Chapter 9 : Gene Acquisition and Loss in the Phylogenetic Lineages of the Invasive

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

Gene Acquisition and Loss in the Phylogenetic Lineages of the Invasive , Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817114/9781555819354_Chap09-1.gif /docserver/preview/fulltext/10.1128/9781555817114/9781555819354_Chap09-2.gif


and enteroinvasive (EIEC) are a class of enteric pathogens that have evolved the ability to invade epithelial cells and cause severe intestinal illness. In a study on evolutionary analysis of Shigella at the DNA sequence level, the nucleotide sequence of 7,160 bp representing eight housekeeping loci from four regions of the genome was determined. Polymerase chain reaction (PCR) amplification of three marker loci was used to screen for SHI-4, which appeared to be widespread among the clonal groups. Since the isolates used in a study on molecular epidemiology of the island 4 (SHI-4) PAI were selected on the basis of resistance to multiple antibiotics, it is possible that the actual distribution of these loci among and EIEC may be different in a randomly sampled collection of strains. Other reports of gene acquisition stem from comparisons of available genome sequences. In contrast to gene acquisition, there is growing evidence that gene loss has been important in the adaptive radiation of and EIEC. Both gene acquisition and loss have played a major role in the adaptation of these radiations; selection has favored both the establishment of certain virulence factors in particular lineages and the independent deletion of antivirulence functions.

Citation: Bumbaugh A, Lacher D. 2011. Gene Acquisition and Loss in the Phylogenetic Lineages of the Invasive , p 135-156. In Walk S, Feng P (ed), Population Genetics of Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555817114.ch9
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of Figure 1.
Figure 1.

General genetic composition of an invasive isolate. The pINV plasmid encodes genes involved in host cell entry and it is found in all and EIEC. The chromosome contains the locus, which regulates the acquired pINV plasmid. Example PAIs (SHI-2 and SHI-3) are incorporated in or near tRNA sites. The distribution of PAIs and other virulence loci is variable among the invasive .

Citation: Bumbaugh A, Lacher D. 2011. Gene Acquisition and Loss in the Phylogenetic Lineages of the Invasive , p 135-156. In Walk S, Feng P (ed), Population Genetics of Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555817114.ch9
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2.
Figure 2.

General phylogenetic relationships between the invasive and other pathotypes. Patterns of gene acquisition are indicated as follows: * = pINV; square = SHI-1; circle = aerobactin operon; triangle = . The unfilled symbols indicate variable presence of the virulence genes within the group. EAEC, enteroaggregative ; STEC, Shiga toxin-producing .

Citation: Bumbaugh A, Lacher D. 2011. Gene Acquisition and Loss in the Phylogenetic Lineages of the Invasive , p 135-156. In Walk S, Feng P (ed), Population Genetics of Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555817114.ch9
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Adhikari, P.,, G. Allison,, B. Whittle, and, N. K. Verma. 1999. Serotype 1a O-antigen modification: molecular characterization of the genes involved and their novel organization in the Shigella flexneri chromosome. J. Bacteriol. 181: 47114718.
2. Adler, B.,, C. Sasakawa,, T. Tobe,, S. Makino,, K. Komatsu, and, M. Yoshikawa. 1989. A dual transcriptional activation system for the 230 kb plasmid genes coding for virulence-associated antigens of Shigella flexneri. Mol. Microbiol. 3: 627635.
3. Al-Hasani, K.,, B. Adler,, K. Rajakumar, and, H. Sakellaris. 2001. Distribution and structural variation of the she pathogenicity island in enteric bacterial pathogens. J. Med. Microbiol. 50: 780786.
4. Al-Hasani, K.,, K. Rajakumar,, D. Bulach,, R. Robins-Browne,, B. Adler, and, H. Sakellaris. 2001. Genetic organization of the she pathogenicity island in Shigella flexneri 2a. Microb. Pathog. 30: 18.
5. Andrade, A.,, J. A. Giron,, J. M. Amhaz,, L. R. Trabulsi, and, M. B. Martinez. 2002. Expression and characterization of flagella in nonmotile enteroinvasive Escherichia coli isolated from diarrhea cases. Infect. Immun. 70: 58825886.
6. Boisen, N.,, F. Ruiz-Perez,, F. Scheutz,, K. A. Krogfelt, and, J. P. Nataro. 2009. High prevalence of serine protease autotransporter cytotoxins among strains of enteroaggregative Escherichia coli. Am. J. Trop. Med. Hyg. 80: 294301.
7. Brilli, M.,, A. Mengoni,, M. Fondi,, M. Bazzicalupo,, P. Lio, and, R. Fani. 2008. Analysis of plasmid genes by phylogenetic profiling and visualization of homology relationships using Blast2Network. BMC Bioinformatics 9: 551.
8. Centers for Disease Control and Prevention. 2010. Preliminary FoodNet data on the incidence and infection with pathogens transmitted commonly through food—10 states, 2009. MMWR Morb. Mortal. Wkly. Rep. 59: 418422.
9. Colonna, B.,, M. Casalino,, P. A. Fradiani,, C. Zagaglia,, S. Naitza,, L. Leoni,, G. Pros-seda,, A. Coppo,, P. Ghelardini, and, M. Nicoletti. 1995. H-NS regulation of virulence gene expression in enteroinvasive Escherichia coli harboring the virulence plasmid integrated into the host chromosome. J. Bacteriol. 177: 47034712.
10. Dagan, T.,, R. Blekhman, and, D. Graur. 2006. The “domino theory” of gene death: gradual and mass gene extinction events in three lineages of obligate symbiotic bacterial pathogens. Mol. Biol. Evol. 23: 310316.
11. Dehio, C.,, M. C. Prévost, and, P. J. Sansonetti. 1995. Invasion of epithelial cells by Shigella flexneri induces tyrosine phosphorylation of cortactin by a pp60 c-src-mediated signalling pathway. EMBO J. 14: 24712482.
12. Diaz, E.,, A. Ferrandez, and, J. L. Garcia. 1998. Characterization of the hca cluster encoding the dioxygenolytic pathway for initial catabolism of 3-phenylpropionic acid in Escherichia coli K-12. J. Bacteriol. 180: 29152923.
13. Diaz, E.,, A. Ferrandez,, M. A. Prieto, and, J. L. Garcia. 2001. Biodegradation of aromatic compounds by Escherichia coli. Microbiol. Mol. Biol. Rev. 65: 523569.
14. Echeverria, P.,, O. Sethabutr,, O. Serichantalergs,, U. Lexomboon, and, K. Tamura. 1992. Shigella and enteroinvasive Escherichia coli infections in households of children with dysentery in Bangkok. J. Infect. Dis. 165: 144147.
15. Edwards, P. R.,, and W. H. Ewing. 1986. Edwards and Ewing’s Identification of Enterobacteriaceae, 4th ed. Elsevier, New York, NY.
16. Escobar-Paramo, P.,, O. Clermont,, A. B. Blanc-Potart,, H. Bui,, C. Le Bouguenec, and, E. Denamur. 2004. A specific genetic background is required for acquisition and expression of virulence factors in Escherichia coli. Mol. Biol. Evol. 21: 10851094.
17. Escobar-Paramo, P.,, C. Giudicelli,, C. Parsot, and, E. Denamur. 2003. The evolutionary history of Shigella and enteroinvasive Escherichia coli revised. J. Mol. Evol. 57: 140148.
18. Ewing, W. H.,, and J. L. Gravatti. 1947. Shigella types encountered in the Mediterranean area. J. Bacteriol. 53: 191195.
19. Falconi, M.,, B. Colonna,, G. Prosseda,, G. Micheli, and, C. O. Gualerzi. 1998. Thermoregulation of Shigella and Escherichia coli EIEC pathogenicity. A temperature-dependent structural transition of DNA modulates accessibility of virF promoter to transcriptional repressor H-NS. EMBO J. 17: 70337043.
20. Fasano, A.,, F. R. Noriega,, D. R. Maneval, Jr.,, S. Chanasongcram,, R. Russell,, S. Guandalini, and, M. M. Levine. 1995. Shigella enterotoxin 1: an enterotoxin of Shigella flexneri 2a active in rabbit small intestine in vivo and in vitro. J. Clin. Invest. 95: 28532861.
21. Faundez, G.,, G. Figueroa,, M. Troncoso, and, F. C. Cabello. 1988. Characterization of enteroinvasive Escherichia coli strains isolated from children with diarrhea in Chile. J. Clin. Microbiol. 26: 928932.
22. Formal, S. B.,, E. H. LaBrec,, T. H. Kent, and, S. Falkow. 1965. Abortive intestinal infection with an Escherichia coli-Shigella flexneri hybrid strain. J. Bacteriol. 89: 13741382.
23. Frischknecht, F.,, and M. Way. 2001. Surfing pathogens and the lessons learned for actin polymerization. Trends Cell Biol. 11: 3038.
24. Fukiya, S.,, H. Mizoguchi,, T. Tobe, and, H. Mori. 2004. Extensive genomic diversity in pathogenic Escherichia coli and Shigella strains revealed by comparative genomic hybridization microarray. J. Bacteriol. 186: 39113921.
25. Galan, J. E. 1996. Molecular genetic bases of Salmonella entry into host cells. Mol. Microbiol. 20: 263271.
26. Gordillo, M. E.,, G. R. Reeve,, J. Pappas,, J. J. Mathewson,, H. L. DuPont, and, B. E. Murray. 1992. Molecular characterization of strains of enteroinvasive Escherichia coli O143, including isolates from a large outbreak in Houston, Texas. J. Clin. Microbiol. 30: 889893.
27. Gorge, O.,, S. Lopez,, V. Hilaire,, O. Lisanti,, V. Ramisse, and, G. Vergnaud. 2008. Selection and validation of a multilocus variable-number tandem-repeat analysis panel for typing Shigella spp. J. Clin. Microbiol. 46: 10261035.
28. Griffiths, E.,, P. Stevenson,, T. L. Hale, and, S. B. Formal. 1985. Synthesis of aerobactin and a 76,000-dalton iron-regulated outer membrane protein by Escherichia coli K-12- Shigella flexneri hybrids and by enteroinvasive strains of Escherichia coli. Infect. Immun. 49: 6771.
29. Groisman, E. A.,, and H. Ochman. 1993. Cognate gene clusters govern invasion of host epithelial cells by Salmonella typhimurium and Shigella flexneri. EMBO J. 12: 37793787.
30. Hacker, J.,, and J. B. Kaper. 1999. The concept of pathogenicity islands, p. 1–11. In J. B. Kaper and, J. Hacker (ed.), Pathogenicity Islands and Other Mobile Virulence Elements. ASM Press, Washington, DC.
31. Hale, T. L. 1991. Genetic basis of virulence in Shigella species. Microbiol. Rev. 55: 206224.
32. Harris, J. R.,, J. Mariano,, J. G. Wells,, B. J. Payne,, H. D. Donnell, and, M. L. Cohen. 1985. Person-to-person transmission in an outbreak of enteroinvasive Escherichia coli. Am. J. Epidemiol. 122: 245252.
33. Hayashi, T.,, K. Makino,, M. Ohnishi,, K. Kurokawa,, K. Ishii,, K. Yokoyama,, C. G. Han,, E. Ohtsubo,, K. Nakayama,, T. Murata,, M. Tanaka,, T. Tobe,, T. Iida,, H. Takami,, T. Honda,, C. Sasakawa,, N. Ogasawara,, T. Yasunaga,, S. Kuhara,, T. Shiba,, M. Hattori, and, H. Shinagawa. 2001. Complete genome sequence of enterohemorrhagic Escherichia coli O157:H7 and genomic comparison with a laboratory strain K-12. DNA Res. 8: 1122.
34. Hershberg, R.,, H. Tang, and, D. A. Petrov. 2007. Reduced selection leads to accelerated gene loss in Shigella. Genome Biol. 8: R164.
35. Hyma, K. E.,, D. W. Lacher,, A. M. Nelson,, A. C. Bumbaugh,, J. M. Janda,, N. A. Strockbine,, V. B. Young, and, T. S. Whittam. 2005. Evolutionary genetics of a new pathogenic Escherichia species: Escherichia albertii and related Shigella boydii strains. J. Bacteriol. 187: 619628.
36. Ingersoll, M.,, E. A. Groisman, and, A. Zychlinsky. 2002. Pathogenicity islands of Shigella. Curr. Top. Microbiol. Immunol. 264: 4965.
37. Jin, Q.,, Z. Yuan,, J. Xu,, Y. Wang,, Y. Shen,, W. Lu,, J. Wang,, H. Liu,, J. Yang,, F. Yang,, X. Zhang,, J. Zhang,, G. Yang,, H. Wu,, D. Qu,, J. Dong,, L. Sun,, Y. Xue,, A. Zhao,, Y. Gao,, J. Zhu,, B. Kan,, K. Ding,, S. Chen,, H. Cheng,, Z. Yao,, B. He,, R. Chen,, D. Ma,, B. Qiang,, Y. Wen,, Y. Hou, and, J. Yu. 2002. Genome sequence of Shigella flexneri 2a: insights into pathogenicity through comparison with genomes of Escherichia coli K12 and O157. Nucleic Acids Res. 30: 44324441.
38. Kotloff, K. L.,, J. P. Winickoff,, B. Ivanoff,, J. D. Clemens,, D. L. Swerdlow,, P. J. Sansonetti,, G. K. Adak, and, M. M. Levine. 1999. Global burden of Shigella infections: implications for vaccine development and implementation of control strategies. Bull. W. H. O. 77: 651666.
39. Lan, R.,, and P. R. Reeves. 2000. Intraspecies variation in bacterial genomes: the need for a species genome concept. Trends Microbiol. 8: 396401.
40. Lan, R.,, M. C. Alles,, K. Donohoe,, M. B. Martinez, and, P. R. Reeves. 2004. Molecular evolutionary relationships of enteroinvasive Escherichia coli and Shigella spp. Infect. Immun. 72: 50805088.
41. Lawrence, J. G. 1999. Gene transfer, speciation, and the evolution of bacterial genomes. Curr. Opin. Microbiol. 2: 519523.
42. Lawrence, J. G.,, and H. Ochman. 1998. Molecular archaeology of the Escherichia coli genome. Proc. Natl. Acad. Sci. USA 95: 94139417.
43. Levine, M. M.,, C. Ferreccio,, V. Prado,, M. Cayazzo,, P. Abrego,, J. Martinez,, L. Maggi,, M. M. Baldini,, W. Martin,, D. Maneval,, B. Kay,, L. Guers,, H. Lior,, S. S. Wasserman, and, J. P. Nataro. 1993. Epidemiologic studies of Escherichia coli diarrheal infections in a low socioeconomic level peri-urban community in Santiago, Chile. Am. J. Epidemiol. 138: 849869.
44. Levine, O. S.,, and M. M. Levine. 1991. Houseflies ( Musca domestica) as mechanical vectors of shigellosis. Rev. Infect. Dis. 13: 688696.
45. Li, B.,, E. W. Brown,, C. D’Agostino,, J. E. LeClerc, and, T. A. Cebula. 2005. Structure and distribution of the phosphoprotein phosphatase genes, prpA and prpB, among Shigella subgroups. Microbiology 151: 26712683.
46. Luck, S. N.,, S. A. Turner,, K. Rajakumar,, H. Sakellaris, and, B. Adler. 2001. Ferric dicitrate transport system (Fec) of Shigella flexneri 2a YSH6000 is encoded on a novel pathogenicity island carrying multiple antibiotic resistance genes. Infect. Immun. 69: 60126021.
47. Maurelli, A. T.,, R. E. Fernandez,, C. A. Bloch,, C. K. Rode, and, A. Fasano. 1998. “Black holes” and bacterial pathogenicity: a large genomic deletion that enhances the virulence of Shigella spp. and enteroinvasive Escherichia coli. Proc. Natl. Acad. Sci. USA 95: 39433948.
48. Maurelli, A. T.,, and P. J. Sansonetti. 1988. Identification of a chromosomal gene controlling temperature-regulated expression of Shigella virulence. Proc. Natl. Acad. Sci. USA 85: 28202824.
49. Mills, M.,, and S. M. Payne. 1995. Genetics and regulation of heme iron transport in Shigella dysenteriae and detection of an analogous system in Escherichia coli O157:H7. J. Bacteriol. 177: 30043009.
50. Moss, J. E.,, T. J. Cardozo,, A. Zychlinsky, and, E. A. Groisman. 1999. The selC- associated SHI-2 pathogenicity island of Shigella flexneri. Mol. Microbiol. 33: 7483.
51. Nie, H.,, F. Yang,, X. Zhang,, J. Yang,, L. Chen,, J. Wang,, Z. Xiong,, J. Peng,, L. Sun,, J. Dong,, Y. Xue,, X. Xu,, S. Chen,, Z. Yao,, Y. Shen, and, Q. Jin. 2006. Complete genome sequences of Shigella flexneri 5b and comparison with Shigella flexneri 2a. BMC Genomics 7: 173.
52. Noriega, F. R.,, F. M. Liao,, S. B. Formal,, A. Fasano, and, M. M. Levine. 1995. Prevalence of Shigella enterotoxin 1 among Shigella clinical isolates of diverse sero-types. J. Infect. Dis. 172: 14081410.
53. Ochman, H.,, and E. A. Groisman. 1996. Distribution of pathogenicity islands in Salmonella spp. Infect. Immun. 64: 54105412.
54. Ochman, H.,, and E. A. Groisman. 1994. The origin and evolution of species differences in Escherichia coli and Salmonella typhimurium. EXS 69: 479493.
55. Ochman, H.,, T. S. Whittam,, D. A. Caugant, and, R. K. Selander. 1983. Enzyme polymorphism and genetic population structure in Escherichia coli and Shigella. J. Gen. Microbiol. 129: 27152726.
56. Parsot, C.,, and P. J. Sansonetti. 1999. The virulence plasmid of shigellae: an archipelago of pathogenicity islands?, p. 151–165. In J. B. Kaper and, J. Hacker (ed.), Pathogenicity Islands and Other Mobile Virulence Elements. ASM Press, Washington, DC.
57. Perna, N. T.,, G. Plunkett III,, V. Burland,, B. Mau,, J. D. Glasner,, D. J. Rose,, G. F. Mayhew,, P. S. Evans,, J. Gregor,, H. A. Kirkpatrick,, G. Posfai,, J. Hackett,, S. Klink,, A. Boutin,, Y. Shao,, L. Miller,, E. J. Grotbeck,, N. W. Davis,, A. Lim,, E. T. Dimalanta,, K. D. Potamousis,, J. Apodaca,, T. S. Anantharaman,, J. Lin,, G. Yen,, D. C. Schwartz,, R. A. Welch, and, F. R. Blattner. 2001. Genome sequence of enterohaemorrhagic Escherichia coli O157:H7. Nature 409: 529533.
58. Prunier, A.-L.,, R. Schuch,, R. E. Fernandez, and, A. T. Maurelli. 2007. Genetic structure of the nadA and nadB antivirulence loci in Shigella spp. J. Bacteriol. 189: 64826486.
59. Prunier, A.-L.,, R. Schuch,, R. E. Fernandez,, K. L. Mumy,, H. Koehler,, B. A. McCormick, and, A. T. Maurelli. 2007. nadA and nadB of Shigella flexneri 5a are anti-virulence loci responsible for the synthesis of quinolate, a small molecule inhibitor of Shigella pathogenicity. Microbiology 153: 23632372.
60. Pupo, G. M.,, D. K. Karaolis,, R. Lan, and, P. R. Reeves. 1997. Evolutionary relationships among pathogenic and nonpathogenic Escherichia coli strains inferred from multilocus enzyme electrophoresis and mdh sequence studies. Infect. Immun. 65: 26852692.
61. Pupo, G. M.,, R. Lan, and, P. R. Reeves. 2000. Multiple independent origins of Shigella clones of Escherichia coli and convergent evolution of many of their characteristics. Proc. Natl. Acad. Sci. USA 97: 1056710572.
62. Purdy, G. E.,, and S. M. Payne. 2001. The SHI-3 iron transport island of Shigella boydii 0-1392 carries the genes for aerobactin synthesis and transport. J. Bacteriol. 183: 41764182.
63. Rajakumar, K.,, C. Sasakawa, and, B. Adler. 1997. Use of a novel approach, termed island probing, identifies the Shigella flexneri she pathogenicity island which encodes a homolog of the immunoglobulin A protease-like family of proteins. Infect. Immun. 65: 46064614.
64. Ram, S.,, S. Khurana,, S. B. Khurana,, S. Sharma, and, D. V. Vadehra. 1990. Seasonal fluctuations in the occurrence of enteroinvasive Escherichia coli diarrhoea. Indian J. Med. Res. 91: 258262.
65. Rode, C. K.,, L. J. Melkerson-Watson,, A. T. Johnson, and, C. A. Bloch. 1999. Type-specific contributions to chromosome size differences in Escherichia coli. Infect. Immun. 67: 230236.
66. Runyen-Janecky, L. J.,, S. A. Reeves,, E. G. Gonzales, and, S. M. Payne. 2003. Contribution of the Shigella flexneri Sit, Iuc, and Feo iron acquisition systems to iron acquisition in vitro and in cultured cells. Infect. Immun. 71: 19191928.
67. Sansonetti, P. J.,, H. d’Hauteville,, C. Ecobichon, and, C. Pourcel. 1983. Molecular comparison of virulence plasmids in Shigella and enteroinvasive Escherichia coli. Ann. Microbiol. (Paris) 134A: 295318.
68. Sansonetti, P. J.,, and C. Egile. 1998. Molecular bases of epithelial cell invasion by Shigella flexneri. Antonie van Leeuwenhoek 74: 191197.
69. Sekizaki, T.,, S. Harayama,, G. M. Brazil, and, K. N. Timmis. 1987. Localization of stx, a determinant essential for high-level production of Shiga toxin by Shigella dysenteriae serotype 1, near pyrF and generation of stx transposon mutants. Infect. Immun. 55: 22082214.
70. Silva, R. M.,, M. R. Toledo, and, L. R. Trabulsi. 1980. Biochemical and cultural characteristics of invasive Escherichia coli. J. Clin. Microbiol. 11: 441444.
71. Snyder, J. D.,, J. G. Wells,, J. Yashuk,, N. Puhr, and, P. A. Blake. 1984. Outbreak of invasive Escherichia coli gastroenteritis on a cruise ship. Am. J. Trop. Med. Hyg. 33: 281284.
72. Sokurenko, E. V.,, D. L. Hasty, and, D. E. Dykhuizen. 1999. Pathoadaptive mutations: gene loss and variation in bacterial pathogens. Trends Microbiol. 7: 191195.
73. Talukder, K. A.,, M. A. Islam,, D. K. Dutta,, F. Hassan,, A. Safa,, G. B. Nair, and, D. A. Sack. 2002. Phenotypic and genotypic characterization of serologically atypical strains of Shigella flexneri type 4 isolated in Dhaka, Bangladesh. J. Clin. Microbiol. 40: 24902497.
74. Talukder, K. A.,, Z. Islam,, M. A. Islam,, D. K. Dutta,, A. Safa,, M. Ansaruzzaman,, A. S. Faruque,, S. N. Shahed,, G. B. Nair, and, D. A. Sack. 2003. Phenotypic and genotypic characterization of provisional serotype Shigella flexneri 1c and clonal relationships with 1a and 1b strains isolated in Bangladesh. J. Clin. Microbiol. 41: 110117.
75. Taylor, D. N.,, P. Echeverria,, O. Sethabutr,, C. Pitarangsi,, U. Leksomboon,, N. R. Blacklow,, B. Rowe,, R. Gross, and, J. Cross. 1988. Clinical and microbiologic features of Shigella and enteroinvasive Escherichia coli infections detected by DNA hybridization. J. Clin. Microbiol. 26: 13621366.
76. Tetteh, G. L.,, and L. R. Beuchat. 2001. Sensitivity of acid-adapted and acid-shocked Shigella flexneri to reduced pH achieved with acetic, lactic, and propionic acids. J. Food Prot. 64: 975981.
77. Todd, E. C.,, J. D. Greig,, C. A. Bartleson, and, B. S. Michaels. 2008. Outbreaks where food workers have been implicated in the spread of foodborne disease, part 4. Infective doses and pathogen carriage. J. Food Prot. 71: 23392373.
78. Toledo, M. R. F.,, and L. R. Trabulsi. 1990. Frequency of enteroinvasive Escherichia coli in children with diarrhea and healthy controls, in Sao Paulo, SP, Brazil. Rev. Microbiol. Sao Paulo 21: 14.
79. Tominaga, A.,, R. Lan, and, P. R. Reeves. 2005. Evolutionary changes in the flhDC flagellar master operon in Shigella strains. J. Bacteriol. 187: 42954302.
80. Touchon, M.,, C. Hoede,, O. Tenaillon,, V. Barbe,, S. Baeriswyl,, P. Bidet,, E. Bingen,, S. Bonacorsi,, C. Bouchier,, O. Bouvet,, A. Calteau,, H. Chiapello,, O. Clermont,, S. Cruveiller,, A. Danchin,, M. Diard,, C. Dossat,, M. El Karoui,, E. Frapy,, L. Garry,, J. M. Ghigo,, A. M. Gilles,, J. Johnson,, C. Le Bouguenec,, M. Lescat,, S. Mangenot,, V. Martinez-Jehanne,, I. Matic,, X. Nassif,, S. Oztas,, M. A. Petit,, C. Pichon,, Z. Rouy,, C. Saint Ruf,, D. Schneider,, J. Tourret,, B. Vacherie,, D. Vallenet,, C. Medigue,, E. P. C. Rocha, and, E. Danamur. 2009. Organized genome dynamics in the Escherichia coli species results in highly diverse adaptive paths. PLoS Genet. 5: e1000344.
81. Tulloch, E. F., Jr.,, K. J. Ryan,, S. B. Formal, and, F. A. Franklin. 1973. Invasive enteropathic Escherichia coli dysentery. An outbreak in 28 adults. Ann. Intern. Med. 79: 1317.
82. Turner, S. A.,, S. N. Luck,, H. Sakellaris,, K. Rajakumar, and, B. Adler. 2003. Molecular epidemiology of the SRL pathogenicity island. Antimicrob. Agents Chemother. 47: 727734.
83. Vokes, S. A.,, S. A. Reeves,, A. G. Torres, and, S. M. Payne. 1999. The aerobactin iron transport system genes in Shigella flexneri are present within a pathogenicity island. Mol. Microbiol. 33: 6373.
84. Wanger, A. R.,, B. E. Murray,, P. Echeverria,, J. J. Mathewson, and, H. L. DuPont. 1988. Enteroinvasive Escherichia coli in travelers with diarrhea. J. Infect. Dis. 158: 640642.
85. Wei, J.,, M. B. Goldberg,, V. Burland,, M. M. Venkatesan,, W. Deng,, G. Fournier,, G. F. Mayhew,, G. Plunkett III,, D. J. Rose,, A. Darling,, B. Mau,, N. T. Perna,, S. M. Payne,, L. J. Runyen-Janecky,, S. Zhou,, D. C. Schwartz, and, F. R. Blattner. 2003. Complete genome sequence and comparative genomics of Shigella flexneri serotype 2a strain 2457T. Infect. Immun. 7: 27752786.
86. Wyckoff, E. E.,, D. Duncan,, A. G. Torres,, M. Mills,, K. Maase, and, S. M. Payne. 1998. Structure of the Shigella dysenteriae haem transport locus and its phylogenetic distribution in enteric bacteria. Mol. Microbiol. 28: 11391152.
87. Yang, F.,, J. Yang,, X. Zhang,, L. Chen,, Y. Jiang,, Y. Yan,, X. Tang,, J. Wang,, Z. Xiong,, J. Dong,, Y. Xue,, Y. Zhu,, X. Xu,, L. Sun,, S. Chen,, H. Nie,, J. Peng,, J. Xu,, Y. Want,, Z. Yuan,, Y. Wen,, Z. Yao,, Y. Shen,, B. Qiang,, Y. Hou,, J. Yu, and, Q. Jin. 2005. Genome dynamics and diversity of Shigella species, the etiologic agents of bacillary dysentery. Nucleic Acids Res. 33: 64456458.
88. Yang, J.,, H. Nie,, L. Chen,, X. Zhang,, F. Yang,, X. Xu,, Y. Zhu,, J. Yu, and, Q. Jin. 2007. Revisiting the molecular evolutionary history of Shigella spp. J. Mol. Evol. 64: 7179.
89. Ye, C.,, R. Lan,, S. Xia,, J. Zhang,, Q. Sun,, S. Zhang,, H. Jing,, L. Wang,, Z. Li,, Z. Zhou,, A. Zhao,, Z. Cui,, J. Cao,, D. Jin,, L. Huang,, Y. Wang,, X. Lou,, X. Bai,, Y. Wang,, Q. Xu, and, J. Xu. 2010. Emergence of a new multidrug-resistant serotype X variant in an epidemic clone of Shigella flexneri. J. Clin. Microbiol. 48: 419426.


Generic image for table
Table 1.

Classification of and EIEC serotypes into phylogenetic groups

Citation: Bumbaugh A, Lacher D. 2011. Gene Acquisition and Loss in the Phylogenetic Lineages of the Invasive , p 135-156. In Walk S, Feng P (ed), Population Genetics of Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555817114.ch9
Generic image for table
Table 2.

PAIs identified in strains

Citation: Bumbaugh A, Lacher D. 2011. Gene Acquisition and Loss in the Phylogenetic Lineages of the Invasive , p 135-156. In Walk S, Feng P (ed), Population Genetics of Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555817114.ch9
Generic image for table
Table 3.

Invasive genome sequences publicly available through the NCBI Genomes database

Citation: Bumbaugh A, Lacher D. 2011. Gene Acquisition and Loss in the Phylogenetic Lineages of the Invasive , p 135-156. In Walk S, Feng P (ed), Population Genetics of Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555817114.ch9

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error