Chapter 3 : Comparative Genomics of Species

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

Comparative Genomics of Species, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817176/9781555815394_Chap03-1.gif /docserver/preview/fulltext/10.1128/9781555817176/9781555815394_Chap03-2.gif


This chapter focuses on the species within the CTG clade. Several of the species (, , , , and ) have diploid genomes, so it is possible to compare the single nucleotide polymorphisms (SNPs) between the homologous chromosomes. Families of long terminal repeat (LTR) and non-LTR retrotransposons have been well characterized in . The precise number of agglutinin-like sequence (ALS) genes in the other species is likely to be overestimated, caused by difficulties in assembling the repeated regions. Species-specific amplifications have also occurred in the other species. The large-scale analysis of genomes confirmed that many of the multigene families described for are also present in the genomes of other pathogenic species. and are the only two species that generate true filaments, although is much less efficient. The change in the genetic code may have helped protect species from infection by RNA-based viruses. Comparative genomic tools for species are available from the Broad Institute, the Pasteur Institute, and University College Dublin. In conclusion, analysis of the vast array of genomic data available has already made, and is likely to continue to make, major contributions to our understanding of the biology of species.

Citation: Butler G. 2012. Comparative Genomics of Species, p 27-43. In Calderone R, Clancy C (ed), and Candidiasis, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555817176.ch3
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of FIGURE 1

Phylogenetic relationship of the sequenced species. The tree was constructed using a supertree approach, including all 10 genomes from the CTG clade and and . Methods are described in the work of Fitzpatrick et al. ( ). The subclades that contain haploid and diploid genomes are indicated. doi:10.1128/9781555817176.ch3.f1

Citation: Butler G. 2012. Comparative Genomics of Species, p 27-43. In Calderone R, Clancy C (ed), and Candidiasis, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555817176.ch3
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2

Distribution of SNPs in . SNP frequency (SNPs per kilobase, normalized by the fraction of high-quality aligned positions) for 10-kb windows is plotted along scaffolds. sc, supercontig, approximately corresponding to chromosomes. Reproduced from reference with permission. doi:10.1128/9781555817176.ch3.f2

Citation: Butler G. 2012. Comparative Genomics of Species, p 27-43. In Calderone R, Clancy C (ed), and Candidiasis, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555817176.ch3
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3

Comparative analysis of sequences from species. (Top panel) Genomic distribution of genes in , , and . (Bottom panel) Maximum-likelihood phylogeny of genes from the three species shown in the top panel. Terminal nodes are labeled with the same symbols and gene names as shown in the top panel. A conserved 14-amino-acid sequence at the C terminus is shown. is present only in . Reproduced from ( ) with permission from the publisher. doi:10.1128/9781555817176.ch3.f3

Citation: Butler G. 2012. Comparative Genomics of Species, p 27-43. In Calderone R, Clancy C (ed), and Candidiasis, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555817176.ch3
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 4

(A) Organization of MTL in species. α-specific genes are shown in white and -specific genes in black. names are used for adjacent genes. Gene losses are indicated with crosses. Idiomorphs from heterothallic isolates are linked with braces. Genomic regions are not drawn to scale, and not all ORFs are shown. (B) Placement of gene losses on the phylogenetic tree. doi:10.1128/9781555817176.ch3.f4

Citation: Butler G. 2012. Comparative Genomics of Species, p 27-43. In Calderone R, Clancy C (ed), and Candidiasis, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555817176.ch3
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 5

HGT of a proline racemase gene into . The species and gene names are shown in the individual boxes. is equivalent to , and is equivalent to . Orthologous genes are stacked in columns, or pillars. Gene order is conserved on the left-hand side; on the right-hand side synteny between and is conserved, except for an insertion of a PR and a neutral amino acid transporter (AA) in . There is no conservation in synteny in this region between and the other species. Reproduced from reference with permission. doi:10.1128/9781555817176.ch3.f5

Citation: Butler G. 2012. Comparative Genomics of Species, p 27-43. In Calderone R, Clancy C (ed), and Candidiasis, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555817176.ch3
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Albrecht, A.,, A. Felk,, I. Pichova,, J. R. Naglik,, M. Schaller,, P. de Groot,, D. MacCallum,, F. C. Odds,, W. Schafer,, F. Klis,, M. Monod, and, B. Hube. 2006. Glycosylphosphatidylinositol-anchored proteases of Candida albicans target proteins necessary for both cellular processes and host-pathogen interactions. J. Biol. Chem. 281: 688694.
2. Alby, K.,, D. Schaefer, and, R. J. Bennett. 2009. Homothallic and heterothallic mating in the opportunistic pathogen Candida albicans. Nature 460: 890893.
3. Almeida, R. S.,, S. Brunke,, A. Albrecht,, S. Thewes,, M. Laue,, J. E. Edwards,, S. G. Filler, and, B. Hube. 2008. The hyphal-associated adhesin and invasin Als3 of Candida albicans mediates iron acquisition from host ferritin. PLoS Pathog. 4: e1000217.
4. Bailey, D. A.,, P. J. Feldmann,, M. Bovey,, N. A. Gow, and, A. J. Brown. 1996. The Candida albicans HYR1 gene, which is activated in response to hyphal development, belongs to a gene family encoding yeast cell wall proteins. J. Bacteriol. 178: 53535360.
5. Bates, S.,, J. M. de la Rosa,, D. M. MacCallum,, A. J. Brown,, N. A. Gow, and, F. C. Odds. 2007. Candida albicans Iff11, a secreted protein required for cell wall structure and virulence. Infect. Immun. 75: 29222928.
6. Bennett, R. J.,, and A. D. Johnson. 2003. Completion of a parasexual cycle in Candida albicans by induced chromosome loss in tetraploid strains. EMBO J. 22: 25052515.
7. Bennett, R. J.,, and A. D. Johnson. 2004. Mating in Candida albicans and the search for a sexual cycle. Annu. Rev. Microbiol. 59: 233255.
8. Box, J. A.,, J. T. Bunch,, W. Tang, and, P. Baumann. 2008. Spliceosomal cleavage generates the 3’ end of telomerase RNA. Nature 456: 910914.
9. Braun, B. R.,, M. van Het Hoog,, C. d’Enfert,, M. Martchenko,, J. Dungan,, A. Kuo,, D. O. Inglis,, M. A. Uhl,, H. Hogues,, M. Berriman,, M. Lorenz,, A. Levitin,, U. Oberholzer,, C. Bachewich,, D. Harcus,, A. Marcil,, D. Dignard,, T. Iouk,, R. Zito,, L. Frangeul,, F. Tekaia,, K. Rutherford,, E. Wang,, C. A. Munro,, S. Bates,, N. A. Gow,, L. L. Hoyer,, G. Kohler,, J. Morschhauser,, G. Newport,, S. Znaidi,, M. Raymond,, B. Turcotte,, G. Sherlock,, M. Costanzo,, J. Ihmels,, J. Berman,, D. Sanglard,, N. Agabian,, A. P. Mitchell,, A. D. Johnson,, M. Whiteway, and, A. Nantel. 2005. A human-curated annotation of the Candida albicans genome. PLoS Genet. 1:e1.
10. Butler, G. 2010. Fungal sex and pathogenesis. Clin. Microbiol. Rev. 23: 140159.
11. Butler, G.,, C. Kenny,, A. Fagan,, C. Kurischko,, C. Gail-lardin, and, K. H. Wolfe. 2004. Evolution of the MAT locus and its Ho endonuclease in yeast species. Proc. Natl Acad. Sci. USA 101: 16321637.
12. Butler, G.,, M. D. Rasmussen,, M. F. Lin,, M. A. Santos,, S. Sakthikumar,, C. A. Munro,, E. Rheinbay,, M. Grabherr,, A. Forche,, J. L. Reedy,, I. Agrafioti,, M. B. Arnaud,, S. Bates,, A. J. Brown,, S. Brunke,, M. C. Costanzo,, D. A. Fitzpatrick,, P. W. de Groot,, D. Harris,, L. L. Hoyer,, B. Hube,, F. M. Klis,, C. Kodira,, N. Lennard,, M. E. Logue,, R. Martin,, A. M. Neiman,, E. Nikolaou,, M. A. Quail,, J. Quinn,, M. C. Santos,, F. F. Schmitzberger,, G. Sherlock,, P. Shah,, K. A. Silverstein,, M. S. Skrzypek,, D. Soll,, R. Staggs,, I. Stansfield,, M. P. Stumpf,, P. E. Sudbery,, T. Srikantha,, Q. Zeng,, J. Berman,, M. Berriman,, J. Heitman,, N. A. Gow,, M. C. Lorenz,, B. W. Birren,, M. Kellis, and, C. A. Cuomo. 2009. Evolution of pathogenicity and sexual reproduction in eight Candida genomes. Nature 459: 657662.
13. Byrne, K. P.,, and K. H. Wolfe. 2005. The Yeast Gene Order Browser: combining curated homology and syntenic context reveals gene fate in polyploid species. Genome Res. 15: 14561461.
14. Carr, M.,, B. S. Leadbeater, and, S. L. Baldauf. 2010. Conserved meiotic genes point to sex in the choanoflagellates. J. Eukaryot. Microbiol. 57: 5662.
15. Castillo, L.,, E. Calvo,, A. I. Martinez,, J. Ruiz-Herrera,, E. Valentin,, J. A. Lopez, and, R. Sentandreu. 2008. A study of the Candida albicans cell wall proteome. Proteomics 8: 38713881.
16. Cha, R. S.,, and N. Kleckner. 2002. ATR homolog Mec1 promotes fork progression, thus averting breaks in replication slow zones. Science 297: 602606.
17. Chibana, H.,, J. L. Beckerman, and, P. T. Magee. 2000. Fine-resolution physical mapping of genomic diversity in Candida albicans. Genome Res. 10: 18651877.
18. Chibana, H.,, S. Iwaguchi,, M. Homma,, A. Chindamporn,, Y. Nakagawa, and, K. Tanaka. 1994. Diversity of tandemly repetitive sequences due to short periodic repetitions in the chromosomes of Candida albicans. J. Bacteriol. 176: 38513858.
19. Chindamporn, A.,, Y. Nakagawa,, I. Mizuguchi,, H. Chibana,, M. Doi, and, K. Tanaka. 1998. Repetitive sequences (RPSs) in the chromosomes of Candida albicans are sandwiched between two novel stretches, HOK and RB2, common to each chromosome. Microbiology 144: 849857.
20. Chu, W. S.,, B. B. Magee, and, P. T. Magee. 1993. Construction of an SfiI macrorestriction map of the Candida albicans genome. J. Bacteriol. 175: 66376651.
21. Codon, A. C.,, T. Benitez, and, M. Korhola. 1998. Chromosomal polymorphism and adaptation to specific industrial environments of Saccharomyces strains. Appl. Microbiol. Biotechnol. 49: 154163.
22. Coste, A.,, A. Selmecki,, A. Forche,, D. Diogo,, M. E. Bougnoux,, C. d’Enfert,, J. Berman, and, D. Sanglard. 2007. Genotypic evolution of azole resistance mechanisms in sequential Candida albicans isolates. Eukaryot. Cell 6: 18891904.
23. Coste, A. T.,, V. Turner,, F. Ischer,, J. Morschhauser,, A. Forche,, A. Selmecki,, J. Berman,, J. Bille, and, D. Sanglard. 2006. A mutation in Tac1p, a transcription factor regulating CDR1 and CDR2, is coupled with loss of heterozygosity at chromosome 5 to mediate antifungal resistance in Candida albicans. Genetics 172: 21392156.
24. Daniels, K. J.,, S. R. Lockhart,, J. F. Staab,, P. Sundstrom, and, D. R. Soll. 2003. The adhesin Hwp1 and the first daughter cell localize to the a/a portion of the conjugation bridge during Candida albicans mating. Mol. Biol. Cell 14: 49204930.
25. de Groot, P. W.,, A. D. de Boer,, J. Cunningham,, H. L. Dekker,, L. de Jong,, K. J. Hellingwerf,, C. de Koster, and, F. M. Klis. 2004. Proteomic analysis of Candida albicans cell walls reveals covalently bound carbohydrate-active enzymes and adhesins. Eukaryot. Cell 3: 955965.
26. De Groot, P. W.,, K. J. Hellingwerf, and, F. M. Klis. 2003. Genome-wide identification of fungal GPI proteins. Yeast 20: 781796.
27. d’Enfert, C.,, S. Goyard,, S. Rodriguez-Arnaveilhe,, L. Frangeul,, L. Jones,, F. Tekaia,, O. Bader,, A. Albrecht,, L. Castillo,, A. Dominguez,, J. F. Ernst,, C. Fradin,, C. Gail-lardin,, S. Garcia-Sanchez,, P. de Groot,, B. Hube,, F. M. Klis,, S. Krishnamurthy,, D. Kunze,, M. C. Lopez,, A. Mavor,, N. Martin,, I. Moszer,, D. Onesime,, J. Perez Martin,, R. Sentandreu,, E. Valentin, and, A. J. Brown. 2005. CandidaDB: a genome database for Candida albicans pathogenomics. Nucleic Acids Res. 33: D353–D357.
28. Deshpande, A. M.,, and C. S. Newlon. 1996. DNA replication fork pause sites dependent on transcription. Science 272: 10301033.
29. Dignard, D.,, A. L. El-Naggar,, M. E. Logue,, G. Butler, and, M. Whiteway. 2007. Identification and characterization of MFA1, the gene encoding Candida albicans a-factor pheromone. Eukaryot. Cell 6: 487494.
30. Diogo, D.,, C. Bouchier,, C. d’Enfert, and, M. E. Bougnoux. 2009. Loss of heterozygosity in commensal isolates of the asexual diploid yeast Candida albicans. Fungal Genet. Biol. 46: 159168.
31. Di Rienzi, S. C.,, D. Collingwood,, M. K. Raghurama, and, B. J. Brewer. 2009. Fragile genomic sites are associated with origins of replication. Gen. Biol. Evol. 2009: 350363.
32. Dranginis, A. M.,, J. M. Rauceo,, J. E. Coronado, and, P. N. Lipke. 2007. A biochemical guide to yeast adhesins: glycoproteins for social and antisocial occasions. Microbiol. Mol. Biol. Rev. 71: 282294.
33. Dujon, B.,, D. Sherman,, G. Fischer,, P. Durrens,, S. Casaregola,, I. Lafontaine,, J. De Montigny,, C. Marck,, C. Neuveglise,, E. Talla,, N. Goffard,, L. Frangeul,, M. Aigle,, V. Anthouard,, A. Babour,, V. Barbe,, S. Barnay,, S. Blanchin,, J. M. Beckerich,, E. Beyne,, C. Bleykasten,, A. Boisrame,, J. Boyer,, L. Cattolico,, F. Confanioleri,, A. De Daruvar,, L. Despons,, E. Fabre,, C. Fairhead,, H. Ferry-Dumazet,, A. Groppi,, F. Hantraye,, C. Hennequin,, N. Jauniaux,, P. Joyet,, R. Kachouri,, A. Kerrest,, R. Koszul,, M. Lemaire,, I. Lesur,, L. Ma,, H. Muller,, J. M. Nicaud,, M. Nikolski,, S. Oztas,, O. Ozier-Kalogeropoulos,, S. Pellenz,, S. Potier,, G. F. Richard,, M. L. Straub,, A. Suleau,, D. Swennen,, F. Tekaia,, M. Wesolowski-Louvel,, E. Westhof,, B. Wirth,, M. Zeniou-Meyer,, I. Zivanovic,, M. Bolotin-Fukuhara,, A. Thierry,, C. Bouchier,, B. Caudron,, C. Scarpelli,, C. Gaillardin,, J. Weissenbach,, P. Wincker, and, J. L. Souciet. 2004. Genome evolution in yeasts. Nature 430: 3544.
34. Dunkel, N.,, J. Blass,, P. D. Rogers, and, J. Morschhauser. 2008. Mutations in the multi-drug resistance regulator MRR1, followed by loss of heterozygosity, are the main cause of MDR1 overexpression in fluconazole-resistant Candida albicans strains. Mol. Microbiol. 69: 827840.
35. Dunn, B.,, R. P. Levine, and, G. Sherlock. 2005. Microarray karyotyping of commercial wine yeast strains reveals shared, as well as unique, genomic signatures. BMC Genomics 6: 53.
36. Ene, I. V.,, and R. J. Bennett. 2009. Hwp1 and related adhesins contribute to both mating and biofilm formation in Candida albicans. Eukaryot. Cell 8: 19091913.
37. Fabre, E.,, H. Muller,, P. Therizols,, I. Lafontaine,, B. Dujon, and, C. Fairhead. 2005. Comparative genomics in hemiascomycete yeasts: evolution of sex, silencing, and subtelomeres. Mol. Biol. Evol. 22: 856873.
38. Fernandez-Arenas, E.,, V. Cabezon,, C. Bermejo,, J. Arroyo,, C. Nombela,, R. Diez-Orejas, and, C. Gil. 2007. Integrated proteomics and genomics strategies bring new insight into Candida albicans response upon macrophage interaction. Mol. Cell. Proteomics 6: 460478.
39. Fitzpatrick, D. A.,, and G. Butler. 2010. Comparative genomic analysis of pathogenic yeasts and the evolution of virulence, p. 1–18. In H. R. Ashbee and, E. Bignell (ed.), Pathogenic Yeasts. Springer, Heidelberg, Germany.
40. Fitzpatrick, D. A.,, M. E. Logue, and, G. Butler. 2008. Evidence of recent interkingdom horizontal gene transfer between bacteria and Candida parapsilosis. BMC Evol. Biol. 8: 181.
41. Fitzpatrick, D. A.,, M. E. Logue,, J. E. Stajich, and, G. Butler. 2006. A fungal phylogeny based on 42 complete genomes derived from supertree and combined gene analysis. BMC Evol. Biol. 6: 99.
42. Fitzpatrick, D. A.,, P. O’Gaora,, K. P. Byrne, and, G. Butler. 2010. Analysis of gene evolution and metabolic pathways using the Candida Gene Order Browser. BMC Genomics 11: 290.
43. Forche, A.,, K. Alby,, D. Schaefer,, A. D. Johnson,, J. Berman, and, R. J. Bennett. 2008. The parasexual cycle in Candida albicans provides an alternative pathway to meiosis for the formation of recombinant strains. PLoS Biol. 6: e110.
44. Forche, A.,, P. T. Magee,, A. Selmecki,, J. Berman, and, G. May. 2009. Evolution in Candida albicans populations during a single passage through a mouse host. Genetics 182: 799811.
45. Forche, A.,, G. May, and, P. T. Magee. 2005. Demonstration of loss of heterozygosity by single-nucleotide polymorphism microarray analysis and alterations in strain morphology in Candida albicans strains during infection. Eukaryot. Cell 4: 156165.
46. Fu, Y.,, A. S. Ibrahim,, D. C. Sheppard,, Y. C. Chen,, S. W. French,, J. E. Cutler,, S. G. Filler, and, J. E. Edwards, Jr. 2002. Candida albicans Als1p: an adhesin that is a downstream effector of the EFG1 filamentation pathway. Mol. Microbiol. 44: 6172.
47. Fu, Y.,, G. Rieg,, W. A. Fonzi,, P. H. Belanger,, J. E. Edwards, Jr., and, S. G. Filler. 1998. Expression of the Candida albicans gene ALS1 in Saccharomyces cerevisiae induces adherence to endothelial and epithelial cells. Infect. Immun. 66: 17831786.
48. Gácser, A.,, D. Trofa,, W. Schäfer, and, J. D. Nosanchuk. 2007. Targeted gene deletion in Candida parapsilosis demonstrates the role of secreted lipase in virulence. J. Clin. Investig. 117: 30493058.
49. Garcia-Sanchez, S.,, S. Aubert,, I. Iraqui,, G. Janbon,, J. M. Ghigo, and, C. D’Enfert. 2004. Candida albicans biofilms: a developmental state associated with specific and stable gene expression patterns. Eukaryot. Cell 3: 536545.
50. Gaur, N. K.,, and S. A. Klotz. 1997. Expression, cloning, and characterization of a Candida albicans gene, ALA1, that confers adherence properties upon Saccharomyces cerevisiae for extracellular matrix proteins. Infect. Immun. 65: 52895294.
51. Ghabrial, S. 2008. Totiviruses, p. 163–174. In B. W. J. Mahy and, M. H. V. van Regenmortel (ed.), Encyclopedia of Virology, 3rd ed., vol. 5. Academic Press, New York, NY.
52. Gilfillan, G. D.,, D. J. Sullivan,, K. Haynes,, T. Parkinson,, D. C. Coleman, and, N. A. Gow. 1998. Candida dubliniensis: phylogeny and putative virulence factors. Microbiology 144: 829838.
53. Gladyshev, E. A.,, M. Meselson, and, I. R. Arkhipova. 2008. Massive horizontal gene transfer in bdelloid rotifers. Science 320: 12101213.
54. Goffeau, A.,, B. G. Barrell,, H. Bussey,, R. W. Davis,, B. Dujon,, H. Feldmann,, F. Galibert,, J. D. Hoheisel,, C. Jacq,, M. Johnston,, E. J. Louis,, H. W. Mewes,, Y. Murakami,, P. Philippsen,, H. Tettelin, and, S. G. Oliver. 1996. Life with 6000 genes. Science 274: 546, 563–567.
55. Goodwin, T. J.,, D. E. Dalle Nogare,, M. I. Butler, and, R. T. Poulter. 2003. Ty3/gypsy-like retrotransposons in Candida albicans and Candida dubliniensis: Tca3 and Tcd3. Yeast 20: 493508.
56. Goodwin, T. J.,, J. E. Ormandy, and, R. T. Poulter. 2001. L1-like non-LTR retrotransposons in the yeast Candida albicans. Curr. Genet. 39: 8391.
57. Goodwin, T. J.,, and R. T. Poulter. 2000. Multiple LTR-retrotransposon families in the asexual yeast Candida albicans. Genome Res. 10: 174191.
58. Goodwin, T. J.,, and R. T. Poulter. 1998. The CARE-2 and rel-2 repetitive elements of Candida albicans contain LTR fragments of a new retrotransposon. Gene 218: 8593.
59. Gunisova, S.,, E. Elboher,, J. Nosek,, V. Gorkovoy,, Y. Brown,, J. F. Lucier,, N. Laterreur,, R. J. Wellinger,, Y. Tzfati, and, L. Tomaska. 2009. Identification and comparative analysis of telomerase RNAs from Candida species reveal conservation of functional elements. RNA 15: 546559.
60. Hall, A. R.,, and N. Colegrave. 2008. Decay of unused characters by selection and drift. J. Evol. Biol. 21: 610617.
61. Hall, R. A.,, F. Cottier, and, F. A. Muhlschlegel. 2009. Molecular networks in the fungal pathogen Candida albicans. Adv. Appl. Microbiol. 67: 191212.
62. Heitman, J. 2006. Sexual reproduction and the evolution of microbial pathogens. Curr. Biol. 16: R711–R725.
63. Hieter, P., D. Pridmore,, J. H. Hegemann,, M. Thomas,, R. W. Davis, and, P. Philippsen. 1985. Functional selection and analysis of yeast centromeric DNA. Cell 42: 913–921.
64. Hoyer, L. L. 2001. The ALS gene family of Candida albicans. Trends Microbiol. 9: 176180.
65. Hoyer, L. L.,, C. B. Green,, S. H. Oh, and, X. Zhao. 2008. Discovering the secrets of the Candida albicans agglutinin-like sequence ( ALS) gene family—a sticky pursuit. Med. Mycol. 46: 115.
66. Hoyer, L. L.,, S. Scherer,, A. R. Shatzman, and, G. P. Livi. 1995. Candida albicans ALS1: domains related to a Saccharomyces cerevisiae sexual agglutinin separated by a repeating motif. Mol. Microbiol. 15: 3954.
67. Hruskova-Heidingsfeldova, O. 2008. Secreted proteins of Candida albicans. Frontiers Biosci. 13: 72277242.
68. Hube, B.,, D. Sanglard,, F. C. Odds,, D. Hess,, M. Monod,, W. Schafer,, A. J. Brown, and, N. A. Gow. 1997. Disruption of each of the secreted aspartyl proteinase genes SAP1, SAP2, and SAP3 of Candida albicans attenuates virulence. Infect. Immun. 65: 35293538.
69. Hube, B.,, F. Stehr,, M. Bossenz,, A. Mazur,, M. Kretschmar, and, W. Schafer. 2000. Secreted lipases of Candida albicans: cloning, characterisation and expression analysis of a new gene family with at least ten members. Arch. Microbiol. 174: 362374.
70. Hull, C. M.,, and A. D. Johnson. 1999. Identification of a mating type-like locus in the asexual pathogenic yeast Candida albicans. Science 285: 12711275.
71. Hull, C. M.,, R. M. Raisner, and, A. D. Johnson. 2000. Evidence for mating of the “asexual” yeast Candida albicans in a mammalian host. Science 289: 307310.
72. Iwaguchi, S.,, M. Homma,, H. Chibana, and, K. Tanaka. 1992. Isolation and characterization of a repeated sequence (RPS1) of Candida albicans. J. Gen. Microbiol. 138: 18931900.
73. Jackson, A. P.,, J. A. Gamble,, T. Yeomans,, G. P. Moran,, D. Saunders,, D. Harris,, M. Aslett,, J. F. Barrell,, G. Butler,, F. Citiulo,, D. C. Coleman,, P. W. de Groot,, T. J. Goodwin,, M. A. Quail,, J. McQuillan,, C. A. Munro,, A. Pain,, R. T. Poulter,, M. A. Rajandream,, H. Renauld,, M. J. Spiering,, A. Tivey,, N. A. Gow,, B. Barrell,, D. J. Sullivan, and, M. Berriman. 2009. Comparative genomics of the fungal pathogens Candida dubliniensis and C. albicans. Genome Res. 19: 22312244.
74. James, S. A.,, M. D. Collins, and, I. N. Roberts. 1994. The genetic relationship of Lodderomyces elongisporus to other ascomycete yeast species as revealed by small-subunit rRNA gene sequences. Lett. Appl. Microbiol. 19: 308311.
75. Jeffries, T. W.,, I. V. Grigoriev,, J. Grimwood,, J. M. Laplaza,, A. Aerts,, A. Salamov,, J. Schmutz,, E. Lindquist,, P. Dehal,, H. Shapiro,, Y. S. Jin,, V. Passoth, and, P. M. Richardson. 2007. Genome sequence of the lignocellulosebioconverting and xylose-fermenting yeast Pichia stipitis. Nat. Biotechnol. 25: 319326.
76. Joly, S.,, C. Pujol, and, D. R. Soll. 2002. Microevolutionary changes and chromosomal translocations are more frequent at RPS loci in Candida dubliniensis than in Candida albicans. Infect. Genet. Evol. 2: 1937.
77. Jones, T.,, N. A. Federspiel,, H. Chibana,, J. Dungan,, S. Kalman,, B. B. Magee,, G. Newport,, Y. R. Thorstenson,, N. Agabian,, P. T. Magee,, R. W. Davis, and, S. Scherer. 2004. The diploid genome sequence of Candida albicans. Proc. Natl. Acad. Sci. USA 101: 73297334.
78. Kaiser, B.,, T. Munder,, H. P. Saluz,, W. Kunkel, and, R. Eck. 1999. Identification of a gene encoding the pyruvate decarboxylase gene regulator CaPdc2p from Candida albicans. Yeast 15: 585591.
79. Karababa, M.,, A. T. Coste,, B. Rognon,, J. Bille, and, D. Sanglard. 2004. Comparison of gene expression profiles of Candida albicans azole-resistant clinical isolates and laboratory strains exposed to drugs inducing multidrug transporters. Antimicrob. Agents Chemother. 48: 30643079.
80. Katinka, M. D.,, S. Duprat,, E. Cornillot,, G. Metenier,, F. Thomarat,, G. Prensier,, V. Barbe,, E. Peyretaillade,, P. Brottier,, P. Wincker,, F. Delbac,, H. El Alaoui,, P. Peyret,, W. Saurin,, M. Gouy,, J. Weissenbach, and, C. P. Vivares. 2001. Genome sequence and gene compaction of the eukaryote parasite Encephalitozoon cuniculi. Nature 414: 450453.
81. Keeling, P. J.,, and J. D. Palmer. 2008. Horizontal gene transfer in eukaryotic evolution. Nat. Rev. Genet. 9: 605618.
82. Ketel, C.,, H. S. Wang,, M. McClellan,, K. Bouchonville,, A. Selmecki,, T. Lahav,, M. Gerami-Nejad, and, J. Berman. 2009. Neocentromeres form efficiently at multiple possible loci in Candida albicans. PLoS Genet. 5: e1000400.
83. Kitada, K.,, E. Yamaguchi,, K. Hamada, and, M. Arisawa. 1997. Structural analysis of a Candida glabrata centromere and its functional homology to the Saccharomyces cerevisiae centromere. Curr. Genet. 31: 122127.
84. Koonin, E. V.,, and Y. I. Wolf. 2008. Genomics of bacteria and archaea: the emerging dynamic view of the prokaryotic world. Nucleic Acids Res. 36: 66886719.
85. Kurland, C. G.,, and S. G. Andersson. 2000. Origin and evolution of the mitochondrial proteome. Microbiol. Mol. Biol. Rev. 64: 786820.
86. Lander, E. S.,, L. M. Linton,, B. Birren,, C. Nusbaum,, M. C. Zody,, J. Baldwin,, K. Devon,, K. Dewar,, M. Doyle,, W. FitzHugh,, R. Funke,, D. Gage,, K. Harris,, A. Heaford,, J. Howland,, L. Kann,, J. Lehoczky,, R. LeVine,, P. McEwan,, K. McKernan,, J. Meldrim,, J. P. Mesirov,, C. Miranda,, W. Morris,, J. Naylor,, C. Raymond,, M. Rosetti,, R. Santos,, A. Sheridan,, C. Sougnez,, N. Stange-Thomann,, N. Stojanovic,, A. Subramanian,, D. Wyman,, J. Rogers,, J. Sulston,, R. Ainscough,, S. Beck,, D. Bentley,, J. Burton,, C. Clee,, N. Carter,, A. Coulson,, R. Deadman,, P. Deloukas,, A. Dunham,, I. Dunham,, R. Durbin,, L. French,, D. Grafham,, S. Gregory,, T. Hubbard,, S. Humphray,, A. Hunt,, M. Jones,, C. Lloyd,, A. McMurray,, L. Matthews,, S. Mercer,, S. Milne,, J. C. Mullikin,, A. Mungall,, R. Plumb,, M. Ross,, R. Shownkeen,, S. Sims,, R. H. Waterston,, R. K. Wilson,, L. W. Hillier,, J. D. McPherson,, M. A. Marra,, E. R. Mardis,, L. A. Fulton,, A. T. Chinwalla,, K. H. Pepin,, W. R. Gish,, S. L. Chissoe,, M. C. Wendl,, K. D. Delehaunty,, T. L. Miner,, A. Delehaunty,, J. B. Kramer,, L. L. Cook,, R. S. Fulton,, D. L. Johnson,, P. J. Minx,, S. W. Clifton,, T. Hawkins,, E. Branscomb,, P. Predki,, P. Richardson,, S. Wenning,, T. Slezak,, N. Doggett,, J. F. Cheng,, A. Olsen,, S. Lucas,, C. Elkin,, E. Uberbacher,, M. Frazier, et al. 2001. Initial sequencing and analysis of the human genome. Nature 409: 860921.
87. Lepingle, A.,, S. Casaregola,, C. Neuveglise,, E. Bon,, H. Nguyen,, F. Artiguenave,, P. Wincker, and, C. Gaillardin. 2000. Genomic exploration of the hemiascomycetous yeasts: 14. Debaryomyces hansenii var. hansenii. FEBS Lett. 487: 8286.
88. Lockhart, S. R.,, S. A. Messer,, M. A. Pfaller, and, D. J. Diekema. 2008. Lodderomyces elongisporus masquerading as Candida parapsilosis as a cause of bloodstream infections. J. Clin. Microbiol. 46: 374376.
89. Lockhart, S. R.,, C. Pujol,, K. J. Daniels,, M. G. Miller,, A. D. Johnson,, M. A. Pfaller, and, D. R. Soll. 2002. In Candida albicans, white-opaque switchers are homozygous for mating type. Genetics 162: 737745.
90. Logue, M. E.,, S. Wong,, K. H. Wolfe, and, G. Butler. 2005. A genome sequence survey shows that the pathogenic yeast Candida parapsilosis has a defective MTL a 1 allele at its mating type locus. Eukaryot. Cell 4: 10091017.
91. Lorenz, A.,, J. L. Wells,, D. W. Pryce,, M. Novatchkova,, F. Eisenhaber,, R. J. McFarlane, and, J. Loidl. 2004. S. pombe meiotic linear elements contain proteins related to synaptonemal complex components. J. Cell Sci. 117: 33433351.
92. Magee, B. B.,, and P. T. Magee. 2000. Induction of mating in Candida albicans by construction of MTLa and MTLα strains. Science 289: 310313.
93. Magee, B. B.,, M. D. Sanchez,, D. Saunders,, D. Harris,, M. Berriman, and, P. T. Magee. 2008. Extensive chromosome rearrangements distinguish the karyotype of the hypovirulent species Candida dubliniensis from the virulent Candida albicans. Fungal Genet. Biol. 45: 338350.
94. Magee, P. T.,, and H. Chibana. 2002. The genomes of Candida albicans and other Candida species, p. 293–304. In R. Calderone (ed.), Candida and Candidiasis. ASM Press, Washington, DC.
95. Malik, H. S.,, and S. Henikoff. 2009. Major evolutionary transitions in centromere complexity. Cell 138: 10671082.
96. Malik, S.,, A. Pightling,, L. Stefaniak,, A. Schurko, and, J. Logsdon. 2008. An expanded inventory of conserved meioic genes provides evidence for sex in Trichomonas vaginalis. PLoS One 3: e2879.
97. Marcet-Houben, M.,, and T. Gabaldon. 2009. Acquisition of prokaryotic genes by fungal genomes. Trends Genet. 26: 58.
98. Martin, W.,, T. Rujan,, E. Richly,, A. Hansen,, S. Cornelsen,, T. Lins,, D. Leister,, B. Stoebe,, M. Hasegawa, and, D. Penny. 2002. Evolutionary analysis of Arabidopsis, cyanobacterial, and chloroplast genomes reveals plastid phylogeny and thousands of cyanobacterial genes in the nucleus. Proc. Natl. Acad. Sci. USA 99: 1224612251.
99. McEachern, M. J.,, and E. H. Blackburn. 1994. A conserved sequence motif within the exceptionally diverse telomeric sequences of budding yeasts. Proc. Natl. Acad. Sci. USA 91: 34533457.
100. McEachern, M. J.,, and J. B. Hicks. 1993. Unusually large telomeric repeats in the yeast Candida albicans. Mol. Cell. Biol. 13: 551560.
101. Melake, T.,, V. V. Passoth, and, U. Klinner. 1996. Characterization of the genetic system of the xylose-fermenting yeast Pichia stipitis. Curr. Microbiol. 33: 237242.
102. Miller, M. G.,, and A. D. Johnson. 2002. White-opaque switching in Candida albicans is controlled by mating-type locus homeodomain proteins and allows efficient mating. Cell 110: 293302.
103. Mishra, P. K.,, M. Baum, and, J. Carbon. 2007. Centromere size and position in Candida albicans are evolutionarily conserved independent of DNA sequence heterogeneity. Mol. Genet. Genomics 278: 455465.
104. Moran, G.,, C. Stokes,, S. Thewes,, B. Hube,, D. C. Coleman, and, D. Sullivan. 2004. Comparative genomics using Candida albicans DNA microarrays reveals absence and divergence of virulence-associated genes in Candida dubliniensis. Microbiology 150: 33633382.
105. Moran, G. P.,, D. M. MacCallum,, M. J. Spiering,, D. C. Coleman, and, D. J. Sullivan. 2007. Differential regulation of the transcriptional repressor NRG1 accounts for altered host-cell interactions in Candida albicans and Candida dubliniensis. Mol. Microbiol. 66: 915929.
106. Moreno-Ruiz, E.,, M. Galan-Diez,, W. Zhu,, E. Fernandez-Ruiz,, C. d’Enfert,, S. G. Filler,, P. Cossart, and, E. Veiga. 2009. Candida albicans internalization by host cells is mediated by a clathrin-dependent mechanism. Cell. Microbiol. 11: 11791189.
107. Muller, H.,, C. Hennequin,, J. Gallaud,, B. Dujon, and, C. Fairhead. 2008. The asexual yeast Candida glabrata maintains distinct a and α haploid mating types. Eukaryot. Cell 7: 848858.
108. Naglik, J. R.,, S. J. Challacombe, and, B. Hube. 2003. Candida albicans secreted aspartyl proteinases in virulence and pathogenesis. Microbiol. Mol. Biol. Rev. 67: 400428.
109. Nailis, H.,, R. Vandenbroucke,, K. Tilleman,, D. Deforce,, H. Nelis, and, T. Coenye. 2009. Monitoring ALS1 and ALS3 gene expression during in vitro Candida albicans biofilm formation under continuous flow conditions. Mycopathologia 167: 917.
110. Nobile, C. J.,, D. R. Andes,, J. E. Nett,, F. J. Smith,, F. Yue,, Q. T. Phan,, J. E. Edwards,, S. G. Filler, and, A. P. Mitchell. 2006. Critical role of Bcr1-dependent adhesins in C. albicans biofilm formation in vitro and in vivo. PLoS Pathog. 2: e63.
111. Nobile, C. J.,, H. A. Schneider,, J. E. Nett,, D. C. Sheppard,, S. G. Filler,, D. R. Andes, and, A. P. Mitchell. 2008. Complementary adhesin function in C. albicans biofilm formation. Curr. Biol. 18: 10171024.
112. O’Gorman, C. M.,, H. T. Fuller, and, P. S. Dyer. 2009. Discovery of a sexual cycle in the opportunistic fungal pathogen Aspergillus fumigatus. Nature 457: 471474.
113. Ohama, T.,, T. Suzuki,, M. Mori,, S. Osawa,, T. Ueda,, K. Watanabe, and, T. Nakase. 1993. Non-universal decoding of the leucine codon CUG in several Candida species. Nucleic Acids Res. 21: 40394045.
114. Padmanabhan, S.,, J. Thakur,, R. Siddharthan, and, K. Sanyal. 2008. Rapid evolution of Cse4p-rich centromeric DNA sequences in closely related pathogenic yeasts, Candida albicans and Candida dubliniensis. Proc. Natl. Acad. Sci. USA 105: 1979719802.
115. Perry, J.,, N. Kleckner, and, G. V. Borner. 2005. Bioinformatic analyses implicate the collaborating meiotic crossover/chiasma proteins Zip2, Zip3, and Spo22/Zip4 in ubiquitin labeling. Proc. Natl. Acad. Sci. USA 102: 1759417599.
116. Pfaller, M. A.,, and D. J. Diekema. 2007. Epidemiology of invasive candidiasis: a persistent public health problem. Clin. Microbiol. Rev. 20: 133163.
117. Phan, Q. T.,, C. L. Myers,, Y. Fu,, D. C. Sheppard,, M. R. Yeaman,, W. H. Welch,, A. S. Ibrahim,, J. E. Edwards, Jr., and, S. G. Filler. 2007. Als3 is a Candida albicans invasin that binds to cadherins and induces endocytosis by host cells. PLoS Biol. 5: e64.
118. Pujol, C.,, K. J. Daniels,, S. R. Lockhart,, T. Srikantha,, J. B. Radke,, J. Geiger, and, D. R. Soll. 2004. The closely related species Candida albicans and Candida dubliniensis can mate. Eukaryot. Cell 3: 10151027.
119. Qiao, F.,, and T. R. Cech. 2008. Triple-helix structure in telomerase RNA contributes to catalysis. Nat. Struct. Mol. Biol. 15: 634640.
120. Recca, J.,, and E. Mrak. 1952. Yeasts occuring in citrus products. Food Technol. 6: 450454.
121. Reedy, J. L.,, A. M. Floyd, and, J. Heitman. 2009. Mechanistic plasticity of sexual reproduction and meiosis in the Candida pathogenic species complex. Curr. Biol. 19: 891899.
122. Reuss, O.,, and J. Morschhauser. 2006. A family of oligopeptide transporters is required for growth of Candida albicans on proteins. Mol. Microbiol. 60: 795812.
123. Rodrigues de Miranda, L. 1979. Clavispora, a new yeast genus of the Saccharomycetales. Antonie van Leeuwenhoek 45: 479483.
124. Rolland, T.,, C. Neuveglise,, C. Sacerdot, and, B. Dujon. 2009. Insertion of horizontally transferred genes within conserved syntenic regions of yeast genomes. PLoS One 4: e6515.
125. Rossignol, T.,, C. Ding,, A. Guida,, C. d’Enfert,, D. G. Higgins, and, G. Butler. 2009. Correlation between biofilm formation and the hypoxic response in Candida parapsilosis. Eukaryot. Cell 8: 550559.
126. Rossignol, T.,, P. Lechat,, C. Cuomo,, Q. Zeng,, I. Moszer, and, C. d’Enfert. 2008. CandidaDB: a multi-genome database for Candida species and related Saccharomycotina. Nucleic Acids Res. 36: D557–D561.
127. Sadhu, C.,, M. J. McEachern,, E. P. Rustchenko-Bulgac,, J. Schmid,, D. R. Soll, and, J. B. Hicks. 1991. Telomeric and dispersed repeat sequences in Candida yeasts and their use in strain identification. J. Bacteriol. 173: 842850.
128. Santos, M. A.,, and M. F. Tuite. 1995. The CUG codon is decoded in vivo as serine and not leucine in Candida albicans. Nucleic Acids Res. 23: 14811486.
129. Sanyal, K.,, M. Baum, and, J. Carbon. 2004. Centromeric DNA sequences in the pathogenic yeast Candida albicans are all different and unique. Proc. Natl. Acad. Sci. USA 101: 1137411379.
130. Schaller, M.,, C. Borelli,, H. C. Korting, and, B. Hube. 2005. Hydrolytic enzymes as virulence factors of Candida albicans. Mycoses 48: 365377.
131. Schurko, A. M.,, and J. M. Logsdon, Jr. 2008. Using a meiosis detection toolkit to investigate ancient asexual “scandals” and the evolution of sex. Bioessays 30: 579589.
132. Schurko, A. M.,, J. M. Logsdon, Jr., and, B. D. Eads. 2009. Meiosis genes in Daphnia pulex and the role of parthenogenesis in genome evolution. BMC Evol. Biol. 9: 78.
133. Schurko, A. M.,, M. Neiman, and, J. M. Logsdon, Jr. 2009. Signs of sex: what we know and how we know it. Trends Ecol. Evol. 24: 208217.
134. Shefer, K.,, Y. Brown,, V. Gorkovoy,, T. Nussbaum,, N. B. Ulyanov, and, Y. Tzfati. 2007. A triple helix within a pseudoknot is a conserved and essential element of telom-erase RNA. Mol. Cell. Biol. 27: 21302143.
135. Sherman, D. J.,, T. Martin,, M. Nikolski,, C. Cayla,, J. L. Souciet, and, P. Durrens. 2009. Génolevures: protein families and synteny among complete hemiascomycetous yeast proteomes and genomes. Nucleic Acids Res. 37: D550–554.
136. Silva, R. M.,, J. A. Paredes,, G. R. Moura,, B. Manadas,, T. Lima-Costa,, R. Rocha,, I. Miranda,, A. C. Gomes,, M. J. Koerkamp,, M. Perrot,, F. C. Holstege,, H. Boucherie, and, M. A. Santos. 2007. Critical roles for a genetic code alteration in the evolution of the genus Candida. EMBO J. 26: 45554565.
137. Skrzypek, M. S.,, M. B. Arnaud,, M. C. Costanzo,, D. O. Inglis,, P. Shah,, G. Binkley,, S. R. Miyasato, and, G. Sherlock. 2010. New tools at the Candida Genome Database: biochemical pathways and full-text literature search. Nucleic Acids Res. 38: D428–D432.
138. Slutsky, B.,, M. Staebell,, J. Anderson,, L. Risen,, M. Pfaller, and, D. R. Soll. 1987. “White-opaque transition”: a second high-frequency switching system in Candida albicans. J. Bacteriol. 169: 189197.
139. Soll, D. R. 2008. Candida biofilms: is adhesion sexy? Curr. Biol. 18: R717–R720.
140. Srikantha, T.,, S. A. Lachke, and, D. R. Soll. 2003. Three mating type-like loci in Candida glabrata. Eukaryot. Cell 2: 328340.
141. Stanhope, M. J.,, A. Lupas,, M. J. Italia,, K. K. Koretke,, C. Volker, and, J. R. Brown. 2001. Phylogenetic analyses do not support horizontal gene transfers from bacteria to vertebrates. Nature 411: 940944.
142. Stehr, F.,, A. Felk,, A. Gacser,, M. Kretschmar,, B. Mahnss,, K. Neuber,, B. Hube, and, W. Schafer. 2004. Expression analysis of the Candida albicans lipase gene family during experimental infections and in patient samples. FEMS Yeast Res. 4: 401408.
143. Stokes, C.,, G. P. Moran,, M. J. Spiering,, G. T. Cole,, D. C. Coleman, and, D. J. Sullivan. 2007. Lower filamentation rates of Candida dubliniensis contribute to its lower virulence in comparison with Candida albicans. Fungal Genet. Biol. 44: 920931.
144. Suh, S. O.,, C. J. Marshall,, J. V. McHugh, and, M. Blackwell. 2003. Wood ingestion by passalid beetles in the presence of xylose-fermenting gut yeasts. Mol. Ecol. 12: 31373145.
145. Syvanen, M. 1985. Cross-species gene transfer; implications for a new theory of evolution. J. Theor. Biol. 112: 333343.
146. Tavanti, A.,, A. D. Davidson,, M. J. Fordyce,, N. A. Gow,, M. C. Maiden, and, F. C. Odds. 2005. Population structure and properties of Candida albicans, as determined by multilocus sequence typing. J. Clin. Microbiol. 43: 56015613.
147. Tavanti, A.,, A. D. Davidson,, N. A. Gow,, M. C. Maiden, and, F. C. Odds. 2005. Candida orthopsilosis and Candida metapsilosis spp. nov. to replace Candida parapsilosis groups II and III. J. Clin. Microbiol. 43: 284292.
148. Taylor, D. J.,, and J. Bruenn. 2009. The evolution of novel fungal genes from non-retroviral RNA viruses. BMC Biol. 7: 88.
149. Tsong, A. E.,, M. G. Miller,, R. M. Raisner, and, A. D. Johnson. 2003. Evolution of a combinatorial transcriptional circuit: a case study in yeasts. Cell 115: 389399.
150. Tsong, A. E.,, B. B. Tuch,, H. Li, and, A. D. Johnson. 2006. Evolution of alternative transcriptional circuits with identical logic. Nature 443: 415420.
151. Tzung, K. W.,, R. M. Williams,, S. Scherer,, N. Federspiel,, T. Jones,, N. Hansen,, V. Bivolarevic,, L. Huizar,, C. Komp,, R. Surzycki,, R. Tamse,, R. W. Davis, and, N. Agabian. 2001. Genomic evidence for a complete sexual cycle in Candida albicans. Proc. Natl. Acad. Sci. USA 98: 32493253.
152. Ulyanov, N. B.,, K. Shefer,, T. L. James, and, Y. Tzfati. 2007. Pseudoknot structures with conserved base triples in telomerase RNAs of ciliates. Nucleic Acids Res. 35: 61506160.
153. van der Walt, J. P. 1966. Lodderomyces, a new genus of the Saccharomycetaceae. Antonie van Leeuwenhoek 32: 15.
154. van der Walt, J. P.,, M. B. Taylor, and, N. V. Liebenberg. 1977. Ploidy, ascus formation and recombination in Torulaspora ( Debaryomyces) hansenii. Antonie van Leeuwenhoek 43: 205218.
155. van het Hoog, M.,, T. J. Rast,, M. Martchenko,, S. Grindle,, D. Dignard,, H. Hogues,, C. Cuomo,, M. Berriman,, S. Scherer,, B. B. Magee,, M. Whiteway,, H. Chibana,, A. Nantel, and, P. T. Magee. 2007. Assembly of the Candida albicans genome into sixteen supercontigs aligned on the eight chromosomes. Genome Biol. 8: R52.
156. Verstrepen, K. J.,, A. Jansen,, F. Lewitter, and, G. R. Fink. 2005. Intragenic tandem repeats generate functional variability. Nat. Genet. 37: 986990.
157. Vilela, M. M.,, K. Kamei,, A. Sano,, R. Tanaka,, J. Uno,, I. Takahashi,, J. Ito,, K. Yarita, and, M. Miyaji. 2002. Pathogenicity and virulence of Candida dubliniensis: comparison with C. albicans. Med. Mycol. 40: 249257.
158. Wang, H.,, Z. Xu,, L. Gao, and, B. Hao. 2009. A fungal phylogeny based on 82 complete genomes using the composition vector method. BMC Evol. Biol. 9: 195.
159. Wickerham, L. J.,, and K. A. Burton. 1954. A clarification of the relationship of Candida guilliermondii to other yeasts by a study of their mating types. J. Bacteriol. 68: 594597.
160. Wingard, J. R. 1995. Importance of Candida species other than C. albicans as pathogens in oncology patients. Clin. Infect. Dis. 20: 115125.
161. Wong, S.,, M. A. Fares,, W. Zimmermann,, G. Butler, and, K. H. Wolfe. 2003. Evidence from comparative genomics for a complete sexual cycle in the ‘asexual’ pathogenic yeast Candida glabrata. Genome Biol. 4: R10.
162. Wood, V.,, R. Gwilliam,, M. A. Rajandream,, M. Lyne,, R. Lyne,, A. Stewart,, J. Sgouros,, N. Peat,, J. Hayles,, S. Baker,, D. Basham,, S. Bowman,, K. Brooks,, D. Brown,, S. Brown,, T. Chillingworth,, C. Churcher,, M. Collins,, R. Connor,, A. Cronin,, P. Davis,, T. Feltwell,, A. Fraser,, S. Gentles,, A. Goble,, N. Hamlin,, D. Harris,, J. Hidalgo,, G. Hodgson,, S. Holroyd,, T. Hornsby,, S. Howarth,, E. J. Huckle,, S. Hunt,, K. Jagels,, K. James,, L. Jones,, M. Jones,, S. Leather,, S. McDonald,, J. McLean,, P. Mooney,, S. Moule,, K. Mungall,, L. Murphy,, D. Niblett,, C. Odell,, K. Oliver,, S. O’Neil,, D. Pearson,, M. A. Quail,, E. Rabbinowitsch,, K. Rutherford,, S. Rutter,, D. Saunders,, K. Seeger,, S. Sharp,, J. Skelton,, M. Simmonds,, R. Squares,, S. Squares,, K. Stevens,, K. Taylor,, R. G. Taylor,, A. Tivey,, S. Walsh,, T. Warren,, S. Whitehead,, J. Woodward,, G. Volckaert,, R. Aert,, J. Robben,, B. Grymonprez,, I. Weltjens,, E. Vanstreels,, M. Rieger,, M. Schafer,, S. Muller-Auer,, C. Gabel,, M. Fuchs,, A. Dusterhoft,, C. Fritzc,, E. Holzer,, D. Moestl,, H. Hilbert,, K. Borzym,, I. Langer,, A. Beck,, H. Lehrach,, R. Reinhardt,, T. M. Pohl,, P. Eger,, W. Zimmermann,, H. Wedler,, R. Wambutt,, B. Purnelle,, A. Goffeau,, E. Cadieu,, S. Dreano,, S. Gloux, et al. 2002. The genome sequence of Schizosaccharomyces pombe. Nature 415: 871880.
163. Wright, S.,, and D. Finnegan. 2001. Genome evolution: sex and the transposable element. Curr. Biol. 11: R296–R299.
164. Yi, S.,, N. Sahni,, C. Pujol,, K. J. Daniels,, T. Srikantha,, N. Ma, and, D. R. Soll. 2009. A Candida albicans-specific region of the alpha-pheromone receptor plays a selective role in the white cell pheromone response. Mol. Microbiol. 71: 925947.
165. Yu, X.,, and A. Gabriel. 2004. Reciprocal translocations in Saccharomyces cerevisiae formed by nonhomologous end joining. Genetics 166: 741751.
166. Zhao, X.,, K. J. Daniels,, S. H. Oh,, C. B. Green,, K. M. Yeater,, D. R. Soll, and, L. L. Hoyer. 2006. Candida albicans Als3p is required for wild-type biofilm formation on silicone elastomer surfaces. Microbiology 152: 22872299.
167. Zhao, X.,, S. H. Oh,, G. Cheng,, C. B. Green,, J. A. Nuessen,, K. Yeater,, R. P. Leng,, A. J. Brown, and, L. L. Hoyer. 2004. ALS3 and ALS8 represent a single locus that encodes a Candida albicans adhesin; functional comparisons between Als3p and Als1p. Microbiology 150: 24152428.
168. Zhao, X.,, S. H. Oh, and, L. L. Hoyer. 2007. Deletion of ALS5, ALS6 or ALS7 increases adhesion of Candida albicans to human vascular endothelial and buccal epithelial cells. Med. Mycol. 45: 429434.
169. Zhao, X.,, S. H. Oh,, K. M. Yeater, and, L. L. Hoyer. 2005. Analysis of the Candida albicans Als2p and Als4p adhesins suggests the potential for compensatory function within the Als family. Microbiology 151: 16191630.


Generic image for table

Sequenced genomes in the CTG clade

Citation: Butler G. 2012. Comparative Genomics of Species, p 27-43. In Calderone R, Clancy C (ed), and Candidiasis, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555817176.ch3
Generic image for table

Telomere sequences in species

Citation: Butler G. 2012. Comparative Genomics of Species, p 27-43. In Calderone R, Clancy C (ed), and Candidiasis, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555817176.ch3
Generic image for table

Gene families enriched in pathogenic species

Citation: Butler G. 2012. Comparative Genomics of Species, p 27-43. In Calderone R, Clancy C (ed), and Candidiasis, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555817176.ch3
Generic image for table

Loss of genes from mating signal transduction and meiotic pathways in species

Citation: Butler G. 2012. Comparative Genomics of Species, p 27-43. In Calderone R, Clancy C (ed), and Candidiasis, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555817176.ch3

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error