.

Citation: Ehling-Schulz M, Knutsson R, Scherer S. 2011. , p 147-164. In Fratamico P, Liu Y, Kathariou S (ed), Genomes of Foodborne and Waterborne Pathogens. ASM Press, Washington, DC. doi: 10.1128/9781555816902.ch11
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of Figure 1
Figure 1

The three major phylogenetic clades of group species. Clade I strains show 60% to 87% homology to while clade II strains show only 50% to 60% homology to and clade III strains show 40% to 50% homology. These three clades are confirmed by FTIR spectroscopy, MLST analysis, and whole genome sequences ( ).

Citation: Ehling-Schulz M, Knutsson R, Scherer S. 2011. , p 147-164. In Fratamico P, Liu Y, Kathariou S (ed), Genomes of Foodborne and Waterborne Pathogens. ASM Press, Washington, DC. doi: 10.1128/9781555816902.ch11
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

Genetic relationship among emetic strains. This part of cluster 1 (see Fig. 1 ) shows the phylogenetic branch, which includes emetic Strains with confirmed emetic toxin production are indicated by black circles. Strains that are thought to represent the ancestral group of ( ) are indicated by a grey arrow. The tree was inferred from concatenated housekeeping gene sequences extracted from the University of Oslo’s group MultiLocus and MultiData Typing website (http://mlstoslo.uio.no), using the neighbor-joining method (for details, see reference ).

Citation: Ehling-Schulz M, Knutsson R, Scherer S. 2011. , p 147-164. In Fratamico P, Liu Y, Kathariou S (ed), Genomes of Foodborne and Waterborne Pathogens. ASM Press, Washington, DC. doi: 10.1128/9781555816902.ch11
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3
Figure 3

Pan genome, core genome, and accessory genomes. As an example, three strains of the group are shown, one of each major cluster (compare to Fig. 1 ). All three share a core genome. The rest of the genome of a strain is called the accessory genome, which is composed of three parts which are named for the type strain: A- genes are unique for this strain and are not found in the two other strains; genes are the genes shared with the strain; and genes are the genes in common with the emetic strain. Plasmid-borne genes were not considered. Allocation of a chromosomal gene to the core or accessory genome is not an easy task and depends critically on the cut-off settings used for gene comparison. Therefore, only approximate numbers can be given. The total gene numbers for each strain are those that were used for comparison. All numbers in this figure were calculated by the Multi Genome Homology Comparison tool of the Pathema-Bacillus website, using the standard cut-off settings (http://pathema.jcvi.org/cgi-bin/Bacillus/PathemaHomePage.cgi).

Citation: Ehling-Schulz M, Knutsson R, Scherer S. 2011. , p 147-164. In Fratamico P, Liu Y, Kathariou S (ed), Genomes of Foodborne and Waterborne Pathogens. ASM Press, Washington, DC. doi: 10.1128/9781555816902.ch11
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Aas, N.,, B. Gondrosen, and, G. Langeland. 1992. Norwegian food authorities report on food associated diseases in 1990. SNT Report 3. Norwegian Food Control Authority, Oslo, Norway.
2. Achtman, M., and, M. Wagner. 2008. Microbial diversity and the genetic nature of microbial species. Nat. Rev. Microbiol. 6: 431440.
3. Agata, N.,, M. Ohta,, Y. Arakawa, and, M. Mori. 1995. The bceT gene of Bacillus cereus encodes an enterotoxic protein. Microbiology 141: 983988.
4. Alcaraz, L. D.,, G. Olmedo,, G. Bonilla,, R. Cerritos,, G. Hernandez,, A. Cruz,, E. Ramirez,, C. Putonti,, B. Jimenez,, E. Martinez,, V. Lopez,, J. L. Arvizu,, F. Ayala,, F. Razo,, J. Caballero,, J. Siefert,, L. Eguiarte,, J. P. Vielle,, O. Martinez,, V. Souza,, A. Herrera-Estrella, and, L. Herrera-Estrella. 2008. The genome of Bacillus coahuilensis reveals adaptations essential for survival in the relic of an ancient marine environment. Proc. Natl. Acad. Sci. USA 105: 58035808.
5. Altschul, S. F.,, W. Gish,, W. Miller,, E. W. Myers, and, D. J. Lipman. 1990. Basic local alignment search tool. J. Mol. Biol. 215: 403410.
6. Anderson, I.,, A. Sorokin,, V. Kapatral,, G. Reznik,, A. Bhat-tacharya, N. Mikhailova, H. Burd, V. Joukov, D. Kaznadzey, T. Walunas, M. D’Souza, N. Larsen, G. Pusch, K. Liolios, Y. Grechkin, A. Lapidus, E. Goltsman, L. Chu, M. Fonstein, S. D. Ehrlich, R. Overbeek, N. Kyrpides, and, N. Ivanova. 2005. Comparative genome analysis of Bacillus cereus group genomes with Bacillus subtilis. FEMS Microbiol. Lett. 250: 175184.
7. Andrup, L.,, O. Jorgensen,, A. Wilcks,, L. Smidt, and, G. B. Jensen. 1996. Mobilization of “nonmobilizable” plasmids by the aggregation-mediated conjugation system of Bacillus thuringiensis. Plasmid 36: 7585.
8. Apetroaie-Constantin, C.,, R. Shaheen,, L. Andrup,, L. Smidt,, H. Rita, and, M. Salkinoja-Salonen. 2008. Environment driven cereulide production by emetic strains of Bacillus cereus. Int. J. Food Microbiol. 127: 6067.
9. Aronson, A. I., and, Y. Shai. 2001. Why Bacillus thuringiensis insecticidal toxins are so effective: unique features of their mode of action. FEMS Microbiol. Lett. 195: 18.
10. Asano, S. I.,, Y. Nukumizu,, H. Bando,, T. Iizuka, and, T. Yamamoto. 1997. Cloning of novel enterotoxin genes from Bacillus cereus and Bacillus thuringiensis. Appl. Environ. Microbiol. 63: 10541057.
11. Avashia, S. B.,, W. S. Riggins,, C. Lindley,, A. Hoffmaster,, R. Drumgoole,, T. Nekomoto,, P. J. Jackson,, K. K. Hill,, K. Williams,, L. Lehman,, M. C. Libal,, P. P. Wilkins,, J. Alexander,, A. Tvarya-nas, and, T. Betz. 2007. Fatal pneumonia among metalworkers due to inhalation exposure to Bacillus cereus containing Bacillus anthracis toxin genes. Clin. Infect Dis. 44: 414416.
12. Baldari, C. T.,, F. Tonello,, S. R. Paccani, and, C. Montecucco. 2006. Anthrax toxins: a paradigm of bacterial immune suppression. Trends Immunol. 27: 434440.
13. Barkay, T., and, B. F. Smets. 2005. Horizontal gene flow in microbial communities. ASM News 71: 412419.
14. Bartoszewicz, M.,, D. K. Bideshi,, A. Kraszewska,, E. Modzelewska, and, I. Swiecicka. 2009. Natural isolates of Bacillus thuringiensis display genetic and psychrotrophic properties characteristic of Bacillus weihenstephanensis. J. Appl. Microbiol. 106: 19671975.
15. Beecher, D. J., J. L. Schoeni, and, A. C. Wong. 1995. Entero-toxic activity of hemolysin BL from Bacillus cereus. Infect. Immun. 63: 44234428.
16. Bennett, S. 2004. Solexa Ltd. Pharmacogenomics 5: 433438.
17. Cardazzo, B.,, E. Negrisolo,, L. Carraro,, L. Alberghini,, T. Pa-tarnello, and, V. Giaccone. 2008. Multiple-locus sequence typing and analysis of toxin genes in Bacillus cereus food-borne isolates. Appl. Environ. Microbiol. 74: 850860.
18. Carlin, F.,, M. Fricker,, A. Pielaat,, S. Heisterkamp,, R. Shaheen,, M. S. Salonen,, B. Svensson,, C. Nguyen-The, and, M. Ehling-Schulz. 2006. Emetic toxin-producing strains of Bacillus cereus show distinct characteristics within the Bacillus cereus group. Int. J. Food Microbiol. 109: 132138.
19. Challacombe, J. F.,, M. R. Altherr,, G. Xie,, S. S. Bhotika,, N. Brown,, D. Bruce,, C. S. Campbell,, M. L. Campbell,, J. Chen,, O. Chertkov,, C. Cleland,, M. Dimitrijevic,, N. A. Doggett,, J. J. Fawcett,, T. Glavina,, L. A. Goodwin,, L. D. Green,, C. S. Han,, K. K. Hill,, P. Hitchcock,, P. J. Jackson,, P. Keim,, A. R. Kewalramani,, J. Longmire,, S. Lucas,, S. Malfatti,, D. Martinez,, K. McMurry,, L. J. Meincke,, M. Misra,, B. L. Moseman,, M. Mundt,, A. C. Munk,, R. T. Okinaka,, B. Parson-Quintana,, L. P. Reilly,, P. Richardson,, D. L. Robinson,, E. Saunders,, R. Tapia,, J. G. Tesmer,, N. Thayer,, L. S. Thompson,, H. Tice,, L. O. Ticknor,, P. L. Wills,, P. Gilna, and, T. S. Brettin. 2007. The complete genome sequence of Bacillus thuringiensis Al Hakam. J. Bacteriol. 189: 36803681.
20. Chan, W. M.,, D. T. Liu,, C. K. Chan,, K. K. Chong, and, D. S. Lam. 2003. Infective endophthalmitis caused by Bacillus cereus after cataract extraction surgery. Clin. Infect. Dis. 37: e31e34.
21. Chang, Z.,, P. Flatt,, W. H. Gerwick,, V. A. Nguyen,, C. L. Willis, and, D. H. Sherman. 2002. The barbamide biosynthetic gene cluster: a novel marine cyanobacterial system of mixed polyketide synthase (PKS)-non-ribosomal peptide synthetase (NRPS) origin involving an unusual trichloroleucyl starter unit. Gene 296: 235247.
22. Chen, I., and, D. Dubnau. 2004. DNA uptake during bacterial transformation. Nat. Rev. Microbiol. 2: 241249.
23. Chen, X. H.,, A. Koumoutsi,, R. Scholz,, A. Eisenreich,, K. Schneider,, I. Heinemeyer,, B. Morgenstern,, B. Voss,, W. R. Hess,, O. Reva,, H. Junge,, B. Voigt,, P. R. Jungblut,, J. Vater,, R. Sussmuth,, H. Liesegang,, A. Strittmatter,, G. Gottschalk, and, R. Borriss. 2007. Comparative analysis of the complete genome sequence of the plant growth-promoting bacterium Bacillus amylolique-faciens FZB42. Nat. Biotechnol. 25: 10071014.
24. Choma, C., and, P. E. Granum. 2002. The enterotoxin T (BcET) from Bacillus cereus can probably not contribute to food poisoning. FEMS Microbiol. Lett. 217: 115119.
25. de Been, M.,, C. Francke,, R. Moezelaar,, T. Abee, and, R. J. Siezen. 2006. Comparative analysis of two-component signal transduction systems of Bacillus cereus, Bacillus thuringiensis and Bacillus anthracis. Microbiology 152: 30353048.
26. Didelot, X.,, M. Barker,, D. Falush, and, F. G. Priest. 2009. Evolution of pathogenicity in the Bacillus cereus group. Syst. Appl. Microbiol. 32: 8190.
27. Dierick, K.,, E. Van Coillie,, I. Swiecicka,, G. Meyfroidt,, H. Devlieger,, A. Meulemans,, G. Hoedemaekers,, L. Fourie,, M. Heyndrickx, and, J. Mahillon. 2005. Fatal family outbreak of Bacillus cereus-associated food poisoning. J. Clin. Microbiol. 43: 42774279.
28. Dommel, M.,, E. Frenzel,, B. Straber,, C. Blöchinger,, S. Scherer, and, M. Ehling-Schulz. (2010). Identification of the main promoter directing cereulide biosynthesis in emetic Bacillus cereus and its application for real-time monitoring of ces gene expression in foods. Appl. Environ. Microbiol. 76: 12321240.
29. Dommel, M.,, G. Lücking,, S. Scherer, and , M. Ehling-Schulz. (2010). Transcriptional kinetic analyses of cereulide synthetase genes with respect to growth, sporulation and emetic toxin production in Bacillus cereus. Food Microbiol., in press.
30. Dufrenne, J.,, A. Tatini, and, S. Notermans. 1994. Stability of spores of Bacillus cereus stored on silicagel. Int. J. Food Microbiol. 23: 111116.
31. Edwards, D. J.,, B. L. Marquez,, L. M. Nogle,, K. McPhail,, D. E. Goeger,, M. A. Roberts, and, W. H. Gerwick. 2004. Structure and biosynthesis of the jamaicamides, new mixed polyketide-peptide neurotoxins from the marine cyanobacterium Lyngbya majuscula. Chem. Biol. 11: 817833.
32. Ehling-Schulz, M.,, M. Fricker,, H. Grallert,, P. Rieck,, M. Wagner, and, S. Scherer. 2006. Cereulide synthetase gene cluster from emetic Bacillus cereus: structure and location on a mega virulence plasmid related to Bacillus anthracis toxin plasmid pXO1. BMC Microbiol. 6: 20.
33. Ehling-Schulz, M.,, M. Fricker, and, S. Scherer. 2004. Bacillus cereus, the causative agent of an emetic type of food-borne illness. Mol. Nutr. Food Res. 48: 479487.
34. Ehling-Schulz, M.,, M. H. Guinebretiere,, A. Monthan,, O. Berge,, M. Fricker, and, B. Svensson. 2006. Toxin gene profiling of enterotoxic and emetic Bacillus cereus. FEMS Microbiol. Lett. 260: 232240.
35. Ehling-Schulz, M.,, B. Svensson,, M.-H. Guinebretiere,, T. Lindback,, M. Andersson,, A. Schulz,, M. Fricker,, A. Chris-tiansson,, P. E. Granum,, E. Martlbauer,, C. Nguyen-The,, M. Salkinoja-Salonen, and, S. Scherer. 2005. Emetic toxin formation of Bacillus cereus is restricted to a single evolutionary lineage of closely related strains. Microbiology 151: 183197.
36. Ehling-Schulz, M.,, N. Vukov,, A. Schulz,, R. Shaheen,, M. Andersson,, E. Martlbauer, and, S. Scherer. 2005. Identification and partial characterization of the nonribosomal peptide synthetase gene responsible for cereulide production in emetic Bacillus cereus. Appl. Environ. Microbiol. 71: 105113.
37. Ernst, C.,, J. Schulenburg, and, G. Klein. 2001. Bacillus cereus in Verpflegungseinrichtungen der Bundeswehr - Vorkommen und Bedeutung im Zusammenhang mit lebensmittelbedingten Gruppenerkrankungen sowie Ursachen und mögliche Vor-sorgemabnahmen. Arch. Lebensmittelhyg. 52: 8083.
38. Fraser, C.,, E. J. Alm,, M. F. Polz,, B. G. Spratt, and, W. P. Han-age. 2009. The bacterial species challenge: making sense of genetic and ecological diversity. Science 323: 741746.
39. Fricker, M.,, U. Messelhausser,, U. Busch,, S. Scherer, and, M. Ehling-Schulz. 2007. Diagnostic real-time PCR assays for the detection of emetic Bacillus cereus strains in foods and recent food-borne outbreaks. Appl. Environ. Microbiol. 73: 18921898.
40. Fricker, M.,, R. Reissbrodt, and, M. Ehling-Schulz. 2008. Evaluation of standard and new chromogenic selective plating media for isolation and identification of Bacillus cereus. Int. J. Food Microbiol. 121: 2734.
41. Frost, L. S.,, R. Leplae,, A. O. Summers, and, A. Toussaint. 2005. Mobile genetic elements: the agents of open source evolution. Nat. Rev. Microbiol. 3: 722732.
42. Gaur, A. H., and, J. L. Shenep. 2001. The expanding spectrum of diseases caused by Bacillus cereus. Pediatr. Infect. Dis. J. 20: 533534.
43. Gogarten, M. B.,, J. P. Gogarten, and, L. Olendzenski (ed.). 2009. Horizontal Gene Transfer, Genomes in Flux. Springer, Berlin.
44. Gohar, M.,, K. Faegri,, S. Perchat,, S. Ravnum,, O. A. Okstad,, M. Gominet,, A. B. Kolsto, and, D. Lereclus. 2008. The PlcR virulence regulon of Bacillus cereus. PLoS ONE 3: e2793.
45. Gohar, M.,, N. Gilois,, R. Graveline,, C. Garreau,, V. Sanchis, and, D. Lereclus. 2005. A comparative study of Bacillus cereus, Bacillus thuringiensis and Bacillus anthracis extracellular pro-teomes. Proteomics 5: 36963711.
46. Gohar, M.,, O. A. Okstad,, N. Gilois,, V. Sanchis,, A. B. Kolsto, and, D. Lereclus. 2002. Two-dimensional electrophoresis analysis of the extracellular proteome of Bacillus cereus reveals the importance of the PlcR regulon. Proteomics 2: 784791.
47. Gordon, R. E.,, W. C. Haynes, and, C. Hor-Nay. 1973. The Genus Bacillus. Government Printing Office, Washington, DC.
48. Guinebretiere, M. H.,, V. Broussolle, and, C. Nguyen-The. 2002. Enterotoxigenic profiles of food-poisoning and food-borne Bacillus cereus strains. J. Clin. Microbiol. 40: 30533056.
49. Guinebretiere, M. H.,, F. L. Thompson,, A. Sorokin,, P. Normand,, P. Dawyndt,, M. Ehling-Schulz,, B. Svensson,, V. Sanchis,, C. Nguyen-The,, M. Heyndrickx, and, P. De Vos. 2008. Ecological diversification in the Bacillus cereus group. Environ. Microbiol. 10: 851865.
50. Hall, J. A.,, J. S. Goulding,, N. H. Ban,, R. V. Tauxe, and, C. W. Hedberg. 2001. Epidemiologic profiling: evaluating food-borne outbreaks for which no pathogen was isolated by routine laboratory testing: United States, 1982-1989. Epidemiol. Infect. 127: 381387.
51. Han, C. S.,, G. Xie,, J. F. Challacombe,, M. R. Altherr,, S. S. Bho-tika,, N. Brown,, D. Bruce,, C. S. Campbell,, M. L. Campbell,, J. Chen,, O. Chertkov,, C. Cleland,, M. Dimitrijevic,, N. A. Doggett,, J. J. Fawcett,, T. Glavina,, L. A. Goodwin,, L. D. Green,, K. K. Hill,, P. Hitchcock,, P. J. Jackson,, P. Keim,, A. R. Kewalramani,, J. Longmire,, S. Lucas,, S. Malfatti,, K. McMurry,, L. J. Meincke,, M. Misra,, B. L. Moseman,, M. Mundt,, A. C. Munk,, R. T. Okinaka,, B. Parson-Quintana,, L. P. Reilly,, P. Richardson,, D. L. Robinson,, E. Rubin,, E. Saunders,, R. Tapia,, J. G. Tesmer,, N. Thayer,, L. S. Thompson,, H. Tice,, L. O. Ticknor,, P. L. Wills,, T. S. Brettin, and, P. Gilna. 2006. Pathogenomic sequence analysis of Bacillus cereus and Bacillus thuringiensis isolates closely related to Bacillus anthracis. J. Bacteriol. 188: 33823390.
52. Hansen, B. M.,, P. E. Hoiby,, G. B. Jensen, and, N. B. Hendriksen. 2003. The Bacillus cereus bceT enterotoxin sequence reappraised. FEMS Microbiol. Lett. 223: 2124.
53. Harmon, S. M., and, D. A. Kautter. 1991. Incidence and growth potential of Bacillus cereus in ready-to-serve foods. J. Food Prot. 54: 372374.
54. Heinrichs, J. H.,, D. J. Beecher,, J. D. MacMillan, and, B. A. Zilinskas. 1993. Molecular cloning and characterization of the hblA gene encoding the B component of hemolysin BL from Bacillus cereus. J. Bacteriol. 175: 67606766.
55. Helgason, E.,, D. A. Caugant,, M. M. Lecadet,, Y. Chen,, J. Mahillon,, A. Lovgren,, I. Hegna,, K. Kvaloy, and, A. B. Kolsto. 1998. Genetic diversity of Bacillus cereus/B. thuringiensis isolates from natural sources. Curr. Microbiol. 37: 8087.
56. Helgason, E.,, D. A. Caugant,, I. Olsen, and, A.-B. Kolsto. 2000. Genetic structure of population of Bacillus cereus and B. thuringiensis isolates associated with periodontitis and other human infections. J. Clin. Microbiol. 38: 16151622.
57. Helgason, E.,, O. A. Okstad,, D. A. Caugant,, H. A. Johan-sen,, A. Fouet,, M. Mock,, I. Hegna, and, A. -B. Kolsto. 2000. Bacillus anthracis, Bacillus cereus and Bacillus thuringiensis— one species on the basis of genetic evidence. Appl. Environ. Microbiol. 66: 26272630.
58. Helgason, E.,, N. J. Tourasse,, R. Meisal,, D. A. Caugant, and, A.-B. Kolsto. 2004. Multilocus sequence typing scheme for bacteria of the Bacillus cereus group. Appl. Environ. Microbiol. 70: 191201.
59. Hill, K. K.,, L. O. Ticknor,, R. T. Okinaka,, M. Asay,, H. Blair,, K. A. Bliss,, M. Laker,, P. E. Pardington,, A. P. Richardson,, M. Tonks,, D. J. Beecher,, J. D. Kemp,, A. -B. Kolsto,, A. L. Lee Wong,, P. Keim, and, P. J. Jackson. 2004. Fluorescent amplified fragment length polymorphism analysis of Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis isolates. Appl. Environ. Microbiol. 70: 10681080.
60. Hilliard, N. J.,, R. L. Schelonka, and, K. B. Waites. 2003. Bacillus cereus bacteremia in a preterm neonate. J. Clin. Microbiol. 41: 34413444.
61. Hoffmaster, A. R.,, K. K. Hill,, J. E. Gee,, C. K. Marston,, B. K. De,, T. Popovic,, D. Sue,, P. P. Wilkins,, S. B. Avashia,, R. Drum-goole,, C. H. Helma,, L. O. Ticknor,, R. T. Okinaka, and, P. J. Jackson. 2006. Characterization of Bacillus cereus isolates associated with fatal pneumonias: strains are closely related to Bacillus anthracis and harbor B. anthracis virulence genes. J. Clin. Microbiol. 44: 33523360.
62. Hoffmaster, A. R.,, R. T. Novak,, C. K. Marston,, J. E. Gee,, L. Helsel,, J. M. Pruckler, and, P. P. Wilkins. 2008. Genetic diversity of clinical isolates of Bacillus cereus using multilocus sequence typing. BMC Microbiol. 8: 191.
63. Hoffmaster, A. R.,, J. Ravel,, D. A. Rasko,, G. D. Chapman,, M. D. Chute,, C. K. Marston,, B. K. De,, C. T. Sacchi,, C. Fitzgerald,, L. W. Mayer,, M. C. Maiden,, F. G. Priest,, M. Barker,, L. Jiang,, R. Z. Cer,, J. Rilstone,, S. N. Peterson,, R. S. Weyant,, D. R. Galloway,, T. D. Read,, T. Popovic, and, C. M. Fraser. 2004. Identification of anthrax toxin genes in a Bacillus cereus associated with an illness resembling inhalation anthrax. Proc. Natl. Acad. Sci. USA 101: 84498454.
64. Hoton, F. M.,, L. Andrup,, I. Swiecicka, and, J. Mahillon. 2005. The cereulide genetic determinants of emetic Bacillus cereus are plasmid-borne. Microbiology 151: 21212124.
65. Hu, X.,, W. Fan,, B. Han,, H. Liu,, D. Zheng,, Q. Li,, W. Dong,, J. Yan,, M. Gao,, C. Berry, and, Z. Yuan. 2008. Complete genome sequence of the mosquitocidal bacterium Bacillus sphaericus C3-41 and comparison with those of closely related Bacillus species. J. Bacteriol. 190: 28922902.
66. Hu, X.,, G. Van der Auwera,, S. Timmery,, L. Zhu, and, J. Mahillon. 2009. Distribution, diversity, and potential mobility of extra chromosomal elements related to the Bacillus anthracis pXO1 and pXO2 virulence plasmids. Appl. Environ. Microbiol. 75: 30163028.
67. Ivanova, N.,, A. Sorokin,, I. Anderson,, N. Galleron,, B. Candelon,, V. Kapatral,, A. Bhattachara,, G. Reznik,, N. Mikhailova,, A. Lapidus,, L. Chu,, M. Mazur,, E. Goltsman,, N. Larsen,, M. D’Souza,, T. Walunas,, Y. Grechkin,, G. Pusch,, R. Haselkorn,, M. Fonstein,, S. D. Ehrlich,, R. Overbeek, and, N. Kyrpides. 2003. Genome sequence of Bacillus cereus and comparative analysis with Bacillus anthracis. Nature 423: 8791.
68. Jensen, G. B.,, B. M. Hansen,, J. Eilenberg, and, J. Mahillon. 2003. The hidden lifestyles of Bacillus cereus and relatives. Environ. Microbiol. 5: 631640.
69. Jolley, K. A.,, M. S. Chan, and, M. C. Maiden. 2004. mlstdbNet—distributed multi-locus sequence typing (MLST) databases. BMC Bioinformatics 5: 86.
70. Klee, S. R.,, M. Ozel,, B. Appel,, C. Boesch,, H. Ellerbrok,, D. Jacob,, G. Holland,, F. H. Leendertz,, G. Pauli,, R. Grunow, and, H. Nattermann. 2006. Characterization of Bacillus anthracis-like bacteria isolated from wild great apes from Cote d’Ivoire and Cameroon. J. Bacteriol. 188: 53335344.
71. Kleer, J.,, A. Bartholomä,, R. Levetzkow,, T. Reiche,, H.-J. Sinell, and, P. Teufel. 2001. Bakterielle Lebensmittel-Infektionen und-Intoxikationen in Einrichtungen zur Gemeinschaftsverpfle-gung 1985-2000. Arch. Lebensmittelhyg. 52: 7679.
72. Klevan, A.,, N. J. Tourasse,, F. B. Stabell,, A. B. Kolsto, and, O. A. Okstad. 2007. Exploring the evolution of the Bacillus cereus group repeat element bcrl by comparative genome analysis of closely related strains. Microbiology 153: 38943908.
73. Kolsto, A. B.,, N. J. Tourasse, and, O. A. Okstad. 2009. What sets Bacillus anthracis apart from other Bacillus species? Annu. Rev. Microbiol. 63: 451476.
74. Konstantinidis, K. T.,, A. Ramette, and, J. M. Tiedje. 2006. The bacterial species definition in the genomic era. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 361: 19291940.
75. Kovacs, A. T.,, W. K. Smits,, A. M. Mironczuk, and, O. P. Kuipers. 2009. Ubiquitous late competence genes in Bacillus species indicate the presence of functional DNA uptake machineries. Environ. Microbiol. 11: 19111922.
76. Kramer, J. M., and, R. J. Gilbert. 1989. Bacillus cereus and other Bacillus species, p. 21-70. In M. P. Doyle (ed.), Food-borne Bacteriol Pathogens. Marcel Dekker, New York, NY.
77. Kunst, F. ,, N. Ogasawara,, I. Moszer,, A. M. Albertini,, G. Alloni,, V. Azevedo,, M. G. Bertero,, P. Bessieres,, A. Bolotin,, S. Borchert,, R. Borriss,, L. Boursier,, A. Brans,, M. Braun,, S. C. Brignell,, S. Bron,, S. Brouillet,, C. V. Bruschi,, B. Caldwell,, V. Capuano,, N. M. Carter,, S. K. Choi,, J. J. Codani,, I. F. Connerton,, A. Danchin, and et al. 1997. The complete genome sequence of the gram-positive bacterium Bacillus subtilis. Nature 390: 249256.
78. Lapidus, A.,, N. Galleron,, J. T. Andersen,, P. L. Jorgensen,, S. D. Ehrlich, and, A. Sorokin. 2002. Co-linear scaffold of the Bacillus licheniformis and Bacillus subtilis genomes and its use to compare their competence genes. FEMS Microbiol. Lett. 209: 2330.
79. Lapidus, A.,, E. Goltsman,, S. Auger,, N. Galleron,, B. Segurens,, C. Dossat,, M. L. Land,, V. Broussolle,, J. Brillard,, M. H. Guinebretiere,, V. Sanchis,, C. Nguyen-The,, D. Lereclus,, P. Richardson,, P. Wincker,, J. Weissenbach,, S. D. Ehrlich, and, A. Sorokin. 2007. Extending the Bacillus cereus group genomics to putative food-borne pathogens of different toxicity. Chem. Biol. Interact. 171: 236249.
80. Lechner, S.,, R. Mayr,, K. P. Francis,, B. M. Pruss,, T. Kaplan,, E. Wiessner-Gunkel,, G. S. Stewart, and, S. Scherer. 1998. Bacillus weihenstephanensis sp. nov. is a new psychrotolerant species of the Bacillus cereus group. Int. J. Syst. Bacteriol. 48: 13731382.
81. Lefebure, T., and, M. J. Stanhope. 2007. Evolution of the core and pan-genome of Streptococcus: positive selection, recombination, and genome composition. Genome Biol. 8: R71.
82. Lindback, T., A. Fagerlund,, M. S. Rodland, and, P. E. Granum. 2004. Characterization of the Bacillus cereus Nhe enterotoxin. Microbiology 150: 39593967.
83. Lücking, G.,, M. K. Dommel,, S. Scherer,, A. Fouet, and, M. Ehling-Schulz. 2009. Cereulide synthesis in emetic Bacillus cereus is controlled by the transition state regulator AbrB, but not by the virulence regulator PlcR. Microbiology 155: 922931.
84. Lund, T., M. L. De Buyser, and, P. E. Granum. 2000. A new cytotoxin from Bacillus cereus that may cause necrotic enteritis. Mol. Microbiol. 38: 254261.
85. Lund, T., and, P. E. Granum. 1996. Characterisation of a non-haemolytic enterotoxin complex from Bacillus cereus isolated after a foodborne outbreak. FEMS Microbiol. Lett. 141: 151156.
86. Magarvey, N. A.,, Z. Q. Beck,, T. Golakoti,, Y. Ding,, U. Huber,, T. K. Hemscheidt,, D. Abelson,, R. E. Moore, and, D. H. Sherman. 2006. Biosynthetic characterization and chemoenzymatic assembly of the cryptophycins. Potent anticancer agents from cyanobionts. ACS Chem. Biol. 1: 766779.
87. Magarvey, N. A.,, M. Ehling-Schulz, and, C. T. Walsh. 2006. Characterization of the cereulide NRPS a-hydroxy acid specifying modules: Activation of a-keto acids and chiral reduction on the assembly line. J. Am. Chem. Soc. 128: 1069810699.
88. Mahler, H.,, A. Pasi,, J. M. Kramer,, P. Schulte,, A. C. Scoging,, W. Bar, and, S. Krahenbuhl. 1997. Fulminant liver failure in association with the emetic toxin of Bacillus cereus. N. Engl. J. Med. 336: 11421148.
89. Margulies, M.,, M. Egholm,, W. E. Altman,, S. Attiya,, J. S. Bader,, L. A. Bemben,, J. Berka,, M. S. Braverman,, Y. J. Chen,, Z. Chen,, S. B. Dewell,, L. Du,, J. M. Fierro,, X. V. Gomes,, B. C. Godwin,, W. He,, S. Helgesen,, C. H. Ho,, G. P. Irzyk,, S. C. Jando,, M. L. Alenquer,, T. P. Jarvie,, K. B. Jirage,, J. B. Kim,, J. R. Knight,, J. R. Lanza,, J. H. Leamon,, S. M. Lefkowitz,, M. Lei,, J. Li,, K. L. Lo-hman,, H. Lu,, V. B. Makhijani,, K. E. McDade,, M. P. McKenna,, E. W. Myers,, E. Nickerson,, J. R. Nobile,, R. Plant,, B. P. Puc,, M. T. Ronan,, G. T. Roth,, G. J. Sarkis,, J. E Simons,, J. W. Simpson,, M. Srinivasan,, K. R. Tartaro,, A. Tomasz,, K. A. Vogt,, G. A. Volkmer,, S. H. Wang,, Y. Wang,, M. P. Weiner,, P. Yu,, R. F. Begley, and, J. M. Rothberg. 2005. Genome sequencing in microfabricated high-density picolitre reactors. Nature 437: 376380.
90. Medini, D.,, C. Donati,, H. Tettelin,, V. Masignani, and, R. Rappuoli. 2005. The microbial pan-genome. Curr. Opin. Genet. Dev. 15: 589594.
91. Mironczuk, A. M.,, A. T. Kovacs, and, O. P. Kuipers. 2008. Induction of natural competence in Bacillus cereus ATCC14579. Microb. Biotechnol. 1: 226235.
92. Mock, M., and, A. Fouet. 2001. Anthrax. Annu. Rev. Microbiol. 55: 647671.
93. Mock, M., and, T. Mignot. 2003. Anthrax toxins and the host: a story of intimacy. Cell Microbiol. 5: 1523.
94. Mols, M.,, M. de Been,, M. H. Zwietering,, R. Moezelaar, and, T. Abee. 2007. Metabolic capacity of Bacillus cereus strains ATCC 14579 and ATCC 10987 interlinked with comparative genomics. Environ. Microbiol. 9: 29332944.
95. Moravek, M.,, R. Dietrich,, C. Buerk,, V. Broussolle,, M. H. Guinebretiere,, P. E. Granum,, C. Nguyen-The, and, E. Märtl-bauer. 2006. Determination of the toxic potential of Bacillus cereus isolates by quantitative enterotoxin analyses. FEMS Microbiol. Lett. 257: 293298.
96. Okstad, O. A.,, M. Gominet,, B. Purnelle,, M. Rose,, D. Lereclus, and, A. B. Kolsto. 1999. Sequence analysis of three Bacillus cereus loci carrying PIcR-regulated genes encoding degradative enzymes and enterotoxin. Microbiology 145: 31293138.
97. Okstad, O. A.,, N. J. Tourasse,, F. B. Stabell,, C. K. Sundfaer,, W. Egge-Jacobsen,, P. A. Risoen,, T. D. Read, and, A. B. Kolsto. 2004. The bcrl DNA repeat element is specific to the Bacillus cereus group and exhibits mobile element characteristics. J. Bacteriol. 186: 77147725.
98. Perego, M., and, J. A. Hoch. 2008. Commingling regulatory systems following acquisition of virulence plasmids by Bacillus anthracis. Trends Microbiol. 16: 215221.
99. Porwal, S.,, S. Lal,, S. Cheema, and, V. C. Kalia. 2009. Phy-logeny in aid of the present and novel microbial lineages: diversity in Bacillus. PLoS ONE 4: e4438.
100. Priest, F. G., and, B. Alexander. 1988. A frequency matrix for probabilistic identification of some bacilli. J. Gen. Microbiol. 134: 30113018.
101. Priest, F. G.,, M. Barker,, L. W. Baillie,, E. C. Holmes, and, M. C. Maiden. 2004. Population structure and evolution of the Bacillus cereus group. J. Bacteriol. 186: 79597970.
102. Prüß, B. M.,, R. Dietrich,, B. Nibler,, E. Martlbauer, and, S. Scherer. 1999. The hemolytic enterotoxin HBL is broadly distributed among species of the Bacillus cereus group. Appl. Environ. Microbiol. 65: 54365442.
103. Rasko, D. A.,, M. R. Altherr,, C. S. Han, and, J. Ravel. 2005. Genomics of the Bacillus cereus group of organisms. FEMS Microbiol. Rev. 29: 303œ.
104. Rasko, D. A.,, J. Ravel,, O. A. Okstad,, E. Helgason,, R. Z. Cer,, L. Jiang,, K. A. Shores,, D. E. Fouts,, N. J. Tourasse,, S. V. Angiuoli,, J. Kolonay,, W. C. Nelson,, A. B. Kolsto,, C. M. Fraser, and, T. D. Read. 2004. The genome sequence of Bacillus cereus ATCC 10987 reveals metabolic adaptations and a large plasmid related to Bacillus anthracis pXO1. Nucleic Acids Res. 32: 977988.
105. Rasko, D. A.,, M. J. Rosovitz,, O. A. Okstad,, D. E. Fouts,, L. Jiang,, R. Z. Cer,, A. B. Kolsto,, S. R. Gill, and, J. Ravel. 2007. Complete sequence analysis of novel plasmids from emetic and periodontal Bacillus cereus isolates reveals a common evolutionary history among the B. cereus-group plasmids, including Bacillus anthracis pXO1. J. Bacteriol. 189: 5264.
106. Read, T. D.,, S. N. Peterson,, N. Tourasse,, L. W. Baillie,, I. T. Paulsen,, K. E. Nelson,, H. Tettelin,, D. E. Fouts,, J. A. Eisen,, S. R. Gill,, E. K. Holtzapple,, O. A. Okstad,, E. Helgason,, J. Rilstone,, M. Wu,, J. F. Kolonay,, M. J. Beanan,, R. J. Dodson,, L. M. Brinkac,, M. Gwinn,, R. T. DeBoy,, R. Madpu,, S. C. Daugherty,, A. S. Durkin,, D. H. Haft,, W. C. Nelson,, J. D. Peterson,, M. Pop,, H. M. Khouri,, D. Radune,, J. L. Benton,, Y. Mahamoud,, L. Jiang,, I. R. Hance,, J. F. Weidman,, K. J. Berry,, R. D. Plaut,, A. M. Wolf,, K. L. Watkins,, W. C. Nierman,, A. Hazen,, R. Cline,, C. Redmond,, J. E. Thwaite,, O. White,, S. L. Salzberg,, B. Thomason,, A. M. Friedlander,, T. M. Koehler,, P. C. Hanna,, A. B. Kolsto, and, C. M. Fraser. 2003. The genome sequence of Bacillus anthracis Ames and comparison to closely related bacteria. Nature 423: 8186.
107. Read, T. D.,, S. L. Salzberg,, M. Pop,, M. Shumway,, L. Umayam,, L. Jiang,, E. Holtzapple,, J. D. Busch,, K. L. Smith,, J. M. Schupp,, D. Solomon,, P. Keim, and, C. M. Fraser. 2002. Comparative genome sequencing for discovery of novel polymorphisms in Bacillus anthracis. Science 296: 20282033.
108. Rey, M. W.,, P. Ramaiya,, B. A. Nelson,, S. D. Brody-Karpin,, E. J. Zaretsky,, M. Tang,, A. Lopez de Leon,, H. Xiang,, V. Gusti,, I. G. Clausen,, P. B. Olsen,, M. D. Rasmussen,, J. T. Andersen,, P. L. Jorgensen,, T. S. Larsen,, A. Sorokin,, A. Bolotin,, A. Lapidus,, N. Galleron,, S. D. Ehrlich, and, R. M. Berka. 2004. Complete genome sequence of the industrial bacterium Bacillus licheniformis and comparisons with closely related Bacillus species. Genome Biol. 5: R77.
109. Ronner, U.,, U. Husmark, and, A. Henriksson. 1990. Adhesion of bacillus spores in relation to hydrophobicity. J. Appl. Bacteriol. 69: 550556.
110. Roux, E., and, A. Yersin. 1888. Contribution a l’etude de la diphtherie. Ann. Inst. Pasteur (Paris) 2: 629661.
111. Rowan, N. J.,, G. Caldow,, C. G. Gemmell, and, I. S. Hunter. 2003. Production of diarrheal enterotoxins and other potential virulence factors by veterinary isolates of Bacillus species associated with nongastrointestinal infections. Appl. Environ. Microbiol. 69: 23722376.
112. Ryan, P. A.,, J. D. Macmillan, and, B. A. Zilinskas. 1997. Molecular cloning and characterization of the genes encoding the L1 and L2 components of hemolysin BL from Bacillus cereus. J. Bacteriol. 179: 25512556.
113. Schoeni, J. L., and, A. C. Wong. 1999. Heterogeneity observed in the components of hemolysin BL, an enterotoxin produced by Bacillus cereus. Int. J. Food Microbiol. 53: 159167.
114. Schoeni, J. L., and, A. C. L. Wong. 2005. Bacillus cereus food poisoning and its toxins. J. Food Prot. 68: 636648.
115. Schuch, R., and, V. A. Fischetti. 2009. The secret life of the anthrax agent Bacillus anthracis: bacteriophage-mediated ecological adaptations. PLoS ONE 4: e6532.
116. Segerman, B.,, D. De Medici,, M. Ehling-Schulz, P. Fach,, L. Fenicia,, M. Fricker,, P. Wielenga,, B. Van Rotterdam, and, R. Knutsson. Use of whole genome sequencing as a high resolution diagnostic typing tool when tracing bio-terror organisms in the food and feed chain. J. Food Microbiol., in press.
117. Snipen, L.,, T. Almoy, and, D. W. Ussery. 2009. Microbial comparative pan-genomics using binomial mixture models. BMC Genomics 10: 385.
118. Soberon, M.,, S. S. Gill, and, A. Bravo. 2009. Signaling versus punching hole: how do Bacillus thuringiensis toxins kill insect midgut cells? Cell Mol. Life Sci. 66: 13371349.
119. Sorokin, A.,, B. Candelon,, K. Guilloux,, N. Galleron,, N. Wac-kerow-Kouzova, S. D. Ehrlich, D. Bourguet, and, V. Sanchis. 2006. Multiple-locus sequence typing analysis of Bacillus cereus and Bacillus thuringiensis reveals separate clustering and a distinct population structure of psychrotrophic strains. Appl. Environ. Microbiol. 72: 15691578.
120. Stenfors Arnesen, L. P.,, A. Fagerlund, and, P. E. Granum. 2008. From soil to gut: Bacillus cereus and its food poisoning toxins. FEMS Microbiol. Rev. 32: 579606.
121. Takami, H.,, K. Nakasone,, Y. Takaki,, G. Maeno,, R. Sasaki,, N. Masui,, F. Fuji,, C. Hirama,, Y. Nakamura,, N. Ogasawara,, S. Kuhara, and, K. Horikoshi. 2000. Complete genome sequence of the alkaliphilic bacterium Bacillus halodurans and genomic sequence comparison with Bacillus subtilis. Nucleic Acids Res. 28: 43174331.
122. Tettelin, H.,, V. Masignani,, M. J. Cieslewicz,, C. Donati,, D. Medini,, N. L. Ward,, S. V. Angiuoli,, J. Crabtree,, A. L. Jones,, A. S. Durkin,, R. T. Deboy,, T. M. Davidsen,, M. Mora,, M. Scarselli,, I. Margarit y Ros,, J. D. Peterson,, C. R. Hauser,, J. P. Sundaram,, W. C. Nelson,, R. Madupu,, L. M. Brinkac,, R. J. Dodson,, M. J. Rosovitz,, S. A. Sullivan,, S. C. Daugherty,, D. H. Haft,, J. Selengut,, M. L. Gwinn,, L. Zhou,, N. Zafar,, H. Khouri,, D. Radune,, G. Dimitrov,, K. Watkins,, K. J. O’Connor,, S. Smith,, T. R. Utterback,, O. White,, C. E. Rubens,, G. Grandi,, L. C. Madoff,, D. L. Kasper,, J. L. Telford,, M. R. Wessels,, R. Rappuoli, and, C. M. Fraser. 2005. Genome analysis of multiple pathogenic isolates of Streptococcus agalactiae: implications for the microbial “pan-genome.” Proc. Natl. Acad. Sci. USA 102: 1395013955.
123. Thorsen, L.,, B. M. Hansen,, K. F. Nielsen,, N. B. Hen-driksen,, R. K. Phipps, and, B. B. Budde. 2006. Characterization of emetic Bacillus weihenstephanensis, a new cereulide-producing bacterium. Appl. Environ. Microbiol. 72: 51185121.
124. Tourasse, N. J.,, E. Helgason,, O. A. Okstad,, I. K. Hegna, and, A. B. Kolsto. 2006. The Bacillus cereus group: novel aspects of population structure and genome dynamics. J. Appl. Microbiol. 101: 579593.
125. Tourasse, N. J., and, A. B. Kolsto. 2008. SuperCAT: a su-pertree database for combined and integrative multilocus sequence typing analysis of the Bacillus cereus group of bacteria (including B. cereus, B. anthracis and B. thuringiensis). Nucleic Acids Res. 36: D461468.
126. Van der Auwera, G. A.,, S. Timmery, and, J. Mahillon. 2008. Self-transfer and mobilisation capabilities of the pXO2-like plasmid pBT9727 from Bacillus thuringiensis subsp. konkukian 97-27. Plasmid 59: 134138.
127. van Schaik, W.,, M. van der Voort,, D. Molenaar,, R. Moe-zelaar,, W. M. de Vos, and, T. Abee. 2007. Identification of the sigmaB regulon of Bacillus cereus and conservation of sigmaB-regulated genes in low-GC-content gram-positive bacteria. J. Bacteriol. 189: 43844390.
128. Vassileva, M.,, K. Torii,, M. Oshimoto,, A. Okamoto,, N. Agata,, K. Yamada,, T. Hasegawa, and, M. Ohta. 2007. A new phylogenetic cluster of cereulide-producing Bacillus cereus strains. J. Clin. Microbiol. 45: 12741277.
129. Vilas-Boas, G. T.,, A. P. Peruca, and, O. M. Arantes. 2007. Biology and taxonomy of Bacillus cereus, Bacillus anthracis, and Bacillus thuringiensis. Can. J. Microbiol. 53: 673687.
130. Zwick, M. E.,, M. P. Kiley,, A. C. Stewart,, A. Mateczun, and, T. D. Read. 2008. Genotyping of Bacillus cereus strains by microarray-based resequencing. PLoS ONE 3: e2513.


Generic image for table
Table 1

Types of foodborne disease caused by and symptomatically similar diseases caused by other foodborne pathogens

Citation: Ehling-Schulz M, Knutsson R, Scherer S. 2011. , p 147-164. In Fratamico P, Liu Y, Kathariou S (ed), Genomes of Foodborne and Waterborne Pathogens. ASM Press, Washington, DC. doi: 10.1128/9781555816902.ch11
Generic image for table
Table 2

Toxin profiles of food isolates and isolates connected to foodborne outbreaks

Citation: Ehling-Schulz M, Knutsson R, Scherer S. 2011. , p 147-164. In Fratamico P, Liu Y, Kathariou S (ed), Genomes of Foodborne and Waterborne Pathogens. ASM Press, Washington, DC. doi: 10.1128/9781555816902.ch11
Generic image for table
Table 3

Toxins of group strains

Citation: Ehling-Schulz M, Knutsson R, Scherer S. 2011. , p 147-164. In Fratamico P, Liu Y, Kathariou S (ed), Genomes of Foodborne and Waterborne Pathogens. ASM Press, Washington, DC. doi: 10.1128/9781555816902.ch11
Generic image for table
Table 4

Genomic features of sensu lato in comparison with other completed species genomes

Citation: Ehling-Schulz M, Knutsson R, Scherer S. 2011. , p 147-164. In Fratamico P, Liu Y, Kathariou S (ed), Genomes of Foodborne and Waterborne Pathogens. ASM Press, Washington, DC. doi: 10.1128/9781555816902.ch11
Generic image for table
Table 5

Major genome characteristics of complete sequences of strains within sensu lato

Citation: Ehling-Schulz M, Knutsson R, Scherer S. 2011. , p 147-164. In Fratamico P, Liu Y, Kathariou S (ed), Genomes of Foodborne and Waterborne Pathogens. ASM Press, Washington, DC. doi: 10.1128/9781555816902.ch11

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error