Chapter 4 : Biological Implications of the Genome

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

Biological Implications of the Genome, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817107/9781555815035_Chap04-1.gif /docserver/preview/fulltext/10.1128/9781555817107/9781555815035_Chap04-2.gif


This chapter focuses on the contribution of the genome sequence of to enhance one's understanding of its interactions in the oral cavity. It was determined that streptococci resembling constituted about half of the streptococcal component of dental plaque. This study likely identified as some strains that would currently be classified as or . This chapter points out that studies with related species may provide a framework for future hypothesis-driven investigation of cell wall-anchored (Cwa) proteins associated with oral adhesion and aggregation. It was later determined that competence is upregulated in in the presence of oxygen, as is also true for and . The chapter concludes with the hope that the availability of the genome sequence stimulates new research related to the role of within the oral community.

Citation: Kitten T, Senty Turner L, Xu P. 2011. Biological Implications of the Genome, p 43-61. In Kolenbrander P (ed), Oral Microbial Communities. ASM Press, Washington, DC. doi: 10.1128/9781555817107.ch4
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of FIGURE 1

In silico comparisons among oral streptococci. The coding genes of SK36, Challis CH1, and UA159 are compared. Total numbers of protein-coding genes in each species are indicated in parentheses. Numbers in the intersections indicate genes shared by two or three species.

Citation: Kitten T, Senty Turner L, Xu P. 2011. Biological Implications of the Genome, p 43-61. In Kolenbrander P (ed), Oral Microbial Communities. ASM Press, Washington, DC. doi: 10.1128/9781555817107.ch4
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Aas, J. A.,, B. J. Paster,, L. N. Stokes,, I. Olsen, and, F. E. Dewhirst. 2005. Defining the normal bacterial flora of the oral cavity. J. Clin. Microbiol. 43: 57215732.
2. Abbot, E. L.,, W. D. Smith,, G. P. S. Siou,, C. Chiriboga,, R. J. Smith,, J. A. Wilson,, B. H. Hirst, and, M. A. Kehoe. 2007. Pili mediate specific adhesion of Streptococcus pyogenes to human tonsil and skin. Cell. Microbiol. 9: 18221833.
3. Babu, J. P.,, W. A. Simpson,, H. S. Courtney, and, E. H. Beachey. 1983. Interaction of human plasma fibronectin with cariogenic and noncariogenic oral streptococci. Infect. Immun. 41: 162168.
4. Barocchi, M. A.,, J. Ries,, X. Zogaj,, C. Hemsley,, B. Albiger,, A. Kanth,, S. Dahlberg,, J. Fernebro,, M. Moschioni,, V. Masignani,, K. Hultenby,, A. R. Taddei,, K. Beiter,, F. Wartha,, A. von Euler,, A. Covacci,, D. W. Holden,, S. Normark,, R. Rappuoli, and, B. Henriques-Normark. 2006. A pneumococcal pilus influences virulence and host inflammatory responses. Proc. Natl. Acad. Sci. USA 103: 28572862.
5. Bassler, B. L.,, and R. Losick. 2006. Bacterially speaking. Cell 125: 237246.
6. Beg, A. M.,, M. N. Jones,, T. Miller-Torbert, and, R. G. Holt. 2002. Binding of Streptococcus mutans to extracellular matrix molecules and fibrinogen. Biochem. Biophys. Res. Commun. 298: 7579.
7. Birkhed, D.,, K. Rosell, and, K. Granath. 1979. Structure of extracellular water-soluble polysaccharides synthesized from sucrose by oral strains of Streptococcus mutans, Streptococcus salivarius, Streptococcus sanguis and Actinomyces viscosus. Arch. Oral Biol. 24: 5361.
8. Boekhorst, J.,, M. W. H. J. de Been,, M. Kleerebezem, and, R. J. Siezen. 2005. Genome-wide detection and analysis of cell wall-bound proteins with LPxTG-like sorting motifs. J. Bacteriol. 187: 49284934.
9. Burne, R. A.,, and J. E. Penders. 1992. Characterization of the Streptococcus mutans GS-5 fruA gene encoding exo-β- d-fructosidase. Infect. Immun. 60: 46214632.
10. Carlén, A.,, S. G. Rudiger,, I. Loggner, and, J. Olsson. 2003. Bacteria-binding plasma proteins in pellicles formed on hydroxyapatite in vitro and on teeth in vivo. Oral Microbiol. Immunol. 18: 203207.
11. Carlsson, J. 1965. Zooglea-forming streptococci, resembling Streptococcus sanguis, isolated from dental plaque in man. Odontol. Revy. 16: 348358.
12. Caufield, P. W.,, A. P. Dasanayake,, Y. Li,, Y. Pan,, J. Hsu, and, J. M. Hardin. 2000. Natural history of Streptococcus sanguinis in the oral cavity of infants: evidence for a discrete window of infectivity. Infect. Immun. 68: 40184023.
13. Chalmers, N. I.,, R. J. Palmer, Jr.,, J. O. Cisar, and, P. E. Kolenbrander. 2008. Characterization of a Streptococcus sp.- Veillonella sp. community micromanipulated from dental plaque. J. Bacteriol. 190: 81458154.
14. Chambert, R.,, Y. Pereira, and, M.-F. Petit-Glatron. 2003. Purification and characterization of YfkN, a trifunctional nucleotide phosphoesterase secreted by Bacillus subtilis. J. Biochem. 134: 655660.
15. Clarke, V. A.,, N. Platt, and, T. D. Butters. 1995. Cloning and expression of the beta- N-acetylglucosaminidase gene from Streptococcus pneumoniae. J. Biol. Chem. 270: 88058814.
16. Claverys, J.-P.,, M. Prudhomme, and, B. Martin. 2006. Induction of competence regulons as a general response to stress in gram-positive bacteria. Annu. Rev. Microbiol. 60: 451475.
17. Deivanayagam, C.,, R. Rich,, M. Carson,, R. Owens,, S. Danthuluri,, T. Bice,, M. Höök, and, S. Narayana. 2000. Novel fold and assembly of the repetitive B region of the Staphylococcus aureus collagen-binding surface protein. Structure 8: 6778.
18. Demuth, D. R.,, Y. Duan,, W. Brooks,, A. R. Holmes,, R. McNab, and, H. F. Jenkinson. 1996. Tandem genes encode cell-surface polypeptides SspA and SspB which mediate adhesion of the oral bacterium Streptococcus gordonii to human and bacterial receptors. Mol. Microbiol. 20: 403413.
19. Diaz, P. I.,, N. I. Chalmers,, A. H. Rickard,, C. Kong,, C. L. Milburn,, R. J. Palmer, Jr., and, P. E. Kolenbrander. 2006. Molecular characterization of subject-specific oral microflora during initial colonization of enamel. Appl. Environ. Microbiol. 72: 28372848.
20. Di Filippo, S.,, F. Delahaye,, B. Semiond,, M. Celard,, R. Henaine,, J. Ninet,, F. Sassolas, and, A. Bozio. 2006. Current patterns of infective endocarditis in congenital heart disease. Heart 92: 14901495.
21. Dodd, I. B.,, and J. B. Egan. 1990. Improved detection of helix-turn-helix DNA-binding motifs in protein sequences. Nucleic Acids Res. 18: 50195026.
22. Dramsi, S.,, E. Caliot,, I. Bonne,, S. Guadagnini,, M.-C. Prevost,, M. Kojadinovic,, L. Lalioui,, C. Poyart, and, P. Trieu-Cuot. 2006. Assembly and role of pili in group B streptococci. Mol. Microbiol. 60: 14011413.
23. Durack, D. T. 1975. Experimental bacterial endocarditis. IV. Structure and evolution of very early lesions. J. Pathol. 115: 8189.
24. Echenique, J. R.,, S. Chapuy-Regaud, and, M. C. Trombe. 2000. Competence regulation by oxygen in Streptococcus pneumoniae: involvement of ciaRH and comCDE. Mol. Microbiol. 36: 688696.
25. Edwards, A. M.,, A. G. O. Manetti,, F. Falugi,, C. Zingaretti,, S. Capo,, S. Buccato,, G. Bensi,, J. L. Telford,, I. Margarit, and, G. Grandi. 2008. Scavenger receptor gp340 aggregates group A streptococci by binding pili. Mol. Microbiol. 68: 13781394.
26. Elliott, D.,, E. Harrison,, P. S. Handley,, S. K. Ford,, E. Jaffray,, N. Mordan, and, R. McNab. 2003. Prevalence of Csh-like fibrillar surface proteins among mitis group oral streptococci. Oral Microbiol. Immunol. 18: 114120.
27. Feil, E. J.,, E. C. Holmes,, D. E. Bessen,, M.-S. Chan,, N. P. J. Day,, M. C. Enright,, R. Goldstein,, D. W. Hood,, A. Kalia,, C. E. Moore,, J. Zhou, and, B. G. Spratt. 2001. Recombination within natural populations of pathogenic bacteria: short-term empirical estimates and long-term phylogenetic consequences. Proc. Natl. Acad. Sci. USA 98: 182187.
28. Floderus, E.,, L. Linder, and, M. Sund. 1990. Arginine catabolism by strains of oral streptococci. APMIS 98: 10451052.
29. Fontaine, M. C.,, J. Perez-Casal, and, P. J. Willson. 2004. Investigation of a novel DNase of Streptococcus suis serotype 2. Infect. Immun. 72: 774781.
30. Ge, X.,, T. Kitten,, Z. Chen,, S. P. Lee,, C. L. Munro, and, P. Xu. 2008. Identification of Streptococcus sanguinis genes required for biofilm formation and examination of their role in endocarditis virulence. Infect. Immun. 76: 25512559.
31. Goldstein, J. M.,, D. Nelson,, T. Kordula,, J. A. Mayo, and, J. Travis. 2002. Extracellular arginine aminopeptidase from Streptococcus gordonii FSS2. Infect. Immun. 70: 836843.
32. Gong, K.,, L. Mailloux, and, M. C. Herzberg. 2000. Salivary film expresses a complex, macro-molecular binding site for Streptococcus sanguis. J. Biol. Chem. 275: 89708974.
33. Griffith, F. 1928. The significance of pneumococcal types. J. Hyg. 27: 113159.
34. Handley, P. S.,, P. L. Carter,, J. E. Wyatt, and, L. M. Hesketh. 1985. Surface structures (peritrichous fibrils and tufts of fibrils) found on Streptococcus sanguis strains may be related to their ability to coaggregate with other oral genera. Infect. Immun. 47: 217227.
35. Håvarstein, L. S.,, G. Coomaraswamy, and, D. A. Morrison. 1995. An unmodified heptadecapeptide pheromone induces competence for genetic transformation in Streptococcus pneumoniae. Proc. Natl. Acad. Sci. USA 92: 1114011144.
36. Herzberg, M. C.,, G. D. MacFarlane,, K. Gong,, N. N. Armstrong,, A. R. Witt,, P. R. Erickson, and, M. W. Meyer. 1992. The platelet interactivity phenotype of Streptococcus sanguis influences the course of experimental endocarditis. Infect. Immun. 60: 48094818.
37. Herzberg, M. C.,, A. Nobbs,, L. Tao,, A. Kilic,, E. Beckman,, A. Khammanivong, and, Y. Zhang. 2005. Oral streptococci and cardiovascular disease: searching for the platelet aggregation-associated protein gene and mechanisms of Streptococcus sanguis-induced thrombosis. J. Periodontol. 76: 21012105.
38. Hienz, S. A.,, T. Schennings,, A. Heimdahl, and, J. I. Flock. 1996. Collagen binding of Staphylococcus aureus is a virulence factor in experimental endocarditis. J. Infect. Dis. 174: 8388.
39. Hsu, S. D.,, J. O. Cisar,, A. L. Sandberg, and, M. Kilian. 1994. Adhesive properties of viridans streptococcal species. Microbial Ecol. Health Dis. 7: 125137.
40. Hytonen, J.,, S. Haataja, and, J. Finne. 2003. Streptococcus pyogenes glycoprotein-binding strepadhesin activity is mediated by a surface-associated carbohydrate-degrading enzyme, pullulanase. Infect. Immun. 71: 784793.
41. Jakubovics, N. S.,, S. W. Kerrigan,, A. H. Nobbs,, N. Stromberg,, C. J. van Dolleweerd,, D. M. Cox,, C. G. Kelly, and, H. F. Jenkinson. 2005. Functions of cell surface-anchored antigen I/II family and Hsa polypeptides in interactions of Streptococcus gordonii with host receptors. Infect. Immun. 73: 66296638.
42. Jakubovics, N. S.,, N. Stromberg,, C. J. van Dolleweerd,, C. G. Kelly, and, H. F. Jenkinson. 2005. Differential binding specificities of oral streptococcal antigen I/II family adhesins for human or bacterial ligands. Mol. Microbiol. 55: 15911605.
43. Jules, M.,, and C. Buchrieser. 2007. Legionella pneumophila adaptation to intracellular life and the host response: clues from genomics and transcriptomics. FEBS Lett. 581: 28292838.
44. Karlin, S. 2001. Detecting anomalous gene clusters and pathogenicity islands in diverse bacterial genomes. Trends Microbiol. 9: 335343.
45. Kilian, M.,, L. Mikkelsen, and, J. Henrichsen. 1989. Taxonomic study of viridans streptococci: description of Streptococcus gordonii sp. nov. and emended descriptions of Streptococcus sanguis (White and Niven 1946), Streptococcus oralis (Bridge and Sneath 1982), and Streptococcus mitis (Andrewes and Horder 1906). Int. J. Syst. Bacteriol. 39: 471484.
46. Kolenbrander, P. E.,, and R. N. Andersen. 1986. Multigeneric aggregations among oral bacteria: a network of independent cell-to-cell interactions. J. Bacteriol. 168: 851859.
47. Kolenbrander, P. E.,, R. N. Andersen, and, L. V. Moore. 1990. Intrageneric coaggregation among strains of human oral bacteria: potential role in primary colonization of the tooth surface. Appl. Environ. Microbiol. 56: 38903894.
48. Kononen, E.,, H. Jousimies-Somer,, A. Bryk,, T. Kilpi, and, M. Kilian. 2002. Establishment of streptococci in the upper respiratory tract: longitudinal changes in the mouth and nasopharynx up to 2 years of age. J. Med. Microbiol. 51: 723730.
49. Kreth, J.,, J. Merritt,, W. Shi, and, F. Qi. 2005. Competition and coexistence between Streptococcus mutans and Streptococcus sanguinis in the dental biofilm. J. Bacteriol. 187: 71937203.
50. Kreth, J.,, Y. Zhang, and, M. C. Herzberg. 2008. Streptococcal antagonism in oral biofilms: Streptococcus sanguinis and Streptococcus gordonii interference with Streptococcus mutans. J. Bacteriol. 190: 46324640.
51. Labib, R. S.,, N. J. Calvanico, and, T. B. Tomasi, Jr. 1978. Studies on extracellular proteases of Streptococcus sanguis. Purification and characterization of a human IgA1 specific protease. Biochim. Biophys. Acta 526: 547559.
52. Lamont, R.,, S. Gil,, D. Demuth,, D. Malamud, and, B. Rosan. 1994. Molecules of Streptococcus gordonii that bind to Porphyromonas gingivalis. Microbiology 140: 867872.
53. Lawrence, J. G.,, and H. Ochman. 1997. Amelioration of bacterial genomes: rates of change and exchange. J. Mol. Evol. 44: 383397.
54. Lawrence, J. G.,, and H. Ochman. 2002. Reconciling the many faces of lateral gene transfer. Trends Microbiol. 10: 14.
55. Levine, M.,, M. Reddy,, L. Tabak,, R. Loomis,, E. Bergey,, P. Jones,, R. Cohen,, M. Stinson, and, I. Al-Hashimi. 1987. Structural aspects of salivary glycoproteins. J. Dent. Res. 66: 436441.
56. Li, Y.-H.,, N. Tang,, M. B. Aspiras,, P. C. Y. Lau,, J. H. Lee,, R. P. Ellen, and, D. G. Cvitkovitch. 2002. A quorum-sensing signaling system essential for genetic competence in Streptococcus mutans is involved in biofilm formation. J. Bacteriol. 184: 26992708.
57. Loimaranta, V.,, N. S. Jakubovics,, J. Hytonen,, J. Finne,, H. F. Jenkinson, and, N. Stromberg. 2005. Fluid-or surface-phase human salivary scavenger protein gp340 exposes different bacterial recognition properties. Infect. Immun. 73: 22452252.
58. Love, R. M.,, M. D. McMillan, and, H. F. Jenkinson. 1997. Invasion of dentinal tubules by oral streptococci is associated with collagen recognition mediated by the antigen I/II family of polypeptides. Infect. Immun. 65: 51575164.
59. Love, R. M.,, M. D. McMillan,, Y. Park, and, H. F. Jenkinson. 2000. Coinvasion of dentinal tubules by Porphyromonas gingivalis and Streptococcus gordonii depends upon binding specificity of streptococcal antigen I/II adhesin. Infect. Immun. 68: 13591365.
60. Majewski, J.,, P. Zawadzki,, P. Pickerill,, F. M. Cohan, and, C. G. Dowson. 2000. Barriers to genetic exchange between bacterial species: Streptococcus pneumoniae transformation. J. Bacteriol. 182: 10161023.
61. Marchler-Bauer, A.,, and S. H. Bryant. 2004. CD-Search: protein domain annotations on the fly. Nucleic Acids Res. 32: W327W331.
62. Marcotte, H.,, and M. C. Lavoie. 1998. Oral microbial ecology and the role of salivary immunoglobulin A. Microbiol. Mol. Biol. Rev. 62: 71109.
63. McNab, R.,, H. Forbes,, P. S. Handley,, D. M. Loach,, G. W. Tannock, and, H. F. Jenkinson. 1999. Cell wallanchored CshA polypeptide (259 kilodaltons) in Streptococcus gordonii forms surface fibrils that confer hydrophobic and adhesive properties. J. Bacteriol. 181: 30873095.
64. McNab, R.,, A. R. Holmes,, J. M. Clarke,, G. W. Tannock, and, H. F. Jenkinson. 1996. Cell surface polypeptide CshA mediates binding of Streptococcus gordonii to other oral bacteria and to immobilized fibronectin. Infect. Immun. 64: 42044210.
65. McNab, R.,, H. F. Jenkinson,, D. M. Loach, and, G. W. Tannock. 1994. Cell-surface-associated polypeptides CshA and CshB of high molecular mass are colonization determinants in the oral bacterium Streptococcus gordonii. Mol. Microbiol. 14: 743754.
66. Nobbs, A. H.,, Y. Zhang,, A. Khammanivong, and, M. C. Herzberg. 2007. Streptococcus gordonii Hsa environmentally constrains competitive binding by Streptococcus sanguinis to saliva-coated hydroxyapatite. J. Bacteriol. 189: 31063114.
67. Novak, R.,, E. Charpentier,, J. S. Braun,, E. Park,, S. Murti,, E. Tuomanen, and, R. Masure. 2000. Extracellular targeting of choline-binding proteins in Streptococcus pneumoniae by a zinc metalloprotease. Mol. Microbiol. 36: 366376.
68. Oggioni, M. R.,, G. Memmi,, T. Maggi,, D. Chiavolini,, F. Iannelli, and, G. Pozzi. 2003. Pneumococcal zinc metalloproteinase ZmpC cleaves human matrix metalloproteinase 9 and is a virulence factor in experimental pneumonia. Mol. Microbiol. 49: 795805.
69. Oggioni, M. R.,, C. Trappetti,, A. Kadioglu,, M. Cassone,, F. Iannelli,, S. Ricci,, P. W. Andrew, and, G. Pozzi. 2006. Switch from planktonic to sessile life: a major event in pneumococcal pathogenesis. Mol. Microbiol. 61: 11961210.
70. Okahashi, N.,, M. Nakata,, A. Sakurai,, Y. Terao,, T. Hoshino,, M. Yamaguchi,, R. Isoda,, T. Sumitomo,, K. Nakano,, S. Kawabata, and, T. Ooshima. 2010. Pili of oral Streptococcus sanguinis bind to fibronectin and contribute to cell adhesion. Biochem. Biophys. Res. Commun. 391: 11921196.
71. Paik, S.,, L. Senty,, S. Das,, J. C. Noe,, C. L. Munro, and, T. Kitten. 2005. Identification of virulence determinants for endocarditis in Streptococcus sanguinis by signature-tagged mutagenesis. Infect. Immun. 73: 60646074.
72. Peng, Z.,, P. Fives-Taylor,, T. Ruiz,, M. Zhou,, B. Sun,, Q. Chen, and, H. Wu. 2008. Identification of critical residues in Gap3 of Streptococcus parasanguinis involved in Fap1 glycosylation, fimbrial formation and in vitro adhesion. BMC Microbiol. 8: 52.
73. Petersen, F. C.,, L. Tao, and, A. A. Scheie. 2005. DNA binding-uptake system: a link between cell-to-cell communication and biofilm formation. J. Bacteriol. 187: 43924400.
74. Peterson, S. N.,, C. K. Sung,, R. Cline,, B. V. Desai,, E. C. Snesrud,, P. Luo,, J. Walling,, H. Li,, M. Mintz,, G. Tsegaye,, P. C. Burr,, Y. Do,, S. Ahn,, J. Gilbert,, R. D. Fleischmann, and, D. A. Morrison. 2004. Identification of competence pheromone responsive genes in Streptococcus pneumoniae by use of DNA microarrays. Mol. Microbiol. 51: 10511070.
75. Plummer, C.,, and C. W. I. Douglas. 2006. Relationship between the ability of oral streptococci to interact with platelet glycoprotein Ibα and with the salivary low-molecular-weight mucin, MG2. FEMS Immunol. Med. Microbiol. 48: 390399.
76. Prakobphol, A.,, F. Xu,, V. M. Hoang,, T. Larsson,, J. Bergstrom,, I. Johansson,, L. Frangsmyr,, U. Holmskov,, H. Leffler,, C. Nilsson,, T. Boren,, J. R. Wright,, N. Stromberg, and, S. J. Fisher. 2000. Salivary agglutinin, which binds Streptococcus mutans and Helicobacter pylori, is the lung scavenger receptor cysteine-rich protein gp-340. J. Biol. Chem. 275: 3986039866.
77. Ramos, J. L.,, M. Martinez-Bueno,, A. J. Molina-Henares,, W. Teran,, K. Watanabe,, X. Zhang,, M. T. Gallegos,, R. Brennan, and, R. Tobes. 2005. The TetR family of transcriptional repressors. Microbiol. Mol. Biol. Rev. 69: 326356.
78. Reinholdt, J.,, V. Friman, and, M. Kilian. 1993. Similar proportions of immunoglobulin A1 (IgA1) protease-producing streptococci in initial dental plaque of selectively IgA-deficient and normal individuals. Infect. Immun. 61: 39984000.
79. Rodriguez, A. M.,, J. E. Callahan,, P. Fawcett,, X. Ge,, P. Xu, and, T. Kitten. 2001. Physiological and molecular characterization of genetic competence in Streptococcus sanguinis. Mol. Oral Microbiol. 26: 99116.
80. Scott, J. R.,, and T. C. Barnett. 2006. Surface proteins of gram-positive bacteria and how they get there. Annu. Rev. Microbiol. 60: 397423.
81. Stingu, C.-S.,, K. Eschrich,, A. C. Rodloff,, R. Schaumann, and, H. Jentsch. 2008. Periodontitis is associated with a loss of colonization by Streptococcus sanguinis. J. Med. Microbiol. 57: 495499.
82. Symersky, J.,, J. M. Patti,, M. Carson,, K. House-Pompeo,, M. Teale,, D. Moore,, L. Jin,, A. Schneider,, L. J. DeLucas,, M. Hook, and, S. V. Narayana. 1997. Structure of the collagen-binding domain from a Staphylococcus aureus adhesin. Nat. Struct. Biol. 4: 833838.
83. Takahashi, Y.,, A. Yajima,, J. O. Cisar, and, K. Konishi. 2004. Functional analysis of the Streptococcus gordonii DL1 sialic acid-binding adhesin and its essential role in bacterial binding to platelets. Infect. Immun. 72: 38763882.
84. Talonpoika, J. T.,, E. Soderling, and, K. Paunio. 1993. Characterization of fibronectin and fibrin(ogen) fragments in gingival crevicular fluid. Scand. J. Dent. Res. 101: 2632.
85. Truper, H.,, and L. D. Clari. 1997. Taxonomic note: necessary corrections of specific epithets formed as substantives (nouns) “in apposition.” Int. J. Syst. Bacteriol. 47: 908909.
86. Turner, L. S.,, T. Kanamoto,, T. Unoki,, C. L. Munro,, H. Wu, and, T. Kitten. 2009. Comprehensive evaluation of Streptococcus sanguinis cell wall-anchored proteins in early infective endocarditis. Infect. Immun. 77: 49664975.
87. Vickerman, M. M.,, S. Iobst,, A. M. Jesionowski, and, S. R. Gill. 2007. Genome-wide transcriptional changes in Streptococcus gordonii in response to competence signaling peptide. J. Bacteriol. 189: 77997807.
88. Wang, B.-Y.,, and H. K. Kuramitsu. 2005. Interactions between oral bacteria: inhibition of Streptococcus mutans bacteriocin production by Streptococcus gordonii. Appl. Environ. Microbiol. 71: 354362.
89. White, J. C.,, and C. F. Niven. 1946. Streptococcus s.b.e.: a streptococcus associated with subacute bacterial endocarditis. J. Bacteriol. 51: 717722.
90. Wilson, W.,, K. A. Taubert,, M. Gewitz,, P. B. Lockhart,, L. M. Baddour,, M. Levison,, A. Bolger,, C. H. Cabell,, M. Takahashi,, R. S. Baltimore,, J. W. Newburger,, B. L. Strom,, L. Y. Tani,, M. Gerber,, R. O. Bonow,, T. Pallasch,, S. T. Shulman,, A. H. Rowley,, J. C. Burns,, P. Ferrieri,, T. Gardner,, D. Goff, and, D. T. Durack. 2007. Prevention of infective endocarditis: guidelines from the American Heart Association: a guideline from the American Heart Association Rheumatic Fever, Endocarditis and Kawasaki Disease Committee, Council on Cardiovascular Disease in the Young, and the Council on Clinical Cardiology, Council on Cardiovascular Surgery and Anesthesia, and the Quality of Care and Outcomes Research Interdisciplinary Working Group. J. Am. Dent. Assoc. 138: 739760.
91. Wu, H.,, S. Bu,, P. Newell,, Q. Chen, and, P. Fives-Taylor. 2007. Two gene determinants are differentially involved in the biogenesis of Fap1 precursors in Streptococcus parasanguis. J. Bacteriol. 189: 13901398.
92. Xu, P.,, J. M. Alves,, T. Kitten,, A. Brown,, Z. Chen,, L. S. Ozaki,, P. Manque,, X. Ge,, M. G. Serrano,, D. Puiu,, S. Hendricks,, Y. Wang,, M. D. Chaplin,, D. Akan,, S. Paik,, D. L. Peterson,, F. L. Macrina, and, G. A. Buck. 2007. Genome of the opportunistic pathogen Streptococcus sanguinis. J. Bacteriol. 189: 31663175.
93. Zagursky, R. J.,, P. Ooi,, K. F. Jones,, M. J. Fiske,, R. P. Smith, and, B. A. Green. 2000. Identification of a Haemophilus influenzae 5′-nucleotidase protein: cloning of the nucA gene and immunogenicity and characterization of the NucA protein. Infect. Immun. 68: 25252534.


Generic image for table

Features of predicted SK36 Cwa proteins

Citation: Kitten T, Senty Turner L, Xu P. 2011. Biological Implications of the Genome, p 43-61. In Kolenbrander P (ed), Oral Microbial Communities. ASM Press, Washington, DC. doi: 10.1128/9781555817107.ch4
Generic image for table

Genes unique to three oral streptococci

Citation: Kitten T, Senty Turner L, Xu P. 2011. Biological Implications of the Genome, p 43-61. In Kolenbrander P (ed), Oral Microbial Communities. ASM Press, Washington, DC. doi: 10.1128/9781555817107.ch4
Generic image for table

Features of two approaches used for identification of foreign genes in

Citation: Kitten T, Senty Turner L, Xu P. 2011. Biological Implications of the Genome, p 43-61. In Kolenbrander P (ed), Oral Microbial Communities. ASM Press, Washington, DC. doi: 10.1128/9781555817107.ch4

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error