Chapter 14 : Interactions of with Human Gingival Epithelium

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

Interactions of with Human Gingival Epithelium, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817107/9781555815035_Chap14-1.gif /docserver/preview/fulltext/10.1128/9781555817107/9781555815035_Chap14-2.gif


Gingival epithelial cells, the initial lining of gingival mucosa functioning as an important part of the innate immune system, are among the first host cells colonized by . This chapter presents a study which showed that the gingival epithelial cells display a high level of death upon treatment with ATP and that treatment with purified recombinant Ndk inhibits ATP-mediated host cell plasma membrane permeabilization in a dose-dependent manner. Cytochalasin D, a fungal toxin that disrupts the microfilaments and inhibits actin polymerization, caused significant inhibition of the level of intercellular spread, confirming that the stimulation of actin polymerization is an underlying factor for dissemination of within the host epithelium. In addition to constituting a physical barrier to the ingress of organisms, epithelial cells can sense and respond to the presence of bacteria following stimulation of pattern recognition receptors (PRRs), resulting in secretion of inflammatory cytokines and differentiation of the epithelial cells. The current challenges include accurate definition of species and identification of the species present at subthresholds. The initiation of inflammation and succession of disease might require a large number of potentially pathogenic populations acting in concert. The current innovative approaches for determining biphasic interaction between host and microbe, particularly identification of mutualistic and/or pathogenic genes and proteins, include suppression subtractive hybridization, comparative genomic analyses by DNA microarrays, and various proteomics technologies.

Citation: Yilmaz Ö. 2011. Interactions of with Human Gingival Epithelium, p 207-219. In Kolenbrander P (ed), Oral Microbial Communities. ASM Press, Washington, DC. doi: 10.1128/9781555817107.ch14
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of FIGURE 1

Sequence comparison of the putative Ndk (PG1018) with Ndk from different organisms. In the sequences, an asterisk indicates residues implicated in Ndk kinase activity: Y35, N96, and H101. Highly conserved residues are indicated by a dark background, and gaps are indicated by dashes. Accession numbers for the sequences are as follows: , XP771399.1; sp. strain B14905, ZP01725465.1; , ABF51506.1; , NP991387.1; , NP592857.1; , ABG81980.1; , CAC84493.1; , XP393351.2; sp. strain CC9311, YP731929.1; , AAC84038.1; , NP001019809.1; , XP001363771.1; , NP000260.1; and , PG1018 NP905239.1. Sequence alignment of the PG1018 protein from and representative Ndk proteins from organisms ranging from bacteria to humans was performed using ClustalW. Reprinted from ( ) with permission from the publisher.

Citation: Yilmaz Ö. 2011. Interactions of with Human Gingival Epithelium, p 207-219. In Kolenbrander P (ed), Oral Microbial Communities. ASM Press, Washington, DC. doi: 10.1128/9781555817107.ch14
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2

Overview of proposed mechanisms of establishment in gingival epithelium. infection targets multiple host signaling pathways to ensure its survival in gingival epithelial cells.

Citation: Yilmaz Ö. 2011. Interactions of with Human Gingival Epithelium, p 207-219. In Kolenbrander P (ed), Oral Microbial Communities. ASM Press, Washington, DC. doi: 10.1128/9781555817107.ch14
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3

Stressed cells release DSs (ATP and adenosine) that can upregulate and downregulate inflammation temporally.

Citation: Yilmaz Ö. 2011. Interactions of with Human Gingival Epithelium, p 207-219. In Kolenbrander P (ed), Oral Microbial Communities. ASM Press, Washington, DC. doi: 10.1128/9781555817107.ch14
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Avila, M.,, D. M. Ojcius, and, O. Yilmaz. 2009. The oral microbiota: living with a permanent guest. DNA Cell Biol. 28: 405411.
2. Balaram, P.,, P. K. Kien, and, A. Ismail. 2009. Toll-like receptors and cytokines in immune responses to persistent mycobacterial and Salmonella infections. Int. J. Med. Microbiol. 299: 177185.
3. Beutler, B. A. 2009. TLRs and innate immunity. Blood 113: 13991407.
4. Bours, M. J.,, E. L. Swennen,, F. Di Virgilio,, B. N. Cronstein, and, P. C. Dagnelie. 2006. Adenosine 5′-triphosphate and adenosine as endogenous signaling molecules in immunity and inflammation. Pharmacol. Ther. 112: 358404.
5. Byrne, G. I.,, and D. M. Ojcius. 2004. Chlamydia and apoptosis: life and death decisions of an intracellular pathogen. Nat. Rev. Microbiol. 2: 802808.
6. Coats, S. R.,, R. A. Reife,, B. W. Bainbridge,, T. T. Pham, and, R. P. Darveau. 2003. Porphyromonas gingivalis lipopolysaccharide antagonizes Escherichia coli lipopolysaccharide at Toll-like receptor 4 in human endothelial cells. Infect. Immun. 71: 67996807.
7. Colombo, A. V.,, C. M. da Silva,, A. Haffajee, and, A. P. Colombo. 2007. Identification of intracellular oral species within human crevicular epithelial cells from subjects with chronic periodontitis by fluorescence in situ hybridization. J. Periodontal Res. 42: 236243.
8. Coutinho-Silva, R.,, G. Correa,, A. A. Sater, and, D. M. Ojcius. 2009. The P2X 7 receptor and intracellular pathogens: a continuing struggle. Purinergic Signal 5: 197204.
9. Cunningham, M. D.,, J. Bajorath,, J. E. Somerville, and, R. P. Darveau. 1999. Escherichia coli and Porphyromonas gingivalis lipopolysaccharide interactions with CD14: implications for myeloid and nonmyeloid cell activation. Clin. Infect. Dis. 28: 497504.
10. Darveau, R. P. 1998. Lipid A diversity and the innate host response to bacterial infection. Curr. Opin. Microbiol. 1: 3642.
11. Darveau, R. P.,, C. M. Belton,, R. A. Reife, and, R. J. Lamont. 1998. Local chemokine paralysis, a novel pathogenic mechanism for Porphyromonas gingivalis. Infect. Immun. 66: 16601665.
12. Dongari-Bagtzoglou, A. 2008. Pathogenesis of mucosal biofilm infections: challenges and progress. Expert Rev. Anti.-Infect. Ther. 6: 201208.
13. Dongari-Bagtzoglou, A.,, and P. L. Fidel, Jr. 2005. The host cytokine responses and protective immunity in oropharyngeal candidiasis. J. Dent. Res. 84: 966977.
14. Fialho, A. M.,, F. J. Stevens,, T. K. Das Gupta, and, A. M. Chakrabarty. 2007. Beyond host-pathogen interactions: microbial defense strategy in the host environment. Curr. Opin. Biotechnol. 18: 279286.
15. Franchi, L.,, T. D. Kanneganti,, G. R. Dubyak, and, G. Nunez. 2007. Differential requirement of P2X7 receptor and intracellular K+ for caspase-1 activation induced by intracellular and extracellular bacteria. J. Biol. Chem. 282: 1881018818.
16. Galan, J. E.,, and P. Cossart. 2005. Host-pathogen interactions: a diversity of themes, a variety of molecular machines. Curr. Opin. Microbiol. 8: 13.
17. Galan, J. E.,, and H. Wolf-Watz. 2006. Protein delivery into eukaryotic cells by type III secretion machines. Nature 444: 567573.
18. Gouin, E.,, M. D. Welch, and, P. Cossart. 2005. Actinbased motility of intracellular pathogens. Curr. Opin. Microbiol. 8: 3545.
19. Hack, S. P.,, and M. J. Christie. 2003. Adaptations in adenosine signaling in drug dependence: therapeutic implications. Crit. Rev. Neurobiol. 15: 235274.
20. Harb, O. S.,, and Y. Abu Kwaik. 1999. Probing the microenvironment of intracellular bacterial pathogens. Microbes Infect. 1: 445453.
21. Harb, O. S.,, L. Y. Gao, and, Y. Abu Kwaik. 2000. From protozoa to mammalian cells: a new paradigm in the life cycle of intracellular bacterial pathogens. Environ. Microbiol. 2: 251265.
22. Hasegawa, Y.,, G. D. Tribble,, H. V. Baker,, J. J. Mans,, M. Handfield, and, R. J. Lamont. 2008. Role of Porphyromonas gingivalis SerB in gingival epithelial cell cytoskeletal remodeling and cytokine production. Infect. Immun. 76: 24202427.
23. Holt, S. C.,, and J. L. Ebersole. 2005. Porphyromonas gingivalis, Treponema denticola, and Tannerella forsythia: the “red complex,” a prototype polybacterial pathogenic consortium in periodontitis. Periodontol. 2000 38: 72122.
24. Hornef, M. W.,, S. Normark,, B. Henriques-Normark, and, M. Rhen. 2005. Bacterial evasion of innate defense at epithelial linings. Chem. Immunol. Allergy 86: 7298.
25. Jenkinson, H. F.,, and R. J. Lamont. 2005. Oral microbial communities in sickness and in health. Trends Microbiol. 13: 589595.
26. Jijon, H. B.,, J. Walker,, F. Hoentjen,, H. Diaz,, J. Ewaschuk,, C. Jobin, and, K. L. Madsen. 2005. Adenosine is a negative regulator of NF-kappaB and MAPK signaling in human intestinal epithelial cells. Cell. Immunol. 237: 8695.
27. Knodler, L. A.,, B. B. Finlay, and, O. Steele-Mortimer. 2005. The Salmonella effector protein SopB protects epithelial cells from apoptosis by sustained activation of Akt. J. Biol. Chem. 280: 90589064.
28. Kraehenbuhl, J. P.,, E. Pringault, and, M. R. Neutra. 1997. Review article: intestinal epithelia and barrier functions. Aliment. Pharmacol. Ther. 11 (Suppl. 3): 38; discussion, 8–9.
29. Kuboniwa, M.,, Y. Hasegawa,, S. Mao,, S. Shizukuishi,, A. Amano,, R. J. Lamont, and, O. Yilmaz. 2008. P. gingivalis accelerates gingival epithelial cell progression through the cell cycle. Microbes Infect. 10: 122128.
30. Labbe, K.,, and M. Saleh. 2008. Cell death in the host response to infection. Cell Death Differ. 15: 13391349.
31. Lamont, R. J.,, and H. F. Jenkinson. 1998. Life below the gum line: pathogenic mechanisms of Porphyromonas gingivalis. Microbiol. Mol. Biol. Rev. 62: 12441263.
32. Ley, R. E.,, M. Hamady,, C. Lozupone,, P. J. Turnbaugh,, R. R. Ramey,, J. S. Bircher,, M. L. Schlegel,, T. A. Tucker,, M. D. Schrenzel,, R. Knight, and, J. I. Gordon. 2008. Evolution of mammals and their gut microbes. Science 320: 16471651.
33. Mathews, R. J.,, M. B. Sprakes, and, M. F. McDermott. 2008. NOD-like receptors and inflammation. Arthritis Res. Ther. 10: 228.
34. Monack, D.,, and S. Falkow. 2000. Apoptosis as a common bacterial virulence strategy. Int. J. Med. Microbiol. 290: 713.
35. Monack, D. M.,, A. Mueller, and, S. Falkow. 2004. Persistent bacterial infections: the interface of the pathogen and the host immune system. Nat. Rev. Microbiol. 2: 747765.
36. Monack, D. M.,, B. Raupach,, A. E. Hromockyj, and, S. Falkow. 1996. Salmonella typhimurium invasion induces apoptosis in infected macrophages. Proc. Natl. Acad. Sci. USA 93: 98339838.
37. Nakhjiri, S. F.,, Y. Park,, O. Yilmaz,, W. O. Chung,, K. Watanabe,, A. El-Sabaeny,, K. Park, and, R. J. Lamont. 2001. Inhibition of epithelial cell apoptosis by Porphyromonas gingivalis. FEMS Microbiol. Lett. 200: 145149.
38. Pennisi, E. 2005. A mouthful of microbes. Science 307: 18991901.
39. Petrilli, V.,, C. Dostert,, D. A. Muruve, and, J. Tschopp. 2007. The inflammasome: a danger sensing complex triggering innate immunity. Curr. Opin. Immunol. 19: 615622.
40. Plant, L.,, and A. B. Jonsson. 2003. Contacting the host: insights and implications of pathogenic Neisseria cell interactions. Scand. J. Infect. Dis. 35: 608613.
41. Pontes, D. S.,, C. I. Lima-Bittencourt,, E. Chartone-Souza, and, A. M. Amaral Nascimento. 2007. Molecular approaches: advantages and artifacts in assessing bacterial diversity. J. Ind. Microbiol. Biotechnol. 34: 463473.
42. Rock, K. L.,, and H. Kono. 2008. The inflammatory response to cell death. Annu. Rev. Pathol. 3: 99126.
43. Rudney, J. D.,, and R. Chen. 2006. The vital status of human buccal epithelial cells and the bacteria associated with them. Arch. Oral Biol. 51: 291298.
44. Rudney, J. D.,, R. Chen, and, G. J. Sedge-wick. 2005. Actinobacillus actinomycetemcomitans, Porphyromonas gingivalis, and Tannerella forsythensis are components of a polymicrobial intracellular flora within human buccal cells. J. Dent. Res. 84: 5963.
45. Singh, J.,, A. Behal,, N. Singla,, A. Joshi,, N. Birbian,, S. Singh,, V. Bali, and, N. Batra. 2009. Metagenomics: concept, methodology, ecological inference and recent advances. Biotechnol. J. 4: 480494.
46. Socransky, S. S.,, and A. D. Haffajee. 1992. The bacterial etiology of destructive periodontal disease: current concepts. J. Periodontol. 63: 322331.
47. Szeto, J.,, A. Namolovan,, S. E. Osborne,, B. K. Coombes, and, J. H. Brumell. 2009. Salmonella-containing vacuoles display centrifugal movement associated with cell-to-cell transfer in epithelial cells. Infect. Immun. 77: 9961007.
48. Turnbaugh, P. J.,, R. E. Ley,, M. Hamady,, C. M. Fraser-Liggett,, R. Knight, and, J. I. Gordon. 2007. The Human Microbiome Project. Nature 449: 804810.
49. Uehara, A.,, Y. Fujimoto,, K. Fukase, and, H. Takada. 2007. Various human epithelial cells express functional Toll-like receptors, NOD1 and NOD2 to produce anti-microbial peptides, but not proinflammatory cytokines. Mol. Immunol. 44: 31003111.
50. van Zandbergen, G.,, W. Solbach, and, T. Laskay. 2007. Apoptosis driven infection. Auto-immunity 40: 349352.
51. Xia, Q.,, T. Wang,, F. Taub,, Y. Park,, C. A. Capestany,, R. J. Lamont, and, M. Hackett. 2007. Quantitative proteomics of intracellular Porphyromonas gingivalis. Proteomics 7: 43234337.
52. Yao, L.,, C. Jermanus,, B. Barbetta,, C. Choi,, P. Verbeke,, D. M. Ojcius, and, O. Yilmaz. 2010. Porphyromonas gingivalis infection sequesters pro-apoptotic Bad through Akt in primary gingival epithelial cells. Mol. Oral Microbiol. 25: 89101.
53. Yilmaz, O. 2008. The chronicles of Porphyromonas gingivalis: the microbium, the human oral epithelium and their interplay. Microbiology 154: 28972903.
54. Yilmaz, O.,, T. Jungas,, P. Verbeke, and, D. M. Ojcius. 2004. Activation of the phosphatidylinositol 3-kinase/Akt pathway contributes to survival of primary epithelial cells infected with the periodontal pathogen Porphyromonas gingivalis. Infect. Immun. 72: 37433751.
55. Yilmaz, O.,, A. A. Sater,, L. Yao,, T. Koutouzis,, M. Pettengill, and, D. M. Ojcius. 2010. ATP-dependent activation of an inflammasome in primary gingival epithelial cells infected by Porphyromonas gingivalis. Cell. Microbiol. 12: 188198.
56. Yilmaz, O.,, P. Verbeke,, R. J. Lamont, and, D. M. Ojcius. 2006. Intercellular spreading of Porphyromonas gingivalis infection in primary gingival epithelial cells. Infect. Immun. 74: 703710.
57. Yilmaz, O.,, K. Watanabe, and, R. J. Lamont. 2002. Involvement of integrins in fimbriae-mediated binding and invasion by Porphyromonas gingivalis. Cell. Microbiol. 4: 305314.
58. Yilmaz, O.,, L. Yao,, K. Maeda,, T. M. Rose,, E. L. Lewis,, M. Duman,, R. J. Lamont, and, D. M. Ojcius. 2008. ATP scavenging by the intracellular pathogen Porphyromonas gingivalis inhibits P2X7-mediated host-cell apoptosis. Cell. Microbiol. 10: 863875.
59. Yilmaz, O.,, P. A. Young,, R. J. Lamont, and, G. E. Kenny. 2003. Gingival epithelial cell signalling and cytoskeletal responses to Porphyromonas gingivalis invasion. Microbiology 149: 24172426.
60. Ying, S.,, M. Pettengill,, D. M. Ojcius, and, G. Hacker. 2007. Host-cell survival and death during Chlamydia infection. Curr. Immunol. Rev. 3: 3140.
61. Zaborina, O.,, X. Li,, G. Cheng,, V. Kapatral, and, A. M. Chakrabarty. 1999. Secretion of ATP-utilizing enzymes, nucleoside diphosphate kinase and ATPase, by Mycobacterium bovis BCG: sequestration of ATP from macrophage P2Z receptors? Mol. Microbiol. 31: 13331343.
62. Zaneveld, J.,, P. J. Turnbaugh,, C. Lozupone,, R. E. Ley,, M. Hamady,, J. I. Gordon, and, R. Knight. 2008. Host-bacterial coevolution and the search for new drug targets. Curr. Opin. Chem. Biol. 12: 109114.
63. Zasloff, M. 2007. Antimicrobial peptides, innate immunity, and the normally sterile urinary tract. J. Am. Soc. Nephrol. 18: 28102816.
64. Zhang, Y.,, T. Wang,, W. Chen,, O. Yilmaz,, Y. Park,, I. Y. Jung,, M. Hackett, and, R. J. Lamont. 2005. Differential protein expression by Porphyromonas gingivalis in response to secreted epithelial cell components. Proteomics 5: 198211.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error