Chapter 25 : Spatiotemporal Organization of Multispecies Communities in the Human Oral Microbiome

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

Spatiotemporal Organization of Multispecies Communities in the Human Oral Microbiome, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817107/9781555815035_Chap25-1.gif /docserver/preview/fulltext/10.1128/9781555817107/9781555815035_Chap25-2.gif


To control multispecies community function within dental plaque, one must first understand the spatiotemporal organization of the species within the community. Oral multispecies communities are not randomly organized. This chapter illustrates the application of metatranscriptomics to in vitro biofilm communities constructed with defined species. It describes the application of a sensitive procedure called catalyzed reporter deposition-fluorescence in situ hybridization (CARD-FISH) that measures mRNA at the single-cell level in vivo. A strategy to use the species to investigate metatranscriptomics of their communities, is presented in the chapter. Metatranscriptomic analysis of this community could document some gene expression changes accompanying this burst of growth. In summary, it appears that each of the three initial colonizers favors interaction with specific partners: - sp., -, and -. With the availability of numerous genome-sequenced strains from the Human Oral Microbiome initiative, great progress can be achieved through metatranscriptomic analyses of two-, three-, and four-species biofilms growing on saliva as the sole source of nutrition. By using genome-sequenced strains, assigning gene functions to cDNA sequences will be much easier, and rapid progress can be made in understanding the relationship of community membership, spatiotemporal organization, and multispecies community growth.

Citation: Palmer, Jr. R, Kolenbrander P. 2011. Spatiotemporal Organization of Multispecies Communities in the Human Oral Microbiome, p 371-381. In Kolenbrander P (ed), Oral Microbial Communities. ASM Press, Washington, DC. doi: 10.1128/9781555817107.ch25
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


1. Ahmed, N. A.,, F. C. Petersen, and, A. A. Scheie. 2007. AI-2 quorum sensing affects antibiotic susceptibility in Streptococcus anginosus. J. Antimicrob. Chemother. 60: 4953.
2. Ahmed, N. A.,, F. C. Petersen, and, A. A. Scheie. 2009. AI-2/LuxS is involved in increased biofilm formation by Streptococcus intermedius in the presence of antibiotics. Antimicrob. Agents Chemother. 53: 42584263.
3. Ahn, S. J.,, and R. A. Burne. 2007. Effects of oxygen on biofilm formation and the AtlA autolysin of Streptococcus mutans. J. Bacteriol. 189: 62936302.
4. Ahn, S. J.,, K. C. Rice,, J. Oleas,, K. W. Bayles, and, R. A. Burne. 2010. The Streptococcus mutans Cid and Lrg systems modulate virulence traits in response to multiple environmental signals. Microbiology 156: 31363147.
5. Ahn, S. J.,, Z. T. Wen, and, R. A. Burne. 2007. Effects of oxygen on virulence traits of Streptococcus mutans. J. Bacteriol. 189: 85198527.
6. Al-Ahmad, A.,, A. Wunder,, T. M. Auschill,, M. Follo,, G. Braun,, E. Hellwig, and, N. B. Arweiler. 2007. The in vivo dynamics of Streptococcus spp., Actinomyces naeslundii, Fusobacterium nucleatum and Veillonella spp. in dental plaque biofilm as analysed by five-colour multiplex fluorescence in situ hybridization. J. Med. Microbiol. 56: 681687.
7. Bamford, C. V.,, A. d’Mello,, A. H. Nobbs,, L. C. Dutton,, M. M. Vickerman, and, H. F. Jenkinson. 2009. Streptococcus gordonii modulates Candida albicans biofilm formation through intergeneric communication. Infect. Immun. 77: 36963704.
8. Blehert, D. S.,, R. J. Palmer, Jr.,, J. B. Xavier,, J. S. Almeida, and, P. E. Kolenbrander. 2003. Autoinducer 2 production by Streptococcus gordonii DL1 and the biofilm phenotype of a luxS mutant are influenced by nutritional conditions. J. Bacteriol. 185: 48514860.
9. Chalmers, N. I.,, R. J. Palmer, Jr.,, J. O. Cisar, and, P. E. Kolenbrander. 2008. Characterization of a Streptococcus sp.- Veillonella sp. community micromanipulated from dental plaque. J. Bacteriol. 190: 81458154.
10. Cho, K. H.,, and M. G. Caparon. 2005. Patterns of virulence gene expression differ between biofilm and tissue communities of Streptococcus pyogenes. Mol. Microbiol. 57: 15451556.
11. Chung, W. O.,, Y. Park,, R. J. Lamont,, R. McNab,, B. Barbieri, and, D. R. Demuth. 2001. Signaling system in Porphyromonas gingivalis based on a LuxS protein. J. Bacteriol. 183: 39033909.
12. Diaz, P. I.,, N. I. Chalmers,, A. H. Rickard,, C. Kong,, C. L. Milburn,, R. J. Palmer, Jr., and, P. E. Kolenbrander. 2006. Molecular characterization of subject-specific oral microflora during initial colonization of enamel. Appl. Environ. Microbiol. 72: 28372848.
13. Dige, I.,, H. Nilsson,, M. Kilian, and, B. Nyvad. 2007. In situ identification of streptococci and other bacteria in initial dental biofilm by confocal laser scanning microscopy and fluorescence in situ hybridization. Eur. J. Oral Sci. 115: 459467.
14. Dige, I.,, M. K. Raarup,, J. R. Nyengaard,, M. Kilian, and, B. Nyvad. 2009. Actinomyces naeslundii in initial dental biofilm formation. Microbiology 155: 21162126.
15. Egland, P. G.,, R. J. Palmer, Jr., and, P. E. Kolenbrander. 2004. Interspecies communication in Streptococcus gordonii-Veillonella atypica biofilms: signaling in flow conditions requires juxtaposition. Proc. Natl. Acad. Sci. USA 101: 1691716922.
16. Fong, K. P.,, W. O. Chung,, R. J. Lamont, and, D. R. Demuth. 2001. Intra- and interspecies regulation of gene expression by Actinobacillus actinomycetemcomitans LuxS. Infect. Immun. 69: 76257634.
17. Fuqua, C.,, S. C. Winans, and, E. P. Greenberg. 1996. Census and consensus in bacterial ecosystems: the LuxR-LuxI family of quorumsensing transcriptional regulators. Annu. Rev. Microbiol. 50: 727751.
18. Hense, B. A.,, C. Kuttler,, J. Muller,, M. Rothballer,, A. Hartmann, and, J.-U. Kreft. 2007. Does efficiency sensing unify diffusion and quorum sensing? Nat. Rev. Microbiol. 5: 230239.
19. Hoshino, T.,, L. S. Yilmaz,, D. R. Noguera,, H. Daims, and, M. Wagner. 2008. Quantification of target molecules needed to detect microorganisms by fluorescence in situ hybridization (FISH) and catalyzed reporter deposition-FISH. Appl. Environ. Microbiol. 74: 50685077.
20. Jakubovics, N. S.,, S. R. Gill,, S. E. Iobst,, M. M. Vickerman, and, P. E. Kolenbrander. 2008. Regulation of gene expression in a mixedgenus community: stabilized arginine biosynthesis in Streptococcus gordonii by coaggregation with Actinomyces naeslundii. J. Bacteriol. 190: 36463657.
21. James, C. E.,, Y. Hasegawa,, Y. Park,, V. Yeung,, G. D. Tribble,, M. Kuboniwa,, D. R. Demuth, and, R. J. Lamont. 2006. LuxS involvement in the regulation of genes coding for hemin and iron acquisition systems in Porphyromonas gingivalis. Infect. Immun. 74: 38343844.
22. Joyner, P. M.,, J. Liu,, Z. Zhang,, J. Merritt,, F. Qi, and, R. H. Cichewicz. 2010. Mutanobactin A from the human oral pathogen Streptococcus mutans is a cross-kingdom regulator of the yeast-mycelium transition. Org. Biomol. Chem. 8: 54865489.
23. Klein, M. I.,, S. Duarte,, J. Xiao,, S. Mitra,, T. H. Foster, and, H. Koo. 2009. Structural and molecular basis of the role of starch and sucrose in Streptococcus mutans biofilm development. Appl. Environ. Microbiol. 75: 837841.
24. Kolenbrander, P. E.,, R. J. Palmer, Jr.,, S. Periasamy, and, N. S. Jakubovics. 2010. Oral multispecies biofilm development and the key role of cell-cell distance. Nat. Rev. Microbiol. 8: 471480.
25. Kolenbrander, P. E.,, R. J. Palmer, Jr.,, A. H. Rickard,, N. S. Jakubovics,, N. I. Chalmers, and, P. I. Diaz. 2006. Bacterial interactions and successions during plaque development. Periodontol. 2000 42: 4779.
26. Kuboniwa, M.,, E. L. Hendrickson,, Q. Xia,, T. Wang,, H. Xie,, M. Hackett, and R. J. Lamont. 2009. Proteomics of Porphyromonas gingivalis within a model oral microbial community. BMC Microbiol. 9: 98.
27. Kuboniwa, M.,, G. D. Tribble,, C. E. James,, A. O. Kilic,, L. Tao,, M. C. Herzberg,, S. Shizukuishi, and, R. J. Lamont. 2006. Streptococcus gordonii utilizes several distinct gene functions to recruit Porphyromonas gingivalis into a mixed community. Mol. Microbiol. 60: 121139.
28. Lee, J.,, A. Jayaraman, and, T. K. Wood. 2007. Indole is an interspecies biofilm signal mediated by SdiA. BMC Microbiol. 7: 42.
29. Lewis, J. P.,, D. Iyer, and, C. Anaya-Bergman. 2009. Adaptation of Porphyromonas gingivalis to microaerophilic conditions involves increased consumption of formate and reduced utilization of lactate. Microbiology 155: 37583774.
30. Liu, Y.,, and R. A. Burne. 2009. Multiple two-component systems modulate alkali generation in Streptococcus gordonii in response to environmental stresses. J. Bacteriol. 191: 73537362.
31. McNab, R.,, S. K. Ford,, A. El-Sabaeny,, B. Barbieri,, G. S. Cook, and, R. J. Lamont. 2003. LuxS-based signaling in Streptococcus gordonii: autoinducer 2 controls carbohydrate metabolism and biofilm formation with Porphyromonas gingivalis. J. Bacteriol. 185: 274284.
32. Merritt, J.,, J. Kreth,, W. Shi, and, F. Qi. 2005. LuxS controls bacteriocin production in Streptococcus mutans through a novel regulatory component. Mol. Microbiol. 57: 960969.
33. Nyvad, B.,, and M. Kilian. 1987. Microbiology of the early colonization of human enamel and root surfaces in vivo. Scand. J. Dent. Res. 95: 369380.
34. Obuchowski, P. L.,, and C. Jacobs-Wagner. 2008. PflI, a protein involved in flagellar positioning in Caulobacter crescentus. J. Bacteriol. 190: 17181729.
35. Palmer, R. J., Jr.,, P. I. Diaz, and, P. E. Kolenbrander. 2006. Rapid succession within the Veillonella population of a developing human oral biofilm in situ. J. Bacteriol. 188: 41174124.
36. Palmer, R. J., Jr.,, S. M. Gordon,, J. O. Cisar, and, P. E. Kolenbrander. 2003. Coaggregation-mediated interactions of streptococci and actinomyces detected in initial human dental plaque. J. Bacteriol. 185: 34003409.
37. Palmer, R. J., Jr.,, K. Kazmerzak,, M. C. Hansen, and, P. E. Kolenbrander. 2001. Mutualism versus independence: strategies of mixed-species oral biofilms in vitro using saliva as the sole nutrient source. Infect. Immun. 69: 57945804.
38. Periasamy, S.,, N. I. Chalmers,, L. DuThumm, and, P. E. Kolenbrander. 2009. Fusobacterium nucleatum ATCC 10953 requires Actinomyces naeslundii ATCC 43146 for growth on saliva in a three-species community that includes Streptococcus oralis 34. Appl. Environ. Microbiol. 75: 32503257.
39. Periasamy, S.,, and P. E. Kolenbrander. 2010. Central role of the early colonizer Veillonella sp. in establishing multispecies biofilm communities with initial, middle, and late colonizers of enamel. J. Bacteriol. 192: 29652972.
40. Periasamy, S.,, and P. E. Kolenbrander. 2009. Mutualistic biofilm communities develop with Porphyromonas gingivalis and initial, early, and late colonizers of enamel. J. Bacteriol. 191: 68046811.
41. Qi, F.,, J. Merritt,, R. Lux, and, W. Shi. 2004. Inactivation of the ciaH gene in Streptococcus mutans diminishes mutacin production and competence development, alters sucrose-dependent biofilm formation, and reduces stress tolerance. Infect. Immun. 72: 48954899.
42. Ramamurthi, K. S.,, and R. Losick. 2009. Negative membrane curvature as a cue for subcellular localization of a bacterial protein. Proc. Natl. Acad. Sci. USA 106: 1354113545.
43. Rickard, A. H.,, R. J. Palmer, Jr.,, D. S. Blehert,, S. R. Campagna,, M. F. Semmelhack,, P. G. Egland,, B. L. Bassler, and, P. E. Kolenbrander. 2006. Autoinducer 2: a concentration-dependent signal for mutualistic bacterial biofilm growth. Mol. Microbiol. 60: 14461456.
44. Sasaki-Imamura, T.,, A. Yano, and, Y. Yoshida. 2010. Production of indole from Ltryptophan and effects of these compounds on biofilm formation by Fusobacterium nucleatum ATCC 25586. Appl. Environ. Microbiol. 76: 42604268.
45. Shao, H.,, R. J. Lamont, and, D. R. Demuth. 2007. Autoinducer 2 is required for biofilm growth of Aggregatibacter ( Actinobacillus) actinomycetemcomitans. Infect. Immun. 75: 42114218.
46. Simionato, M. R.,, C. M. Tucker,, M. Kuboniwa,, G. Lamont,, D. R. Demuth,, G. D. Tribble, and, R. J. Lamont. 2006. Porphyromonas gingivalis genes involved in community development with Streptococcus gordonii. Infect. Immun. 74: 64196428.
47. Sztajer, H.,, A. Lemme,, R. Vilchez,, S. Schulz,, R. Geffers,, C. Y. Yip,, C. M. Levesque,, D. G. Cvitkovitch, and, I. Wagner-Dobler. 2008. Autoinducer-2-regulated genes in Streptococcus mutans UA159 and global metabolic effect of the luxS mutation. J. Bacteriol. 190: 401415.
48. Thurnheer, T.,, R. Gmur,, S. Shapiro, and, B. Guggenheim. 2003. Mass transport of macromolecules within an in vitro model of supragingival plaque. Appl. Environ. Microbiol. 69: 17021709.
49. Vlamakis, H.,, C. Aguilar,, R. Losick, and, R. Kolter. 2008. Control of cell fate by the formation of an architecturally complex bacterial community. Genes Dev. 22: 945953.
50. Wen, Z. T.,, and R. A. Burne. 2004. LuxS-mediated signaling in Streptococcus mutans is involved in regulation of acid and oxidative stress tolerance and biofilm formation. J. Bacteriol. 186: 26822691.
51. Wen, Z. T.,, A. H. Nguyen,, J. P. Bitoun,, J. Abranches,, H. V. Baker, and, R. A. Burne. 2010. Transcriptome analysis of LuxS-deficient Streptococcus mutans grown in biofilms. Mol. Oral Microbiol. 25: 117.
52. Whittaker, C. J.,, C. M. Klier, and, P. E. Kolenbrander. 1996. Mechanisms of adhesion by oral bacteria. Annu. Rev. Microbiol. 50: 513552.
53. Xie, H.,, X. Lin,, B. Y. Wang,, J. Wu, and, R. J. Lamont. 2007. Identification of a signalling molecule involved in bacterial intergeneric communication. Microbiology 153: 32283234.
54. Xu, H.,, K. F. Chater,, Z. Deng, and, M. Tao. 2008. A cellulose synthase-like protein involved in hyphal tip growth and morphological differentiation in Streptomyces. J. Bacteriol. 190: 49714978.
55. Yoshida, A.,, T. Ansai,, T. Takehara, and, H. K. Kuramitsu. 2005. LuxS-based signaling affects Streptococcus mutans biofilm formation. Appl. Environ. Microbiol. 71: 23722380.
56. Zhu, L.,, and J. Kreth. 2010. Role of Streptococcus mutans eukaryotic-type serine/threonine protein kinase in interspecies interactions with Streptococcus sanguinis. Arch. Oral Biol. 55: 385390.
57. Zijnge, V.,, M. B. van Leeuwen,, J. E. Degener,, F. Abbas,, T. Thurnheer,, R. Gmur, and, H. J. Harmsen. 2010. Oral biofilm architecture on natural teeth. PLoS One 5: e9321.


Generic image for table

Two-species and three-species biofilm communities growing on saliva as the sole nutritional source

Citation: Palmer, Jr. R, Kolenbrander P. 2011. Spatiotemporal Organization of Multispecies Communities in the Human Oral Microbiome, p 371-381. In Kolenbrander P (ed), Oral Microbial Communities. ASM Press, Washington, DC. doi: 10.1128/9781555817107.ch25

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error