1887

Chapter 16 : Nitrification in Wastewater Treatment

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

Nitrification in Wastewater Treatment, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817145/9781555814816_Chap16-1.gif /docserver/preview/fulltext/10.1128/9781555817145/9781555814816_Chap16-2.gif

Abstract:

Microbial nitrification is a necessary step in removing nitrogen from wastewaters via biological denitrification and is becoming more important due to strict regulations on nitrogen discharge. However, microbial nitrification is recognized as being difficult to maintain in practical wastewater treatment plants (WWTPs) owing to the lower kinetics, yields, and sensitivity of nitrifying bacteria to physical, chemical, and environmental disturbances as mentioned, even though nitrification has been studied more than any other specific biochemical reactions occurring in wastewater treatment to date. Influent NO , chromium, and nickel influenced the AOB community structure, while correlations between other metals analyzed in this study and the AOB community structure were insignificant. As an oxidation process, nitrification significantly consumes oxygen, and dissolved oxygen (DO) concentration is a key factor for maintaining nitrification stably as well as pH. In an activated sludge process, 3% salt inhibited both the maximum utilization rate and the saturation constant, suggesting uncompetitive inhibition. Nitrification in wastewater treatment systems has been studied extensively. Despite their importance, knowledge about the identity and ecology of nitrifying bacteria carrying out nitrification in WWTPs has been scarce. Thus, biological nitrogen removal processes have been regarded as “a black box” in practice because the lack of fundamental microbiological understanding hampers knowledge-driven process design and operation.

Citation: Okabe S, Aoi Y, Satoh H, Suwa Y. 2011. Nitrification in Wastewater Treatment, p 405-433. In Ward B, Arp D, Klotz M (ed), Nitrification. ASM Press, Washington, DC. doi: 10.1128/9781555817145.ch16
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Typical process flow sheets for biological nitrogen removal. (A) A portion of the wastewater can be bypassed to the anoxic tank (denitrifying tank). (B) Bardenpho process.

Citation: Okabe S, Aoi Y, Satoh H, Suwa Y. 2011. Nitrification in Wastewater Treatment, p 405-433. In Ward B, Arp D, Klotz M (ed), Nitrification. ASM Press, Washington, DC. doi: 10.1128/9781555817145.ch16
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

(A) Photomicrograph of an activated sludge floc. (B and C) Confocal laser-scanning microscope images of an activated sludge floc showing the in situ spatial organization of bacteria and AOB. FISH was performed using a fluorescein isothiocyanate-labeled EUB338-mixed probe and a tetramethylrhodamine 5-isothiocyanate-labeled Nso190 probe. The probe Nso190-stained AOB appear to be yellow because of binding of both probes, and bacterial cells are green.

Citation: Okabe S, Aoi Y, Satoh H, Suwa Y. 2011. Nitrification in Wastewater Treatment, p 405-433. In Ward B, Arp D, Klotz M (ed), Nitrification. ASM Press, Washington, DC. doi: 10.1128/9781555817145.ch16
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3
FIGURE 3

Typical concentration profiles of O, NH , and NO in an activated sludge floc at 45 µM O. The shaded area indicates the floc. The center of the floc is at a depth of 0 µm. (From ], with permission from .)

Citation: Okabe S, Aoi Y, Satoh H, Suwa Y. 2011. Nitrification in Wastewater Treatment, p 405-433. In Ward B, Arp D, Klotz M (ed), Nitrification. ASM Press, Washington, DC. doi: 10.1128/9781555817145.ch16
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 4
FIGURE 4

The consumption rates of NH and inorganic nitrogen (Ni) defined as the sum of NH , NO , and NO as determined by the batch experiments at various O concentrations in the bulk liquid. Rates shown are mean values, and error bars indicate standard deviations. (From ], with permission from .)

Citation: Okabe S, Aoi Y, Satoh H, Suwa Y. 2011. Nitrification in Wastewater Treatment, p 405-433. In Ward B, Arp D, Klotz M (ed), Nitrification. ASM Press, Washington, DC. doi: 10.1128/9781555817145.ch16
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 5
FIGURE 5

Steady-state concentration profiles of O and NH in the autotrophic nitrifying biofilm incubated in the media at C/N = 0 (A), C/N = 1 (B), and C/N = 3.4 (C), respectively. The modeled profiles are indicated by solid lines. The spatial distributions of NH oxidation rates are indicated by stippled area. Surface is at a depth of 0 µm. (From Okabe et al. [2004b], with permission from .)

Citation: Okabe S, Aoi Y, Satoh H, Suwa Y. 2011. Nitrification in Wastewater Treatment, p 405-433. In Ward B, Arp D, Klotz M (ed), Nitrification. ASM Press, Washington, DC. doi: 10.1128/9781555817145.ch16
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 6
FIGURE 6

Spatial distributions of surface fractions of AOB in biofilms cultured in the media at C/N = 0, 1, and 2, respectively. The biofilm surfaces are indicated by the dotted lines.

Citation: Okabe S, Aoi Y, Satoh H, Suwa Y. 2011. Nitrification in Wastewater Treatment, p 405-433. In Ward B, Arp D, Klotz M (ed), Nitrification. ASM Press, Washington, DC. doi: 10.1128/9781555817145.ch16
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 7
FIGURE 7

(A) Spatial distribution of average microbial cluster sizes of AOB hybridized with probe Nso190 in different biofilms cultured at C/N = 0 and 1. (B) Cross-section of biofilm cultured at C/N = 0.

Citation: Okabe S, Aoi Y, Satoh H, Suwa Y. 2011. Nitrification in Wastewater Treatment, p 405-433. In Ward B, Arp D, Klotz M (ed), Nitrification. ASM Press, Washington, DC. doi: 10.1128/9781555817145.ch16
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 8
FIGURE 8

(A) Steady-state concentration profiles of O, NH , NO , and NO in a biofilm cultured at C/N = 2. (B) Spatial distribution of the estimated volumetric consumption and production rates of NH , NO , and NO . The biofilm surface is at a depth of 0 µm.

Citation: Okabe S, Aoi Y, Satoh H, Suwa Y. 2011. Nitrification in Wastewater Treatment, p 405-433. In Ward B, Arp D, Klotz M (ed), Nitrification. ASM Press, Washington, DC. doi: 10.1128/9781555817145.ch16
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 9
FIGURE 9

Proposed ecophysiological interactions between nitrifiers and heterotrophic bacteria in a carbon-limited autotrophic nitrifying biofilm fed with only NH as energy source.

Citation: Okabe S, Aoi Y, Satoh H, Suwa Y. 2011. Nitrification in Wastewater Treatment, p 405-433. In Ward B, Arp D, Klotz M (ed), Nitrification. ASM Press, Washington, DC. doi: 10.1128/9781555817145.ch16
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 10
FIGURE 10

(A) Two-dimensional (2-d) IbM model description of actions occurring at the individual scale. (B) Spatial scales in the 2-d model of nitrifying granules. (a) Representative biomass granule comprised in a square computational domain; (b) the square grid elements discretizing the space, each containing several biomass particles; (c) individual biomass particles, of different possible biomass types. All biomass particles within a single grid element experience the same substrate concentrations. The biomass concentrations within a grid element are calculated from the mass of all individual biomass particles within the element volume ( ).

Citation: Okabe S, Aoi Y, Satoh H, Suwa Y. 2011. Nitrification in Wastewater Treatment, p 405-433. In Ward B, Arp D, Klotz M (ed), Nitrification. ASM Press, Washington, DC. doi: 10.1128/9781555817145.ch16
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 11
FIGURE 11

Detailed insight into the spatial localization of HetU (a), HetB (b), and HetO (c) provided by a two-dimensional IbM simulation, at day 100. White dotted line shows the granule surface ( ).

Citation: Okabe S, Aoi Y, Satoh H, Suwa Y. 2011. Nitrification in Wastewater Treatment, p 405-433. In Ward B, Arp D, Klotz M (ed), Nitrification. ASM Press, Washington, DC. doi: 10.1128/9781555817145.ch16
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 12
FIGURE 12

Spatial distributions of bacteria along the radius of a nitrifying granule as detected by FISH. The abundance ratio of each bacterium was quantified in 50-µm-thick shells starting at the granule surface (left). Abundance data presented are averages of six replicate measurements. The total bacterial volumetric occupancy in the granule is derived from fluorescence of EUB338 mix-tagged cells (open circles along the -axis). The α- constitute the bacterial group that hybridized with probe ALF1b, excluding the genus that hybridized with probe NIT3. (The figure was reconstructed from the data of ].)

Citation: Okabe S, Aoi Y, Satoh H, Suwa Y. 2011. Nitrification in Wastewater Treatment, p 405-433. In Ward B, Arp D, Klotz M (ed), Nitrification. ASM Press, Washington, DC. doi: 10.1128/9781555817145.ch16
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 13
FIGURE 13

Comparison of the steady-state solute concentrations in the biofilm calculated in two-dimensional (2-d) IbM model simulations, with the experimental microelectrode data (open circles, triangles and squares for O, NH , NO , NO ). The model results are at day 100. To obtain the comparable profiles along the radius, the 2-d concentration distributions were averaged in concentric shells with different radii. (The figure was reconstructed from the data of ].)

Citation: Okabe S, Aoi Y, Satoh H, Suwa Y. 2011. Nitrification in Wastewater Treatment, p 405-433. In Ward B, Arp D, Klotz M (ed), Nitrification. ASM Press, Washington, DC. doi: 10.1128/9781555817145.ch16
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555817145.ch16
1. Abeling, U.,, and C. F. Seyfried. 1992. Anaerobic-aerobic treatment of high-strength ammonium waste-water—nitrogen removal via nitrite. Water Sci. Technol. 26: 10071015.
2. Adamczyk, J.,, M. Hesselsoe,, N. Iversen,, M. Horn,, A. Lehner,, P. Nielsen,, M. Schloter,, P. Roslev, and, M. Wagner. 2003. The isotope array, a new tool that employs substrate-mediated labeling of rRNA for determination of microbial community structure and function. Appl. Environ. Microbiol. 69: 68756887.
3. Ahn, J.,, R. Yu, and, K. Chandran. 2008. Distinctive microbial ecology and biokinetics of autotrophic ammonia and nitrite oxidation in a partial nitrification bioreactor. Biotechnol. Bioeng. 100: 10781087.
4. Alpkvist, E.,, and I. Klapper. 2007. A multidimensional multispecies continuum model for heterogeneous biofilm development. Bull. Math. Biol. 69: 765789.
5. Alpkvist, E.,, C. Picioreanu,, M. van Loosdrecht, and, A. Heyden. 2006. Three-dimensional biofilm model with individual cells and continuum EPS matrix. Biotechnol. Bioeng. 94: 961979.
6. Amor, L.,, M. Eiroa,, C. Kennes, and, M. C. Veiga. 2005. Phenol biodegradation and its effect on the nitrification process. Water Res. 39: 29152920.
7. Anthonisen, A. C.,, B. C. Loehr,, T. B. S. Prakasam, and, E. G. Srinath. 1976. Inhibition of nitrification by ammonia and nitrous acid. J. Water Pollut. Control Fed. 48: 835852.
8. Bai, Y. H.,, Q. H. Sun,, C. Zhao,, D. H. Wen, and, X. Y. Tang. 2009. Aerobic degradation of pyridine by a new bacterial strain, Shinella zoogloeoides BC026. J. Ind. Microbiol. Biotechnol. 36: 13911400.
9. Barker, D. J.,, and D. C. Stuckey. 1999. A review of soluble microbial products (SMP) in wastewater treatment systems. Water Res. 33: 30633082.
10. Barnard, J. L. 1975. Biological nutrient removal without the addition of chemicals. Water Res. 9: 485490.
11. Bell, A.,, Y. Aoi,, A. Terada,, S. Tsuneda, and, A. Hirata. 2005. Comparison of spatial organization in top-down- and membrane-aerated biofilms: a numerical study. Water Sci. Technol. 52: 173180.
12. Bernet, N.,, P. Dangcong,, J. Delgenes, and, R. Moletta. 2001. Nitrification at low oxygen concentration in biofilm reactor. J. Environ. Eng. 127: 266271.
13. Blackall, L. L.,, and P. Burrell. 1999. The microbiology of nitrogen removal in activated sludge systems, p. 203–226. In R. J. Seviour, and L. L. Blackall (ed.), The Microbiology of Activated Sludge. Kluwer Academic Publishers, Dordrecht, The Netherlands.
14. Blackburne, R.,, V. Vadivelu,, Z. Yuan, and, J. Keller. 2007. Kinetic characterisation of an enriched Nitrospira culture with comparison to Nitrobacter. Water Res. 41: 30333042.
15. Bossier, P.,, and W. Verstraete. 1996. Triggers for microbial aggregation in activated sludge? Appl. Microbiol. Biotechnol. 45: 16.
16. Briones, A.,, and L. Raskin. 2003. Diversity and dynamics of microbial communities in engineered environments and their implications for process stability. Curr. Opin. Biotechnol. 14: 270276.
17. Chen, G.,, M. Wong,, S. Okabe, and, Y. Watanabe. 2003. Dynamic response of nitrifying activated sludge batch culture to increased chloride concentration. Water Res. 37: 31253135.
18. Dahl, C.,, C. Sund,, G. H. Kristensen, and, L. Vredenbregt. 1997. Combined biological nitrification and denitrification of high-salinity waste-water. Water Sci. Technol. 36: 345352.
19. Daims, H.,, S. Lucker, and, M. Wagner. 2006. daime, a novel image analysis program for microbial ecology and biofilm research. Environ. Microbiol. 8: 200213.
20. Daims, H.,, J. L. Nielsen,, P. H. Nielsen,, K.-H. Schleifer, and, M. Wagner. 2001a. In situ characterization of Nitrospira-like nitrite-oxidizing bacteria active in wastewater treatment plants. Appl. Environ. Microbiol. 67: 52735284.
21. Daims, H.,, U. Purkhold,, L. Bjerrum,, E. Arnold,, P. A. Wilderer, and, M. Wagner. 2001b. Nitrification in sequencing biofilm batch reactors: lessons from molecular approaches. Water Sci. Technol. 43: 918.
22. de Beer, D.,, A. Schramm,, C. Santegoeds, and, M. Kuhl. 1997. A nitrite microsensor for profiling environmental biofilms. Appl. Environ. Microbiol. 63: 973977.
23. de Kreuk, M. K.,, M. Pronk, and, M. C. M. van Loosdrecht. 2005. Formation of aerobic granules and conversion processes in an aerobic granular sludge reactor at moderate and low temperatures. Water Res. 39: 44764484.
24. Dinçer, A.,, and F. Kargi. 2001. Salt inhibition kinetics in nitrification of synthetic saline waste-water. Enzyme Microb. Technol. 28: 661665.
25. Dionisi, H. M.,, A. C. Layton,, G. Harms,, I. R. Gregory,, K. G. Robinson, and, G. S. Sayler. 2002. Quantification of Nitrosomonas oligotropha-like ammonia-oxidizing bacteria and Nitrospira spp. from full-scale wastewater treatment plants by competitive PCR. Appl. Environ. Microbiol. 68: 245253.
26. Eberal, H. J. 2003. What do biofilm models, mechanical ducks, and artificial life have in common? Mathematical modeling in biofilm research, p. 9–31. In S. Wuertz,, P. L. Bishop,, and P. A. Wilderer (ed.), Biofilms in Wastewater Treatment: An Interdisciplinary Spproach. IWA Publishing, London, United Kingdom.
27. Eilersen, A.,, M. Henze, and, L. Kloft. 1994. Effect of volatile fatty acids and trimethylamine on nitrification in activated sludge. Water Res. 28: 13291336.
28. Focht, D. D.,, and A. C. Chang. 1975. Nitrification and denitrification processes related to wastewater treatment. Adv. Appl. Microbiol. 19: 153186.
29. Furukawa, K.,, A. Ike, and, M. Fujita. 1993. Preparation of marine nitrifying sludge. J. Ferment. Bioeng. 76: 134139.
30. Garrido, J.,, W. van Benthum,, M. vanLoosdrecht, and, J. Heijnen. 1997. Influence of dissolved oxygen concentration on nitrite accumulation in a biofilm airlift suspension reactor. Biotechnol. Bioeng. 53: 168178.
31. Gieseke, A.,, U. Purkhold,, M. Wagner,, R. Amann, and, A. Schramm. 2001. Community structure and activity dynamics of nitrifying bacteria in a phosphate-removing biofilm. Appl. Environ. Microbiol. 67: 13511362.
32. Gujer, W. 2006. Activated sludge modelling: past, present and future. Water Sci. Technol. 53: 111119.
33. Gujer, W. 2010 Nitrification and me—a subjective review. Water Res. 44: 119.
34. Gujer, W.,, M. Henze,, T. Mino, and, M. C. M. van Loosdrecht. 1999. Activated sludge model NO.3. Water Sci. Technol 39: 183193.
35. Hanaki, K.,, C. Wantawin, and, S. Ohgaki. 1990. Effects of the activity of heterotrophs on nitrification in a suspended-growth reactor. Water Res. 24: 289296.
36. Head, I.,, W. Hiorns,, T. Embley,, A. McCarthy, and, J. Saunders. 1993. The phylogeny of autotrophic ammonia-oxidizing bacteria as determined by analysis of 16S ribosomal RNA gene sequences. J. Gen. Microbiol. 139: 11471153.
37. Hellinga, C.,, A. Schellen,, J. Mulder,, M. van Loosdrecht, and, J. Heijnen. 1998. The SHARON process: an innovative method for nitrogen removal from ammonium-rich waste water. Water Sci. Technol. 37: 135142.
38. Henze, M.,, W. Gujer,, T. Matsuo, and, M. C. M. van Loosdrecht. 2000. Activated sludge models ASM1, ASM2, ASM2d and ASM3. Scientific and Technical Reports. IWA publishing, London, United Kingdom.
39. Hoilijoki, T.,, R. Kettunen, and, J. Rintala. 2000. Nitrification of anaerobically pretreated municipal landfill leachate at low temperature. Water Res. 34: 14351446.
40. Ichihashi, O.,, H. Satoh, and, T. Mino. 2006. Effect of soluble microbial products on microbial metabolisms related to nutrient removal. Water Res. 40: 16271633.
41. Isaka, K.,, S. Yoshie,, T. Sumino,, Y. Inamori, and, S. Tsuneda. 2007. Nitrification of landfill leachate using immobilized nitrifying bacteria at low temperatures. Biochem. Eng. J. 37: 4955.
42. Isaka, K.,, T. Sumino, and, S. Tsuneda. 2008. Novel nitritation process using heat-shocked nitrifying bacteria entrapped in gel carriers. Process Biochem. 43: 265270.
43. Jin, R.,, P. Zheng,, Q. Mahmood, and, B. Hu. 2007. Osmotic stress on nitrification in an airlift bioreactor. J. Hazard. Mater. 146: 14854.
44. Joo, H. S.,, M. Hirai, and, M. Shoda. 2006. Piggery wastewater treatment using Alcaligenes faecalis strain No. 4 with heterotrophic nitrification and aerobic denitrification. Water Res. 40: 30293036.
45. Juretschko, S.,, G. Timmermann,, M. Schmid,, K. H. Schleifer,, A. Pommerening-Roser,, H. P. Koops, and, M. Wagner. 1998. Combined molecular and conventional analyses of nitrifying bacterium diversity in activated sludge: Nitrosococcus mobilis and Nitrospira-like bacteria as dominant populations. Appl. Environ. Microbiol. 64: 30423051.
46. Juretschko, S.,, A. Loy,, A. Lehner, and, M. Wagner. 2002. The microbial community composition of a nitrifying-denitrifying activated sludge from an industrial sewage treatment plant analyzed by the full-cycle rRNA approach. Syst. Appl. Microbiol. 25: 8499.
47. Jürgens, K.,, and C. Matz. 2002. Predation as a shaping force for the phenotypic and genotypic composition of planktonic bacteria. Antonie Van Leeuwenhoek Int. J. Gen. Mol. Microbiol. 81: 413434.
48. Khardenavis, A. A.,, A. Kapley, and, H. J. Purohit. 2007. Simultaneous nitrification and denitrification by diverse Diaphorobacter sp. Appl. Microbiol. Biotechnol. 77: 403409.
49. Kim, D. J.,, and S. H. Kim. 2006. Effect of nitrite concentration on the distribution and competition of nitrite-oxidizing bacteria in nitratation reactor systems and their kinetic characteristics. Water Res. 40: 887894.
50. Kim, Y. M.,, D. Park,, D. S. Lee, and, J. M. Park. 2008. Inhibitory effects of toxic compounds on nitrification process for cokes wastewater treatment. J. Hazard. Mater. 152: 915921.
51. Kindaichi, T.,, T. Ito, and, S. Okabe. 2004. Ecophysiological interaction between nitrifying bacteria and heterotrophic bacteria in autotrophic nitrifying biofilms as determined by microautoradiographyfluorescence in situ hybridization. Appl. Environ. Microbiol. 70: 16411650.
52. Kishino, H.,, H. Ishida,, H. Iwabu, and, I. Nakano. 1996. Domestic wastewater reuse using a submerged membrane bioreactor. Desalination 106: 115119.
53. Konneke, M.,, A. E. Bernhard,, J. R. de la Torre,, C. B. Walker,, J. B. Waterbury, and, D. A. Stahl. 2005. Isolation of an autotrophic ammonia-oxidizing marine archaeon. Nature 437: 543546.
54. Kos, P. 1998. Short SRT (solids retention time) nitrification process/flowsheet. Water Sci. Technol. 38: 2329.
55. Kreft, J. U.,, and J. W. T. Wimpenny. 2001. Effect of biofilm structure and function as revealed by an individual-based model of biofilm growth. Water Sci. Technol. 43: 135141.
56. Larsen, P.,, J. Nielsen,, T. Svendsen, and, P. Nielsen. 2008. Adhesion characteristics of nitrifying bacteria in activated sludge. Water Res. 42: 28142826.
57. Lay-Son, M.,, and C. Drakides. 2008. New approach to optimize operational conditions for the biological treatment of a high-strength thiocyanate and ammonium waste: pH as key factor. Water Res. 42: 774780.
58. Lee, N.,, P. Nielsen,, K. Andreasen,, S. Juretschko,, J. Nielsen,, K. Schleifer, and, M. Wagner. 1999. Combination of fluorescent in situ hybridization and microautoradiography–a new tool for structure-function analyses in microbial ecology. Appl. Environ. Microbiol. 65: 12891297.
59. Lens, P.,, M. Depoorter,, C. Cronenberg, and, W. Verstraete. 1995. Sulfate-reducing and methane producing bacteria in aerobic waste-water treatment systems. Water Res. 29: 871880.
60. Li, B. K.,, and P. L. Bishop. 2004. Micro-profiles of activated sludge floc determined using microelectrodes. Water Res. 38: 12481258.
61. Logemann, S.,, J. Schantl,, S. Bijvank,, M. van Loosdrecht,, J. G. Kuenen, and, M. Jetten. 1998. Molecular microbial diversity in a nitrifying reactor system without sludge retention. FEMS Microbiol. Ecol. 27: 239249.
62. Lydmark, P.,, M. Lind,, F. Sorensson, and, M. Hermansson. 2006. Vertical distribution of nitrifying populations in bacterial biofilms from a full-scale nitrifying trickling filter. Environ. Microbiol. 8: 20362049.
63. Madoni, P.,, D. Davoli, and, L. Guglielmi. 1999. Response of sOUR and AUR to heavy metal contamination in activated sludge. Water Res. 33: 24592464.
64. Matsumoto, S.,, A. Terada,, Y. Aoi,, S. Tsuneda,, E. Alpkvist,, C. Picioreanu, and, M. van Loosdrecht. 2007. Experimental and simulation analysis of community structure of nitrifying bacteria in a membrane-aerated biofilm. Water Sci. Technol. 55: 283290.
65. Matsumoto, S.,, M. Katoku,, G. Saeki,, A. Terada,, Y. Aoi,, S. Tsuneda,, C. Picioreanu, and, M. van Loosdrecht. 2010. Microbial community structure in autotrophic nitrifying granules characterized by experimental and simulation analyses. Environ. Microbiol. 12: 192206.
66. Mobarry, B. K.,, M. Wagner,, V. Urbain,, B. E. Rittmann, and, D. A. Stahl. 1996. Phylogenetic probes for analyzing abundance and spatial organization of nitrifying bacteria. Appl. Environ. Microbiol. 62: 21562162.
67. Noguera, D.,, G. Pizarro,, D. Stahl, and, B. Rittmann. 1999. Simulation of multispecies biofilm development in three dimensions. Water Sci. Technol. 39: 123130.
68. Okabe S.,, Hirata K.,, and Watanabe Y. 1995. Dynamic changes in spatial microbial distribution in mixed-population biofilms: experimental results and model simulation. Water Sci. Technol. 32: 6774.
69. Okabe, S.,, K. Hiratia,, Y. Ozawa, and, Y. Watanabe. 1996. Spatial microbial distributions of nitrifiers and heterotrophs in mixed-population biofilms. Biotechnol. Bioeng. 50: 2435.
70. Okabe, S,, T. Itoh,, H. Satoh, and, Y. Watanabe. 1999a. Analyses of spatial distributions of sulfate–reducing bacteria and their activity in aerobic wastewater biofilms. Appl. Environ. Microbiol. 65: 51075116.
71. Okabe, S.,, H. Satoh, and, Y. Watanabe. 1999b. In situ analysis of nitrifying biofilms as determined by in situ hybridization and the use of microelectrodes. Appl. Environ. Microbiol. 65: 31823191.
72. Okabe, S.,, H. Naitoh,, H. Satoh, and, Y. Watanabe. 2002. Structure and function of nitrifying biofilms as determined by molecular techniques and the use of microelectrodes. Water Sci. Technol. 46: 233241.
73. Okabe, S.,, T., Kindaichi, and, T. Ito. 2004. MAR-FISH – an ecophysiological approach to link phylogenetic affiliation and in situ metabolic activity of microorganisms at a single-cell resolution. Microb. Environ. 19: 8398.
74. Okabe, S.,, T. Kindaichi, and, T. Ito. 2005. Fate of 14C-labeled microbial products derived from nitrifying bacteria in autotrophic nitrifying biofilms. Appl. Environ. Microbiol. 71: 39873994.
75. Oleszkiewicz, J.,, and S. Berquist. 1988. Low-temperature nitrogen removal in sequencing batch reactors. Water Res. 22: 11631171.
76. Painter, H. A. 1970. A review of literature on inorganic nitrogen metabolism in microorganisms. Water Res. 4: 393450.
77. Painter, H. A. 1986. Nitrification in the treatment of sewage and waste-waters, p. 185–213. In J. I. Prosser (ed.), Nitrification, vol. 20. IRL Press Limited, Oxford, United Kingdom.
78. Park, H. D.,, and D. R. Noguera. 2004. Evaluating the effect of dissolved oxygen on ammonia-oxidizing bacterial communities in activated sludge. Water Res. 38: 32753286.
79. Park, S. J.,, J. W. Oh, and, T. I. Yoon. 2003. The role of powdered zeolite and activated carbon carriers on nitrification in activated sludge with inhibitory materials. Process Biochem. 39: 211219.
80. Park, H. D.,, G. F. Wells,, H. Bae,, C. S. Criddle, and, C. A. Francis. 2006. Occurrence of ammonia-oxidizing archaea in wastewater treatment plant bioreactors. Appl. Environ. Microbiol. 72: 56435647.
81. Picioreanu, C.,, M. van Loosdrecht, and, J. Heijnen. 1999. Discrete-differential modeling of biofilm structure. Water Sci. Technol. 39: 115122.
82. Picioreanu, C.,, J. U. Kreft, and, M. C. M. van Loosdrecht. 2004. Particle-based multidimensional multispecies biofilm model. Appl. Environ. Microbiol. 70: 30243040.
83. Pogue, A.,, and K. Gilbride. 2007. Impact of protozoan grazing on nitrification and the ammonia- and nitrite-oxidizing bacterial communities in activated sludge. Can. J. Microbiol. 53: 559571.
84. Prosser, J. I. 1989. Autotrophic nitrification in bacteria. Adv. Microb. Physiol. 30: 125181.
85. Reichert, P. 1998. AQUASIM 2.0—Computer program for the identification and simulation of aquatic systems, version 2.0. EAWAG, Dubendorf, Switzerland.
86. Rittmann, B. E.,, and P. L. McCarty. 2001. Environmental biotechnology: principles and applications. McGraw Hill, New York, NY.
87. Rittmann, B. E.,, and R. Whiteman. 1994. Bio-augmentation: a coming of age. Water Qual. Int. 1: 1216.
88. Rittmann, B. E.,, J. M. Regan, and, D. A. Stahl. 1994. Nitrification as a source of soluble organic substrate in biological treatment. Water Sci. Technol. 30: 18.
89. Rittmann, B.,, D. Stilwell, and, A. Ohashi. 2002. The transient-state, multiple-species biofilm model for biofiltration processes. Water Res. 36: 23422356.
90. Rowan, A. K.,, J. R. Snape,, D. Fearnside,, M. R. Barer,, T. P. Curtis, and, I. M. Head. 2003. Composition and diversity of ammonia-oxidising bacterial communities in wastewater treatment reactors of different design treating identical wastewater. FEMS Microbiol. Ecol. 43: 195206.
91. Santegoeds, C.,, A. Schramm, and, D. de Beer. 1998. Microsensors as a tool to determine chemical microgradients and bacterial activity in wastewater biofilms and flocs. Biodegradation 9: 159167.
92. Sato, C.,, S. W. Leung, and, J. L. Schnoor. 1988. Toxic response of Nitrosomonas europaea to copper in inorganic medium and wastewater. Water Res. 22: 11171127.
93. Satoh, H.,, S. Okabe,, N. Norimatsu, and, Y. Watanabe. 2000. Significance of substrate C/N ratio on structure and activity of nitrifying biofilms determined by in situ hybridization and the use of microelectrodes. Water Sci. Technol. 41: 317321.
94. Satoh, H.,, Y. Nakamura,, H. Ono, and, S. Okabe. 2003a. Effect of oxygen concentration on nitrification and denitrification in single activated sludge flocs. Biotechnol. Bioeng. 83: 604607.
95. Satoh, H.,, S. Okabe,, Y. Yamaguchi, and, Y. Watanabe. 2003b. Evaluation of the impact of bioaugmentation and biostimulation by in situ hybridization and microelectrode. Water Res. 37: 22062216.
96. Schramm, A. 2003. In situ analysis of structure and activity of the nitrifying community in biofilms, aggregates, and sediments. Geomicrobiol. J. 20: 313333.
97. Schramm, A.,, L. Larsen,, N. Revsbech,, N. Ramsing,, R. Amann, and, K. Schleifer. 1996. Structure and function of a nitrifying biofilm as determined by in situ hybridization and the use of microelectrodes. Appl. Environ. Microbiol. 62: 46414647.
98. Schramm, A.,, D. de Beer,, J. van den Heuvel,, S. Ottengraf, and, R. Amann. 1999a. Microscale distribution of populations and activities of Nitrosospira and Nitrospira spp. along a macroscale gradient in a nitrifying bioreactor: quantification by in situ hybridization and the use of microsensors. Appl. Environ. Microbiol. 65: 36903696.
99. Schramm, A.,, C. M. Santegoeds,, H. K. Nielsen,, H. Ploug,, M. Wagner,, M. Pribyl,, J. Wanner,, R. Amann, and, D. De Beer. 1999b. On the occurrence of anoxic microniches, denitrification, and sulfate reduction in aerated activated sludge. Appl. Environ. Microbiol. 65: 41894196.
100. Semerci, N.,, and F. Ceçen. 2007. Importance of cadmium speciation in nitrification inhibition. J. Hazard. Mater. 147: 503512.
101. Sharma, B.,, and R. C. Ahlert. 1977. Nitrification and nitrogen removal. Water Res. 11: 897925.
102. Stutzer, H.,, and R. Hartleb. 1894. Uber Nitratbildung. Zentralbl. Bakteriol. Parasitenkd. Infektionskr. Hyg. Abt.1 Orig. Reihe A 22: 701.
103. Suwa, Y.,, Y. Imamura,, T. Suzuki,, T. Tashiro, and, Y. Urushigawa. 1994. Ammonia-oxidizing bacteria with different sensitivities to (NH 4) 2SO 4 in activated sludges. Water Res. 28: 15231532.
104. Suwa, Y.,, T. Sumino, and, K. Noto. 1997. Phylogenetic relationships of activated sludge isolates of ammonia oxidizers with different sensitivities to ammonium sulfate. J. Gen. Appl. Microbiol. 43: 373379.
105. Tanaka, J.,, K. Syutsubo,, K. Watanabe,, H. Izumida, and, S. Harayama. 2003. Activity and population structure of nitrifying bacteria in an activated-sludge reactor containing polymer beads. Environ. Microbiol. 5: 278286.
106. Tay, J.,, Q. Liu, and, Y. Liu. 2002. Characteristics of aerobic granules grown on glucose and acetate in sequential aerobic sludge blanket reactors. Environ. Technol. 23: 931936.
107. Tchobanoglous, G.,, F. L. Burton, and, H. D. Stensel. 2003. Wastewater Engineering: Treatment and Reuse, 4th ed. McGraw-Hill, New York, NY.
108. Tokutomi, T. 2004. Operation of a nitrite-type airlift reactor at low DO concentration. Water Sci. Technol. 49: 8188.
109. Tsuneda, S.,, T. Nagano,, T. Hoshino,, Y. Ejiri,, N. Noda, and, A. Hirata. 2003. Characterization of nitrifying granules produced in an aerobic upflow fluidized bed reactor. Water Res. 37: 49654973.
110. Udert, K. M.,, T. A. Larsen, and, W. Gujer. 2005. Chemical nitrite oxidation in acid solutions as a consequence of microbial ammonium oxidation. Environ. Sci. Technol. 39: 40664075.
111. van Dongen, U.,, M. S. M. Jetten, and, M. C. M. van Loosdrecht. 2001a. The SHARON-Anammox process for treatment of ammonium rich wastewater. Water Sci. Technol. 44: 153160.
112. van Dongen, U.,, M. S. M. Jetten, and, M. C. M. van Loosdrecht. 2001b. The combined SHARON/anammox process: a sustainable method for N-removal from sludge water, Stowa. IWA Publishing, London, United Kingdom.
113. van Niel, E. W. J.,, L. A. Robertson, and, J. G. Kuenen. 1993. A mathematical description of the behaviour of mixed chemostat cultures of an autotrophic nitrifier and a heterotrophic nitrifier/aerobic denitrifier; a comparison with experimental data. FEMS Microbiol. Ecol. 102: 99108.
114. Volcke, E.,, M. van Loosdrecht, and, P. Vanrolleghem. 2006. Controlling the nitrite: ammonium ratio in a SHARON reactor in view of its coupling with an Anammox process. Water Sci. Technol. 53: 4554.
115. Wagner, M.,, G. Rath,, R. Amann,, H. P. Koops, and, K. H. Schleifer. 1995. In situ identification of ammonia-oxidizing bacteria. Syst. Appl. Microbiol. 18: 251264.
116. Wanner, O.,, and W. Gujer. 1986. A multispecies biofilm model. Biotechnol. Bioeng. 28: 314328.
117. Wanner, O.,, and P. Reichert. 1996. Mathematical modeling of mixed-culture biofilms. Biotechnol. Bioeng. 49: 172184.
118. Wells, G.,, H. Park,, C. Yeung,, B. Eggleston,, C. Francis, and, C. Criddle. 2009. Ammonia-oxidizing communities in a highly aerated full-scale activated sludge bioreactor: betaproteobacterial dynamics and low relative abundance of Crenarchaea. Environ. Microbiol. 11: 23102328
119. Wittebolle, L.,, H. Vervaeren,, W. Verstraete, and, N. Boon. 2008. Quantifying community dynamics of nitrifiers in functionally stable reactors. Appl. Environ. Microbiol. 74: 286293.
120. Xavier, J.,, and K. Foster. 2007. Cooperation and conflict in microbial biofilms. Proc. Natl. Acad. Sci. USA 104: 876881.
121. Xavier, J.,, C. Picioreanu, and, M. van Loosdrecht. 2005. A framework for multidimensional modeling of activity and structure of multispecies biofilms. Environ. Microbiol. 7: 10851103.
122. Yamagishi, T.,, J. Leite,, S. Ueda,, F. Yamaguchi, and, Y. Suwa. 2001. Simultaneous removal of phenol and ammonia by an activated sludge process with cross-flow filtration. Water Res. 35: 30893096.
123. You, J.,, A. Das,, E. Dolan, and, Z. Hu. 2009. Ammonia-oxidizing archaea involved in nitrogen removal. Water Res. 43: 18011809.
124. Zhang, T.,, L. Ding,, H. Ren, and, X. Xiong. 2009a. Ammonium nitrogen removal from coking waste-water by chemical precipitation recycle technology. Water Res. 43: 52095215.
125. Zhang, T.,, T. Jin,, Q. Yan,, M. Shao,, G. Wells,, C. Criddle, and, H. H. P. Fang. 2009b. Occurrence of ammonia-oxidizing Archaea in activated sludges of a laboratory scale reactor and two wastewater treatment plants. J. Appl. Microbiol. 107: 970977.

Tables

Generic image for table
TABLE 1

Stoichiometric parameters for microbial reactions

Citation: Okabe S, Aoi Y, Satoh H, Suwa Y. 2011. Nitrification in Wastewater Treatment, p 405-433. In Ward B, Arp D, Klotz M (ed), Nitrification. ASM Press, Washington, DC. doi: 10.1128/9781555817145.ch16

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error