Chapter 4 : The Genomics of and Beyond

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

The Genomics of and Beyond, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817114/9781555819354_Chap04-1.gif /docserver/preview/fulltext/10.1128/9781555817114/9781555819354_Chap04-2.gif


The primary motivation for the switch from generating sequence data to analyzing sequence data was the pace at which genomic information became available, and this chapter focuses on a few of the findings that emerged from the comparative genomics of . Based on disease potential in humans, strains can be broadly classified as (i) harmless commensals, (ii) intestinal pathogens, and (iii) those capable of infecting extraintestinal sites. An active region of genome evolution is the mutS-rpoS intergenic region. Both the mutS and rpoS genes are highly conserved among strains, but the intergenic region between them can vary from 9.8 kb in some enteropathogenic (EPEC) strains to 6.9 kb in K-12 and some extraintestinal pathogenic (ExPEC) strains to 3.7 kb in O157:H7 strains. The polymorphism in this genomic segment is likely related to the high frequency of mutations observed in both mutS and rpoS. In addition to the substantial role that gene acquisition has played in the evolution and formation of pathogenic lineages, mutations that alter or abolish protein functions have also been implicated in the accelerated adaptation of to diverse environments. The most extensive study of comparative genomics to date includes 20 / strains and one strain. In summary, the genomes of and other bacteria have been influenced by numerous factors, but in the case of their overall size and complexity, nonadaptive processes, such as mutation and genetic drift, appear to be more important.

Citation: Kuo C, Ochman H, Raghavan R. 2011. The Genomics of and Beyond, p 31-42. In Walk S, Feng P (ed), Population Genetics of Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555817114.ch4
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of Figure 1.
Figure 1.

Association between genome size and gene number in sequenced strains of and .

Citation: Kuo C, Ochman H, Raghavan R. 2011. The Genomics of and Beyond, p 31-42. In Walk S, Feng P (ed), Population Genetics of Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555817114.ch4
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Asadulghani, M.,, Y. Ogura,, T. Ooka,, T. Itoh,, A. Sawaguchi,, A. Iguchi,, K. Nakayama, and, T. Hayashi. 2009. The defective prophage pool of Escherichia coli O157: prophage-prophage interactions potentiate horizontal transfer of virulence determinants. PLoS Pathog. 5: e1000408.
2. Atlung, T.,, H. V. Nielsen, and, F. G. Hansen. 2002. Characterisation of the allelic variation in the rpoS gene in thirteen K12 and six other non-pathogenic Escherichia coli strains. Mol. Genet. Genomics 266: 873881.
3. Bergthorsson, U.,, and H. Ochman. 1995. Heterogeneity of genome sizes among natural isolates of Escherichia coli. J. Bacteriol. 177: 57845789.
4. Bergthorsson, U.,, and H. Ochman. 1998. Distribution of chromosome length variation in natural isolates of Escherichia coli. Mol. Biol. Evol. 15: 616.
5. Blattner, F. R.,, G. Plunkett III,, C. A. Bloch,, N. T. Perna,, V. Burland,, M. Riley,, J. Collado-Vides,, J. D. Glasner,, C. K. Rode,, G. F. Mayhew,, J. Gregor,, N. W. Davis,, H. A. Kirkpatrick,, M. A. Goeden,, D. J. Rose,, B. Mau, and, Y. Shao. 1997. The complete genome sequence of Escherichia coli K-12. Science 277: 14531462.
6. Bono, J. L.,, J. E. Keen,, M. L. Clawson,, L. M. Durso,, M. P. Heaton, and, W. W. Laegreid. 2007. Association of Escherichia coli O157:H7 tir polymorphisms with human infection. BMC Infect. Dis. 7: 98.
7. Brenner, D. J.,, G. R. Fanning,, F. J. Skerman, and, S. Falkow. 1972. Polynucleotide sequence divergence among strains of Escherichia coli and closely related organisms. J. Bacteriol. 109: 953965.
8. Brzuszkiewicz, E.,, G. Gottschalk,, E. Ron,, J. Hacker, and, U. Dobrindt. 2009. Adaptation of pathogenic E. coli to various niches: genome flexibility is the key. Genome Dyn. 6: 110125.
9. Chattopadhyay, S.,, S. J. Weissman,, V. N. Minin,, T. A. Russo,, D. E. Dykhuizen, and, E. V. Sokurenko. 2009. High frequency of hotspot mutations in core genes of Escherichia coli due to short-term positive selection. Proc. Natl. Acad. Sci USA 106: 1241212417.
10. Cole, S. T.,, K. Eiglmeier,, J. Parkhill,, K. D. James,, N. R. Thomson,, P. R. Wheeler,, N. Honoré,, T. Garnier,, C. Churcher,, D. Harris,, K. Mungall,, D. Basham,, D. Brown,, T. Chillingworth,, R. Connor,, R. M. Davies,, K. Devlin,, S. Duthoy,, T. Feltwell,, A. Fraser,, N. Hamlin,, S. Holroyd,, T. Hornsby,, K. Jagels,, C. Lacroix,, J. Maclean,, S. Moule,, L. Murphy,, K. Oliver,, M. A. Quail,, M.-A. Rajandream,, K. M. Rutherford,, S. Rutter,, K. Seeger,, S. Simon,, M. Simmonds,, J. Skelton,, R. Squares,, S. Squares,, K. Stevens,, K. Taylor,, S. Whitehead,, J. R. Woodward, and, B. G. Barrell. 2000. Massive gene decay in the leprosy bacillus. Nature 409: 10071011.
11. Daubin, V.,, and H. Ochman. 2004. Bacterial genomes as new gene homes: the genealogy of ORFans in E. coli. Genome Res. 14: 10361042.
12. Day, W. A.,, Jr., R. E. Fernández, and, A. T. Maurelli. 2001. Pathoadaptive mutations that enhance virulence: genetic organization of the cadA regions of Shigella spp. Infect. Immun. 69: 74717480.
13. Dobrindt, U. 2005. (Patho-)Genomics of Escherichia coli. Int. J. Med. Microbiol. 295: 357371.
14. Dong, T.,, S. M. Chiang,, C. Joyce,, R. Yu, and, H. E. Schellhorn. 2009. Polymorphism and selection of rpoS in pathogenic Escherichia coli. BMC Microbiol. 9: 118.
15. Escobar-Páramo, P.,, O. Clermont,, A. B. Blanc-Potard,, H. Bui,, C. Le Bouguénec, and, E. Denamur. 2004. A specific genetic background is required for acquisition and expression of virulence factors in Escherichia coli. Mol. Biol. Evol. 21: 10851094.
16. Ferenci, T. 2003. What is driving the acquisition of mutS and rpoS polymorphisms in Escherichia coli? Trends Microbiol. 11: 457461.
17. Froula, J. L.,, and M. P. Francino. 2007. Selection against spurious promoter motifs correlates with translational efficiency across bacteria. PLoS One 2: e745.
18. Gogarten., J. P.,, and J. P. Townsend. 2005. Horizontal gene transfer, genome innovation and evolution. Nat. Rev. Microbiol. 3: 679687.
19. Hale, T. L. 1991. Genetic basis of virulence in Shigella species. Microbiol. Mol. Biol. Rev. 55: 206224.
20. Hayashi, T.,, K. Makino,, M. Ohnishi,, K. Kurokawa,, K. Ishii,, K. Yokoyama,, C. G. Han,, E. Ohtsubo,, K. Nakayama,, T. Murata,, M. Tanaka,, T. Tobe,, T. Iida,, H. Takami,, T. Honda,, C. Sasakawa,, N. Ogasawara,, T. Yasunaga,, S. Kuhara,, T. Shiba,, M. Hattori, and, H. Shinagawa. 2001. Complete genome sequence of enterohemorrhagic Escherichia coli O157:H7 and genomic comparison with a laboratory strain K-12. DNA Res. 8: 1122.
21. Herbelin, C. J.,, S. C. Chirillo,, K. A. Melnick, and, T. S. Whittam. 2000. Gene conservation and loss in the mutS-rpoS genomic region of pathogenic Escherichia coli. J. Bacteriol. 182: 53815390.
22. Hershberg, R.,, H. Tang, and, D. A. Petrov. 2007. Reduced selection leads to accelerated gene loss in Shigella. Genome Biol. 8: R164.
23. Hochhut, B.,, C. Wilde,, G. Balling,, B. Middendorf,, U. Dobrindt,, E. Brzuszkiewicz,, G. Gottschalk,, E. Carniel, and, J. Hacker. 2006. Role of pathogenicity island-associated integrases in the genome plasticity of uropathogenic Escherichia coli strain 536. Mol. Microbiol. 61: 584595.
24. Johnson, T. J.,, and L. K. Nolan. 2009. Pathogenomics of the virulence plasmids of Escherichia coli. Microbiol. Mol. Biol. Rev. 73: 750774.
25. Kaper, J. B.,, J. P. Nataro, and, H. L. Mobley. 2004. Pathogenic Escherichia coli. Nat. Rev. Microbiol. 2: 123140.
26. Kotewicz, M. L.,, E. W. Brown,, J. E. LeClerc, and, T. A. Cebula. 2003. Genomic variability among enteric pathogens: the case of the mutS-rpoS intergenic region. Trends Microbiol. 11: 26.
27. Kuo, C.-H.,, and H. Ochman. 2009. Deletional bias across the three domains of life. Genome Biol. Evol. 2009: 145152.
28. Kuo, C.-H.,, and H. Ochman. 2009. The fate of new bacterial genes. FEMS Microbiol. Rev. 33: 3843.
29. Kuo, C.-H.,, N. A. Moran, and, H. Ochman. 2009. The consequences of genetic drift for bacterial genome complexity. Genome Res. 19: 14501454.
30. Lan, R.,, and P. R. Reeves. 2002. Escherichia coli in disguise: molecular origins of Shigella. Microbes Infect. 4: 11251132.
31. Lapierre, P.,, and J. P. Gogarten. 2009. Estimating the size of the bacterial pan-genome. Trends Genet. 25: 107110.
32. Lawrence, J. G.,, and H. Ochman. 1998. Molecular archaeology of the Escherichia coli genome. Proc. Natl. Acad. Sci. USA 95: 94139417.
33. Lerat, E.,, and H. Ochman. 2004. Ψ-Φ: exploring the outer limits of bacterial pseudogenes. Genome Res. 14: 22732278.
34. Lerat, E.,, V. Daubin,, H. Ochman, and, N. A. Moran. 2005. Evolutionary origins of genomic repertoires in bacteria. PLoS Biol. 3: 807814.
35. Lloyd, A. L.,, T. A. Henderson,, P. D. Vigil, and, H. L. Mobley. 2009. Genomic islands of uropathogenic Escherichia coli contribute to virulence. J. Bacteriol. 191: 34693481.
36. Manning, S. D.,, A. S. Motiwala,, A. C. Springman,, W. Qi,, D. W. Lacher,, L. M. Ouellette,, J. M. Mladonicky,, P. Somsel,, J. T. Rudrik,, S. E. Dietrich,, W. Zhang,, B. Swaminathan,, D. Alland, and, T. S. Whittam. 2008. Variation in virulence among clades of Escherichia coli O157:H7 associated with disease outbreaks. Proc. Natl. Acad. Sci. USA 105: 48684873.
37. McDaniel, T. K.,, K. G. Jarvis,, M. S. Donnenberg, and, J. B. Kaper. 1995. A genetic locus of enterocyte effacement conserved among diverse enterobacterial pathogens. Proc. Natl. Acad. Sci. USA 92: 16641668.
38. Mira, A.,, H. Ochman, and, N. A. Moran. 2001. Deletional bias and the evolution of bacterial genomes. Trends Genet. 17: 589596.
39. Moran, N. A.,, and G. R. Plague. 2004. Genomic changes following host restriction in bacteria. Curr. Opin. Genet. Dev. 14: 627633.
40. Novichkov, P. S.,, Y. I. Wolf,, I. Dubchak, and, E. V. Koonin. 2009. Trends in prokaryotic evolution revealed by comparison of closely related bacterial and archaeal genomes. J. Bacteriol. 191: 6573.
41. Nyman, K.,, K. Nakamura,, H. Ohtsubo, and, E. Ohtsubo. 1981. Distribution of the insertion sequence IS1 in gram-negative bacteria. Nature 289: 609612.
42. Ochman, H. 2005. Genomes on the shrink. Proc. Natl. Acad. Sci. USA 95: 94139417.
43. Ochman, H.,, and L. M. Davalos. 2006. The nature and dynamics of bacterial genomes. Science 311: 17301733.
44. Ochman, H.,, T. S. Whittam,, D. A. Caugant, and, R. K. Selander. 1983. Enzyme polymorphism and genetic population structure in Escherichia coli and Shigella. J. Gen. Microbiol. 129: 27152726.
45. Ogura, Y.,, T. Ooka,, A. Iguchi,, H. Toh,, M. Asadulghani,, K. Oshima,, T. Kodama,, H. Abe,, K. Nakayama,, K. Kurokawa,, T. Tobe,, M. Hattori, and, T. Hayashi. 2009. Comparative genomics reveal the mechanism of the parallel evolution of O157 and non-O157 enterohemorrhagic Escherichia coli. Proc. Natl. Acad. Sci. USA 106: 1793917944.
46. Ohtsubo, E.,, H. Ohtsubo,, W. Doroszkiewicz,, K. Nyman,, D. Allen, and, D. Davison. 1984. An evolutionary analysis of iso-IS1 elements from Escherichia coli and Shigella strains. J. Gen. Appl. Microbiol. 30: 359376.
47. Orth, D.,, K. Grif,, A. B. Khan,, A. Naim,, M. P. Dierich, and, R. Würzner. 2007. The Shiga toxin genotype rather than the amount of Shiga toxin or the cytotoxicity of Shiga toxin in vitro correlates with the appearance of the hemolytic uremic syndrome. Diagn. Microbiol. Infect. Dis. 59: 235242.
48. Parkhill, J.,, M. Sebaihia,, A. Preston,, L. D. Murphy,, N. Thomson,, D. E. Harris,, M. T. G. Holden,, C. M. Churcher,, S. D. Bentley,, K. L. Mungall,, A. M. Cerdeño-Tárraga,, L. Temple,, K. James,, B. Harris,, M. A. Quail,, M. Achtman,, R. Atkin,, S. Baker,, D. Basham,, N. Bason,, I. Cherevach,, T. Chillingworth,, M. Collins,, A. Cronin,, P. Davis,, J. Doggett,, T. Feltwell,, A. Goble,, N. Hamlin,, H. Hauser,, S. Holroyd,, K. Jagels,, S. Leather,, S. Moule,, H. Norberczak,, S. O’Neil,, D. Ormond,, C. Price,, E. Rabbinowitsch,, S. Rutter,, M. Sanders,, D. Saunders,, K. Seeger,, S. Sharp,, M. Simmonds,, J. Skelton,, R. Squares,, S. Squares,, K. Stevens,, L. Unwin,, S. Whitehead,, B. G. Barrell, and, D. J. Maskell. 2003. Comparative analysis of the genome sequences of Bordetella pertussis, Bordetella parapertussis and Bordetella bronchiseptica. Nature Genet. 35: 3240.
49. Perna, N. T.,, G. Plunkett III,, V. Burland,, B. Mau,, J. D. Glasner,, D. J. Rose,, G. F. Mayhew,, P. S. Evans,, J. Gregor,, H. A. Kirkpatrick,, G. Pósfai,, J. Hackett,, S. Klink,, A. Boutin,, Y. Shao,, L. Miller,, E. J. Grotbeck,, N. W. Davis,, A. Lim,, E. T. Dimalanta,, K. D. Potamousis,, J. Apodaca,, T. S. Anantharaman,, J. Lin,, G. Yen,, D. C. Schwartz,, R. A. Welch, and, F. R. Blattner. 2001. Genome sequence of enterohaemorrhagic Escherichia coli O157:H7. Nature 409: 529533.
50. Rasko, D. A.,, M. J. Rosovitz,, G. S. Myers,, E. F. Mongodin,, W. F. Fricke,, P. Gajer,, J. Crabtree,, M. Sebaihia,, N. R. Thomson,, R. Chaudhuri,, I. R. Henderson,, V. Sperandio, and, J. Ravel. 2008. The pangenome structure of Escherichia coli: comparative genomic analysis of E. coli commensal and pathogenic isolates. J. Bacteriol. 190: 68816893.
51. Rolland, K.,, N. Lambert-Zechovsky,, B. Picard, and, E. Denamur. 1998. Shigella and enteroinvasive Escherichia coli strains are derived from distinct ancestral strains of E. coli. Microbiology 144 (Pt. 9): 26672672.
52. Selander, R. K.,, D. A. Caugant,, H. Ochman,, J. M. Musser,, M. N. Gilmour, and, T. S. Whittam. 1986. Methods of multilocus enzyme electrophoresis for bacterial population genetics and systematics. Appl. Environ. Microbiol. 51: 873884.
53. Selander, R. K.,, and B. R. Levin. 1980. Genetic diversity and structure in Escherichia coli populations. Science 210: 545547.
54. Selander, R. K.,, and J. M. Musser. 1990. Population genetics of bacterial pathogenesis, p. 11–36. In J. R. Sokatch and, L. N. Ornston (ed.), The Bacteria: a Treatise on Structure and Function, vol. XI, Molecular Basis of Bacterial Pathogenesis. Academic Press, Inc., New York, NY.
55. Sokurenko, E. V.,, V. Chesnokova,, D. E. Dykhuizen,, I. Ofek,, X. R. Wu,, K. A. Krog-felt,, C. Struve,, M. A. Schembri, and, D. L. Hasty. 1998. Pathogenic adaptation of Escherichia coli by natural variation of FimH adhesin. Proc Natl. Acad. Sci. USA 95: 89228926.
56. Sokurenko, E. V.,, D. L. Hasty, and, D. E. Dykhuizen. 1999. Pathoadaptive mutations: gene loss and variation in bacterial pathogens. Trends Microbiol. 7: 191195.
57. Spears, K. J.,, A. J. Roe, and, D. L. Gally. 2006. A comparison of enteropathogenic and enterohaemorrhagic Escherichia coli pathogenesis. FEMS Microbiol. Lett. 255: 187202.
58. Steinberg, K. M.,, and B. R. Levin. 2007. Grazing protozoa and the evolution of the Escherichia coli O157:H7 Shiga toxin-encoding prophage. Proc. Biol. Sci. 274: 19211929.
59. Tobe, T.,, S. A. Beatson,, H. Taniguchi,, H. Abe,, C. M. Bailey,, A. Fivian,, R. Younis,, S. Matthews,, O. Marches,, G. Frankel,, T. Hayashi, and, M. J. Pallen. 2006. An extensive repertoire of type III secretion effectors in Escherichia coli O157 and the role of lambdoid phages in their dissemination. Proc. Natl. Acad. Sci. USA 103: 1494114946.
60. Toh, H.,, B. L. Weiss,, S. A. H. Perkin,, A. Yamashita,, K. Oshima,, M. Hattori, and, S. Aksoy. 2006. Massive genome erosion and functional adaptations provide insights into the symbiotic lifestyle of Sodalis glossinidius in the tsetse host. Genome Res. 16: 149156.
61. Touchon, M.,, C. Hoede,, O. Tenaillon,, V. Barbe,, S. Baeriswyl,, P. Bidet,, E. Bingen,, S. Bonacorsi,, C. Bouchier,, O. Bouvet,, A. Calteau,, H. Chiapello,, O. Clermont,, S. Cruveiller,, A. Danchin,, M. Diard,, C. Dossat,, M. El Karoui,, E. Frapy,, L. Garry,, J. M. Ghigo,, A. M. Gilles,, J. Johnson,, C. Le Bouguénec,, M. Lescat,, S. Mangenot,, V. Martinez-Jéhanne,, I. Matic,, X. Nassif,, S. Oztas,, M. A. Petit,, C. Pichon,, Z. Rouy,, C. S. Ruf,, D. Schneider,, J. Tourret,, B. Vacherie,, D. Vallenet,, C. Médigue,, E. P. C. Rocha, and, E. Denamur. 2009. Organised genome dynamics in the Escherichia coli species results in highly diverse adaptive paths. PLoS Genet. 5: e1000344.
62. van Passel, M.,, P. R. Marri, and, H. Ochman. 2008. The emergence and fate of horizontally acquired genes in Escherichia coli. PLoS Comput. Biol. 4: e1000059.
63. Wei, J.,, M. B. Goldberg,, V. Burland,, M. M. Venkatesan,, W. Deng,, G. Fournier,, G. F. Mayhew,, G. Plunkett III,, D. J. Rose,, A. Darling,, B. Mau,, N. T. Perna,, S. M. Payne,, L. J. Runyen-Janecky,, S. Zhou,, D. C. Schwartz, and, F. R. Blattner. 2003. Complete genome sequence and comparative genomics of Shigella flexneri serotype 2a strain 2457T. Infect. Immun. 71: 27752786.
64. Welch, R. A.,, V. Burland,, G. Plunkett III,, P. Redford,, P. Roesch,, D. Rasko,, E. L. Buckles,, S.-R. Liou,, A. Boutin,, J. Hackett,, D. Stroud,, G. F. Mayhew,, D. J. Rose,, S. Zhou,, D. C. Schwartz,, N. T. Perna,, H. L. T. Mobley,, M. S. Donnenberg, and, F. R. Blattner. 2002. Extensive mosaic structure revealed by the complete genome sequence of uropathogenic Escherichia coli. Proc. Natl. Acad. Sci. USA 99: 1702017024.
65. Whittam, T. S.,, S. D. Reid, and, R. K. Selander. 1998. Mutators and long-term molecular evolution of pathogenic Escherichia coli O157:H7. Emerg. Infect. Dis. 4: 615617.
66. Wick, L. M.,, W. Qi,, D. W. Lacher, and, T. S. Whittam. 2005. Evolution of genomic content in the stepwise emergence of Escherichia coli O157:H7. J. Bacteriol. 187: 17831791.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error