Chapter 10 : Genome Functions of in Bacterial Communities

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

Genome Functions of in Bacterial Communities, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817107/9781555815035_Chap10-1.gif /docserver/preview/fulltext/10.1128/9781555817107/9781555815035_Chap10-2.gif


This chapter predicts and highlights the genome functions of related to bacterial community development. The major intent is to identify putative genes that are likely to be important in interactions with the members of the bacterial community. The chapter focuses on a predicted function derived from the recently completed genome. It was demonstrated that growth required an exogenous source of N-acetylmuramic acid (MurNAc). Investigation of the genome functions that assist in scavenging MurNAc from coinhabiting species could lead to the identification of novel mechanisms for MurNAc uptake in bacteria, as well as to the design of novel strategies for blocking MurNAc uptake by and controlling periodontitis. The chapter talks about surface components, surface layer (S-layer) glycoproteins, and LRR proteins. Only a few virulence factors have been identified in . The metabolic conditions of the host could influence growth and virulence gene expression. Recent studies have shown that expression of the virulence protein BspA and its homologues is affected in response to environmental cues. possesses several conjugative transposon (CTn) elements belonging to the Bacteroides CTnDOT family. In the near future, computational approaches supported by direct laboratory experimentation will be necessary to decipher some of the complex bacterial interactions.

Citation: Sharma A. 2011. Genome Functions of in Bacterial Communities, p 135-148. In Kolenbrander P (ed), Oral Microbial Communities. ASM Press, Washington, DC. doi: 10.1128/9781555817107.ch10
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of FIGURE 1

Putative MurNAc uptake and scavenging pathway in Abbreviations: anhMurNAc; anhydro--acetylmuramic acid; EPs, endopeptidases; Fructose-6-P; fructose-6-phosphate; GlcNAc-6-P, -acetylglucosamine-6-phosphate; GlcN-6-P, glucosamine-6-phosphate; IM, inner cytoplasmic membrane; LTs, transglycosylases; MurNAc-6-P, -acetylmuramic acid 6-phosphate; OM, outer membrane; PER, periplasmic space.

Citation: Sharma A. 2011. Genome Functions of in Bacterial Communities, p 135-148. In Kolenbrander P (ed), Oral Microbial Communities. ASM Press, Washington, DC. doi: 10.1128/9781555817107.ch10
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2

Transmission electron micrograph of ATCC 43037 cells stained with 3% tungsten phosphate solution. Bar, 0.5 μm.

Citation: Sharma A. 2011. Genome Functions of in Bacterial Communities, p 135-148. In Kolenbrander P (ed), Oral Microbial Communities. ASM Press, Washington, DC. doi: 10.1128/9781555817107.ch10
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Arakawa, S.,, T. Nakajima,, H. Ishikura,, S. Ichinose,, I. Ishikawa, and, N. Tsuchida. 2000. Novel apoptosis-inducing activity in Bacteroides forsythus: a comparative study with three serotypes of Actinobacillus actinomycetemcomitans. Infect. Immun. 68: 46114615.
2. Boneca, I. G. 2005. The role of peptidoglycan in pathogenesis. Curr. Opin. Microbiol. 8: 4653.
3. Brennan, R. M.,, R. J. Genco,, G. E. Wilding,, K. M. Hovey,, M. Trevisan, and, J. Wactawski-Wende. 2007. Bacterial species in subgingival plaque and oral bone loss in post-menopausal women. J. Periodontol. 78: 10511061.
4. Capestany, C. A.,, M. Kuboniwa,, I.-Y. Jung,, Y. Park,, G. D. Tribble, and, R. J. Lamont. 2006. Role of the Porphyromonas gingivalis InlJ protein in homotypic and heterotypic biofilm development. Infect. Immun. 74: 30023005.
5. Dahl, U.,, T. Jaeger,, B. T. Nguyen,, J. M. Sattler, and, C. Mayer. 2004. Identification of a phosphotransferase system of Escherichia coli required for growth on N-acetylmuramic acid. J. Bacteriol. 186: 23852392.
6. Danese, P. N.,, L. A. Pratt,, S. L. Dove, and, R. Kolter. 2000. The outer membrane protein, antigen 43, mediates cell-to-cell interactions within Escherichia coli biofilms. Mol. Microbiol. 37: 424432.
7. Duan, K.,, C. Dammel,, J. Stein,, H. Rabin, and, M. G. Surette. 2003. Modulation of Pseudomonas aeruginosa gene expression by host micro-flora through interspecies communication. Mol. Microbiol. 50: 14771491.
8. Frias, J.,, E. Olle, and, M. Alsina. 2001. Periodontal pathogens produce quorum sensing signal molecules. Infect. Immun. 69: 34313434.
9. Grenier, D. 1992. Nutritional interactions between two suspected periodontopathogens, Treponema denticola and Porphyromonas gingivalis. Infect. Immun. 60: 52985301.
10. Haffajee, A. D.,, and S. S. Socransky. 2009. Relation of body mass index, periodontitis and Tannerella forsythia. J. Clin. Periodontol. 36: 8999.
11. Hasebe, A.,, A. Yoshimura,, T. Into,, H. Kataoka,, S. Tanaka,, S. Arakawa,, H. Ishikura,, D. T. Golenbock,, T. Sugaya,, N. Tsuchida,, M. Kawanami,, Y. Hara, and, K. Shibata. 2004. Biological activities of Bacteroides forsythus lipoproteins and their possible pathological roles in periodontal disease. Infect. Immun. 72: 13181325.
12. Hasegawa, Y.,, S. Nishiyama,, K. Nishikawa,, T. Kadowaki,, K. Yamamoto,, T. Noguchi, and, F. Yoshimura. 2003. A novel type of two-component regulatory system affecting gingipains in Porphyromonas gingivalis. Microbiol. Immunol. 47: 849858.
13. Hayashi, J.,, K. Nishikawa,, R. Hirano,, T. Noguchi, and, F. Yoshimura. 2000. Identification of a two-component signal transduction system involved in fimbriation of Porphyromonas gingivalis. Microbiol. Immunol. 44: 279282.
14. Higuchi, N.,, Y. Murakami,, K. Moriguchi,, N. Ohno,, H. Nakamura, and, F. Yoshimura. 2000. Localization of major, high molecular weight proteins in Bacteroides forsythus. Microbiol. Immunol. 44: 777780.
15. Holt, S. C.,, and T. E. Bramanti. 1991. Factors in virulence expression and their role in periodontal disease pathogenesis. Crit. Rev. Oral Biol. Med. 2: 177281.
16. Honma, K.,, S. Inagaki,, K. Okuda,, H. K. Kuramitsu, and, A. Sharma. 2007. Role of a Tannerella forsythia exopolysaccharide synthesis operon in biofilm development. Microb. Pathog. 42: 156166.
17. Honma, K.,, H. K. Kuramitsu,, R. J. Genco, and, A. Sharma. 2001. Development of a gene inactivation system for Bacteroides forsythus: construction and characterization of a BspA mutant. Infect. Immun. 69: 46864690.
18. Honma, K.,, E. Mishima,, S. Inagaki, and, A. Sharma. 2009. The OxyR homologue in Tannerella forsythia regulates expression of oxidative stress responses and biofilm formation. Microbiology 155: 19121922.
19. Honma, K.,, E. Mishima, and, A. Sharma. 15 November 2010. Role of Tannerella forsythia NanH sialidase in epithelial cell attachment. Infect. Immun. doi:10.1128/IAI.00629-10.
20. Ikegami, A.,, K. Honma,, A. Sharma, and, H. K. Kuramitsu. 2004. Multiple functions of the leucine-rich repeat protein LrrA of Treponema denticola. Infect. Immun. 72: 46194627.
21. Inagaki, S.,, H. K. Kuramitsu, and, A. Sharma. 2005. Contact-dependent regulation of a Tannerella forsythia virulence factor, BspA, in biofilms. FEMS Microbiol. Lett. 249: 291296.
22. Inagaki, S.,, S. Onishi,, H. K. Kuramitsu, and, A. Sharma. 2006. Porphyromonas gingivalis vesicles enhance attachment, and the leucine-rich repeat BspA protein is required for invasion of epithelial cells by “ Tannerella forsythia.” Infect. Immun. 74: 50235028.
23. Ishikura, H.,, S. Arakawa,, T. Nakajima,, N. Tsuchida, and, I. Ishikawa. 2003. Cloning of the Tannerella forsythensis ( Bacteroides forsythus) siaHI gene and purification of the sialidase enzyme. J. Med. Microbiol. 52: 11011107.
24. Kerosuo, E. 1988. Ultrastructure of the cell envelope of Bacteroides forsythus strain ATCC 430377T. Oral Microbiol. Immunol. 3: 134137.
25. Kinder, S. A.,, and S. C. Holt. 1993. Localization of the Fusobacterium nucleatum T18 adhesin activity mediating coaggregation with Porphyromonas gingivalis T22. J. Bacteriol. 175: 840850.
26. Kobe, B.,, and J. Deisenhofer. 1994. The leucine-rich repeat: a versatile binding motif. Trends Biochem. Sci. 19: 415421.
27. Koropatkin, N. M.,, E. C. Martens,, J. I. Gordon, and, T. J. Smith. 2008. Starch catabolism by a prominent human gut symbiont is directed by the recognition of amylose helices. Structure 16: 11051115.
28. Lee, S. W.,, M. Sabet,, H. S. Um,, J. Yang,, H. C. Kim, and, W. Zhu. 2006. Identification and characterization of the genes encoding a unique surface (S-) layer of Tannerella forsythia. Gene 371: 102111.
29. Lin, X.,, R. J. Lamont,, J. Wu, and, H. Xie. 2008. Role of differential expression of streptococcal arginine deiminase in inhibition of fimA expression in Porphyromonas gingivalis. J. Bacteriol. 190: 43674371.
30. Majdalani, N.,, C. K. Vanderpool, and, S. Gottesman. 2005. Bacterial small RNA regulators. Crit. Rev. Biochem. Mol. Biol. 40: 93113.
31. Marino, M.,, L. Braun,, P. Cossart, and, P. Ghosh. 2000. A framework for interpreting the leucine-rich repeats of the Listeria internalins. Proc. Natl. Acad. Sci. USA 97: 87848788.
32. Murillo, L. A.,, G. Newport,, C. Y. Lan,, S. Habelitz,, J. Dungan, and, N. M. Agabian. 2005. Genome-wide transcription profiling of the early phase of biofilm formation by Candida albicans. Eukaryot. Cell 4: 15621573.
33. Murphy, T. F.,, C. Kirkham,, S. Sethi, and, A. J. Lesse. 2005. Expression of a peroxiredoxin-glutaredoxin by Haemophilus influenzae in biofilms and during human respiratory tract infection. FEMS Immunol. Med. Microbiol. 44: 8189.
34. Murray, P. A.,, D. G. Kern, and, J. R. Winkler. 1988. Identification of a galactose-binding lectin on Fusobacterium nucleatum FN-2. Infect. Immun. 56: 13141319.
35. Nakajima, T.,, N. Tomi,, Y. Fukuyo,, H. Ishikura,, Y. Ohno,, R. Arvind,, T. Arai,, I. Ishikawa, and, S. Arakawa. 2006. Isolation and identification of a cytopathic activity in Tannerella forsythia. Biochem. Biophys. Res. Commun. 351: 133139.
36. Onishi, S.,, K. Honma,, S. Liang,, P. Stathopoulou,, D. Kinane,, G. Hajishengallis, and, A. Sharma. 2008. Toll-like receptor 2-mediated interleukin-8 expression in gingival epithelial cells by the Tannerella forsythia leucine-rich repeat protein BspA. Infect. Immun. 76: 198205.
37. Park, J. T.,, and T. Uehara. 2008. How bacteria consume their own exoskeletons (turnover and recycling of cell wall peptidoglycan). Microbiol. Mol. Biol. Rev. 72: 211227.
38. Ramsey, M. M.,, and M. Whiteley. 2009. Polymicrobial interactions stimulate resistance to host innate immunity through metabolite perception. Proc. Natl. Acad. Sci. USA 106: 15781583.
39. Rasmussen, B. A.,, and E. Kovacs. 1993. Cloning and identification of a two-component signal-transducing regulatory system from Bacteroides fragilis. Mol. Microbiol. 7: 765776.
40. Reisner, A.,, J. A. Haagensen,, M. A. Schembri,, E. L. Zechner, and, S. Molin. 2003. Development and maturation of Escherichia coli K-12 biofilms. Mol. Microbiol. 48: 933946.
41. Rickard, A. H.,, P. Gilbert,, N. J. High,, P. E. Kolenbrander, and, P. S. Handley. 2003. Bacterial coaggregation: an integral process in the development of multi-species biofilms. Trends Microbiol. 11: 94100.
42. Rollins, S. M.,, A. Peppercorn,, L. Hang,, J. D. Hillman,, S. B. Calderwood,, M. Hand-field, and, E. T. Ryan. 2005. In vivo induced antigen technology (IVIAT). Cell. Microbiol. 7: 19.
43. Romby, P.,, F. Vandenesch, and, E. G. Wagner. 2006. The role of RNAs in the regulation of virulence-gene expression. Curr. Opin. Microbiol. 9: 229236.
44. Roy, S.,, C. I. Douglas, and, G. P. Stafford. 2010. A novel sialic acid utilisation and uptake system in the periodontal pathogen Tannerella forsythia. J. Bacteriol. 192: 22852293.
45. Sabet, M.,, S. W. Lee,, R. K. Nauman,, T. Sims, and, H. S. Um. 2003. The surface (S-) layer is a virulence factor of Bacteroides forsythus. Microbiology 149: 36173627.
46. Saito, T.,, K. Ishihara,, T. Kato, and, K. Okuda. 1997. Cloning, expression, and sequencing of a protease gene from Bacteroides forsythus ATCC 43037 in Escherichia coli. Infect. Immun. 65: 48884891.
47. Sakakibara, J.,, K. Nagano,, Y. Murakami,, N. Higuchi,, H. Nakamura,, K. Shimozato, and, F. Yoshimura. 2007. Loss of adherence ability to human gingival epithelial cells in S-layer protein-deficient mutants of Tannerella forsythensis. Microbiology 153: 866876.
48. Sakamoto, M.,, M. Suzuki,, M. Umeda,, L. Ishikawa, and, Y. Benno. 2002. Reclassification of Bacteroides forsythus (Tanner et al. 1986) as Tannerella forsythensis corrig., gen. nov., comb. nov. Int. J. Syst. Evol. Microbiol. 52: 841849.
49. Sampathkumar, B.,, S. Napper,, C. D. Carrillo,, P. Willson,, E. Taboada,, J. H. Nash,, A. A. Potter,, L. A. Babiuk, and, B. J. Allan. 2006. Transcriptional and translational expression patterns associated with immobilized growth of Campylobacter jejuni. Microbiology 152: 567577.
50. Sauer, K.,, A. K. Camper,, G. D. Ehrlich,, J. W. Costerton, and, D. G. Davies. 2002. Pseudomonas aeruginosa displays multiple phenotypes during development as a biofilm. J. Bacteriol. 184: 11401154.
51. Schembri, M. A.,, L. Hjerrild,, M. Gjermansen, and, P. Klemm. 2003. Differential expression of the Escherichia coli autoaggregation factor antigen 43. J. Bacteriol. 185: 22362242.
52. Shanks, R. M. Q.,, N. A. Stella,, E. J. Kalivoda,, M. R. Doe,, D. M. O’Dee,, K. L. Lathrop,, F. L. Guo, and, G. J. Nau. 2007. A Serratia marcescens OxyR homolog mediates surface attachment and biofilm formation. J. Bacteriol. 189: 72627272.
53. Sharma, A. 2010. Virulence mechanisms of Tannerella forsythia. Periodontol. 2000 54: 106116.
54. Sharma, A.,, S. Inagaki,, W. Sigurdson, and, H. K. Kuramitsu. 2005. Synergy between Tannerella forsythia and Fusobacterium nucleatum in biofilm formation. Oral Microbiol. Immunol. 20: 3942.
55. Sharma, A.,, H. T. Sojar,, I. Glurich,, K. Honma,, H. K. Kuramitsu, and, R. J. Genco. 1998. Cloning, expression, and sequencing of a cell surface antigen containing a leucine-rich repeat motif from Bacteroides forsythus ATCC 43037. Infect. Immun. 66: 57035710.
56. Simionato, M. R.,, C. M. Tucker,, M. Kuboniwa,, G. Lamont,, D. R. Demuth,, G. D. Tribble, and, R. J. Lamont. 2006. Porphyromonas gingivalis genes involved in community development with Streptococcus gordonii. Infect. Immun. 74: 64196428.
57. Socransky, S. S.,, A. D. Haffajee,, M. A. Cugini,, C. Smith, and, R. L. Kent, Jr. 1998. Microbial complexes in subgingival plaque. J. Clin. Periodontol. 25: 134144.
58. Song, T.,, F. Mika,, B. Lindmark,, Z. Liu,, S. Schild,, A. Bishop,, J. Zhu,, A. Camilli,, J. Johansson,, J. Vogel, and, S. N. Wai. 2008. A new Vibrio cholerae sRNA modulates colonization and affects release of outer membrane vesicles. Mol. Microbiol. 70: 100111.
59. Tanner, A. C.,, and J. Izard. 2006. Tannerella forsythia, a periodontal pathogen entering the genomic era. Periodontol. 2000 42: 88113.
60. Tanner, A. C. R.,, M. A. Listgarten,, J. L. Ebersole, and, M. N. Strzempko. 1986. Bacteroides forsythus sp. nov., a slow growing, fusiform Bacteroides sp. from the human oral cavity. Int. J. Syst. Bacteriol. 36: 213221.
61. Thompson, H.,, K. A. Homer,, S. Rao,, V. Booth, and, A. H. Hosie. 2009. An orthologue of Bacteroides fragilis NanH is the principal sialidase in Tannerella forsythia. J. Bacteriol. 191: 36233628.
62. Toledo-Arana, A.,, F. Repoila, and, P. Cossart. 2007. Small noncoding RNAs controlling pathogenesis. Curr. Opin. Microbiol. 10: 182188.
63. Umeda, M.,, Y. Tominaga,, T. He,, K. Yano,, H. Watanabe, and, I. Ishikawa. 1996. Microbial flora in the acute phase of periodontitis and the effect of local administration of minocycline. J. Periodontol. 67: 422427.
64. Weiss, E. I.,, B. Shaniztki,, M. Dotan,, N. Ganeshkumar,, P. E. Kolenbrander, and, Z. Metzger. 2000. Attachment of Fusobacterium nucleatum PK1594 to mammalian cells and its coaggregation with periodontopathogenic bacteria are mediated by the same galactose-binding adhesin. Oral Microbiol. Immunol. 15: 371377.
65. Wen, Z. T.,, P. Suntharaligham,, D. G. Cvitkovitch, and, R. A. Burne. 2005. Trigger factor in Streptococcus mutans is involved in stress tolerance, competence development, and biofilm formation. Infect. Immun. 73: 219225.
66. Winzer, K.,, K. R. Hardie,, N. Burgess,, N. Doherty,, D. Kirke,, M. T. Holden,, R. Lin-forth,, K. A. Cornell,, A. J. Taylor,, P. J. Hill, and, P. Williams. 2002. LuxS: its role in central metabolism and the in vitro synthesis of 4-hydroxy-5-methyl-3(2H)-furanone. Microbiology 148: 909922.
67. Wu, J.,, X. Lin, and, H. Xie. 2008. OxyR is involved in coordinate regulation of expression of fimA and sod genes in Porphyromonas gingivalis. FEMS Microbiol. Lett. 282: 188195.
68. Wyss, C. 1989. Dependence of proliferation of Bacteroides forsythus on exogenous N-acetylmuramic acid. Infect. Immun. 57: 17571759.
69. Yoo, J. Y.,, H. C. Kim,, W. Zhu,, S. M. Kim,, M. Sabet,, M. Handfield,, J. Hillman,, A. Progulske-Fox, and, S. W. Lee. 2007. Identification of Tannerella forsythia antigens specifically expressed in patients with periodontal disease. FEMS Microbiol. Lett. 275: 344352.


Generic image for table

Putative virulence factors of

Citation: Sharma A. 2011. Genome Functions of in Bacterial Communities, p 135-148. In Kolenbrander P (ed), Oral Microbial Communities. ASM Press, Washington, DC. doi: 10.1128/9781555817107.ch10

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error