Chapter 18 : Gene Expression during the Distinct Stages of Candidiasis

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

Gene Expression during the Distinct Stages of Candidiasis, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817176/9781555815394_Chap18-1.gif /docserver/preview/fulltext/10.1128/9781555817176/9781555815394_Chap18-2.gif


This chapter summarizes some of the known and proposed infection strategies and underlying transcriptional responses which govern them. Although similar strategies may be used by other pathogenic species which are commonly found as commensals, the focus is on as the most common and best-investigated species. The ability of to colonize surfaces therefore constitutes a vital first step in many forms of candidiasis. In nature, the gastrointestinal (GI) tracts of neither rats nor mice are colonized by , and in order to establish colonization, some form of treatment such as the use of antibiotics is usually necessary. Certain predisposing conditions permit to switch from a harmless commensal of the oral mucosa to an aggressive pathogen able to cause superficial infections of the oral cavity and oropharyngeal regions. The commensally colonized tissue could then be monitored to detect the natural fluctuations in gene expression in the oral cavity. Simultaneously, the transcript profile of in the disease state could be determined over time. To study the virulence properties of in a mouse model, two infection routes are commonly used. Intravenous infection results in direct hematogenous dissemination via the bloodstream. Another method for inducing invasive candidiasis is via intraperitoneal infection.

Citation: Wilson D, Mayer F, Hube B. 2012. Gene Expression during the Distinct Stages of Candidiasis, p 283-298. In Calderone R, Clancy C (ed), and Candidiasis, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555817176.ch18
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of FIGURE 1

General aspects of -host interactions. During all forms of candidiasis, the fungus must sense and respond to the local environment, acquire nutrients, and resist environmental stresses. is capable of adhering to various substrata, growing in different morphologies (dimorphism), invading host cells, and secreting extracellular hydro-lases which, under certain circumstances, can lead to damage of the host. For a more detailed summary of the genes involved in these processes during the distinct stages of candidiasis, refer to Table 1 . doi:10.1128/9781555817176.ch18.f1

Citation: Wilson D, Mayer F, Hube B. 2012. Gene Expression during the Distinct Stages of Candidiasis, p 283-298. In Calderone R, Clancy C (ed), and Candidiasis, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555817176.ch18
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Alberti-Segui, C.,, A. J. Morales,, H. Xing,, M. M. Kessler,, D. A. Willins,, K. G. Weinstock,, G. Cottarel,, K. Fechtel, and, B. Rogers. 2004. Identification of potential cell-surface proteins in Candida albicans and investigation of the role of a putative cell-surface glycosidase in adhesion and virulence. Yeast (Chichester) 21: 285302.
2. Almeida, R. S.,, S. Brunke,, A. Albrecht,, S. Thewes,, M. Laue,, J. E. Edwards,, S. G. Filler, and, B. Hube. 2008. The hyphal-associated adhesin and invasin Als3 of Candida albicans mediates iron acquisition from host ferritin. PLoS Pathog. 4: e1000217.
3. Almeida, R. S.,, D. Wilson, and, B. Hube. 2009. Candida albicans iron acquisition within the host. FEMS Yeast Res. 9: 10001012.
4. Andes, D.,, A. Lepak,, A. Pitula,, K. Marchillo, and, J. Clark. 2005. A simple approach for estimating gene expression in Candida albicans directly from a systemic infection site. J. Infect. Dis. 192: 893900.
5. Argimon, S.,, J. A. Wishart,, R. Leng,, S. Macaskill,, A. Mavor,, T. Alexandris,, S. Nicholls,, A. W. Knight,, B. Enjalbert,, R. Walmsley,, F. C. Odds,, N. A. Gow, and, A. J. Brown. 2007. Developmental regulation of an adhesin gene during cellular morphogenesis in the fungal pathogen Candida albicans. Eukaryot. Cell 6: 682692.
6. Bailey, D. A.,, P. J. Feldmann,, M. Bovey,, N. A. Gow, and, A. J. Brown. 1996. The Candida albicans HYR1 gene, which is activated in response to hyphal development, belongs to a gene family encoding yeast cell wall proteins. J. Bacteriol. 178: 53535360.
7. Barelle, C. J.,, C. L. Priest,, D. M. Maccallum,, N. A. Gow,, F. C. Odds, and, A. J. Brown. 2006. Niche-specific regulation of central metabolic pathways in a fungal pathogen. Cell. Microbiol. 8: 961971.
8. Bendel, C. M.,, S. M. Wiesner,, R. M. Garni,, E. Cebelinski, and, C. L. Wells. 2002. Cecal colonization and systemic spread of Candida albicans in mice treated with antibiotics and dexamethasone. Pediatr. Res. 51: 290295.
9. Bensen, E. S.,, S. G. Filler, and, J. Berman. 2002. A fork-head transcription factor is important for true hyphal as well as yeast morphogenesis in Candida albicans. Eukaryot. Cell 1: 787798.
10. Bensen, E. S.,, S. J. Martin,, M. Li,, J. Berman, and, D. A. Davis. 2004. Transcriptional profiling in Candida albicans reveals new adaptive responses to extracellular pH and functions for Rim101p. Mol. Microbiol. 54: 13351351.
11. Birse, C. E.,, M. Y. Irwin,, W. A. Fonzi, and, P. S. Sypherd. 1993. Cloning and characterization of ECE1, a gene expressed in association with cell elongation of the dimorphic pathogen Candida albicans. Infect. Immun. 61: 36483655.
12. Braun, B. R.,, W. S. Head,, M. X. Wang, and, A. D. Johnson. 2000. Identification and characterization of TUP1-regulated genes in Candida albicans. Genetics 156: 3144.
13. Bromuro, C.,, R. La Valle,, S. Sandini,, F. Urbani,, C. M. Ausiello,, L. Morelli,, C. Fe d’Ostiani,, L. Romani, and, A. Cassone. 1998. A 70-kilodalton recombinant heat shock protein of Candida albicans is highly immunogenic and enhances systemic murine candidiasis. Infect. Immun. 66: 21542162.
14. Brown, J. F., and, E. Balish. 1978. Gastrointestinal micro-ecology of BALB/c nude mice. Appl. Environ. Microbiol. 36: 144159.
15. Cole, G. T.,, K. T. Lynn,, K. R. Seshan, and, L. M. Pope. 1989. Gastrointestinal and systemic candidosis in immunocompromised mice. J. Med. Vet. Mycol. 27: 363380.
16. Dalle, F.,, B. Wachtler,, C. L’Ollivier,, G. Holland,, N. Bannert,, D. Wilson,, C. Labruere,, A. Bonnin, and, B. Hube. Cellular interactions of Candida albicans with human oral epithelial cells and enterocytes. Cell. Microbiol. 12: 248271.
17. De Bernardis, F.,, S. Arancia,, L. Morelli,, B. Hube,, D. Sanglard,, W. Schafer, and, A. Cassone. 1999. Evidence that members of the secretory aspartyl proteinase gene family, in particular SAP2, are virulence factors for Candida vaginitis. J. Infect. Dis. 179: 201208.
18. De Bernardis, F.,, F. A. Muhlschlegel,, A. Cassone, and, W. A. Fonzi. 1998. The pH of the host niche controls gene expression in and virulence of Candida albicans. Infect. Immun. 66: 33173325.
19. Doedt, T.,, S. Krishnamurthy,, D. P. Bockmuhl,, B. Tebarth,, C. Stempel,, C. L. Russell,, A. J. Brown, and, J. F. Ernst. 2004. APSES proteins regulate morphogenesis and metabolism in Candida albicans. Mol. Biol. Cell 15: 31673180.
20. Dongari-Bagtzoglou, A., and, H. Kashleva. 2006. Development of a highly reproducible three-dimensional organotypic model of the oral mucosa. Nat. Protoc. 1: 20122018.
21. Ekenna, O., and, R. J. Sherertz. 1987. Factors affecting colonization and dissemination of Candida albicans from the gastrointestinal tract of mice. Infect. Immun. 55: 15581563.
22. Enjalbert, B.,, D. M. MacCallum,, F. C. Odds, and, A. J. Brown. 2007. Niche-specific activation of the oxidative stress response by the pathogenic fungus Candida albicans. Infect. Immun. 75: 21432151.
23. Enjalbert, B.,, D. A. Smith,, M. J. Cornell,, I. Alam,, S. Nicholls,, A. J. Brown, and, J. Quinn. 2006. Role of the Hog1 stress-activated protein kinase in the global transcriptional response to stress in the fungal pathogen Candida albicans. Mol. Biol. Cell 17: 10181032.
24. Ferrer, J. 2000. Vaginal candidosis: epidemiological and etiological factors. Int. J. Gynaecol. Obstet. 71 (Suppl. 1): S21S27.
25. Fidel, P. L., Jr., and, J. D. Sobel. 1996. Immunopathogenesis of recurrent vulvovaginal candidiasis. Clin. Microbiol. Rev. 9: 335348.
26. Filler, S. G., and, D. C. Sheppard. 2006. Fungal invasion of normally non-phagocytic host cells. PLoS Pathog. 2: e129.
27. Fonzi, W. A. 1999. PHR1 and PHR2 of Candida albicans en-code putative glycosidases required for proper cross-linking of β-1,3- and β-1,6-glucans. J. Bacteriol. 181: 70707079.
28. Fradin, C.,, P. De Groot,, D. MacCallum,, M. Schaller,, F. Klis,, F. C. Odds, and, B. Hube. 2005. Granulocytes govern the transcriptional response, morphology and proliferation of Candida albicans in human blood. Mol. Microbiol. 56: 397415.
29. Froy, O.,, A. Hananel,, N. Chapnik, and, Z. Madar. 2005. Differential expression of rat beta-defensins. IUBMB Life 57: 4143.
30. Fu, Y.,, A. S. Ibrahim,, D. C. Sheppard,, Y. C. Chen,, S. W. French,, J. E. Cutler,, S. G. Filler, and, J. E. Edwards, Jr. 2002. Candida albicans Als1p: an adhesin that is a downstream effector of the EFG1 filamentation pathway. Mol. Microbiol. 44: 6172.
31. Garcia-Sanchez, S.,, S. Aubert,, I. Iraqui,, G. Janbon,, J. M. Ghigo, and, C. d’Enfert. 2004. Candida albicans biofilms: a developmental state associated with specific and stable gene expression patterns. Eukaryot. Cell 3: 536545.
32. Giusani, A. D.,, M. Vinces, and, C. A. Kumamoto. 2002. Invasive filamentous growth of Candida albicans is promoted by Czf1p-dependent relief of Efg1p-mediated repression. Genetics 160: 17491753.
33. Green, C. B.,, S. M. Marretta,, G. Cheng,, F. F. Faddoul,, E. J. Ehrhart, and, L. L. Hoyer. 2006. RT-PCR analysis of Candida albicans ALS gene expression in a hyposalivatory rat model of oral candidiasis and in HIV-positive human patients. Med. Mycol. 44: 103111.
34. Grubb, S. E.,, C. Murdoch,, P. E. Sudbery,, S. P. Saville,, J. L. Lopez-Ribot, and, M. H. Thornhill. 2009. Adhesion of Candida albicans to endothelial cells under physiological conditions of flow. Infect. Immun. 77: 38723878.
35. Guentzel, M. N., and, C. Herrera. 1982. Effects of compromising agents on candidosis in mice with persistent infections initiated in infancy. Infect. Immun. 35: 222228.
36. Hoyer, L. L.,, C. B. Green,, S. H. Oh, and, X. Zhao. 2008. Discovering the secrets of the Candida albicans agglutinin-like sequence (ALS) gene family—a sticky pursuit. Med. Mycol. 46: 115.
37. Hoyer, L. L.,, T. L. Payne,, M. Bell,, A. M. Myers, and, S. Scherer. 1998. Candida albicans ALS3 and insights into the nature of the ALS gene family. Curr. Genet. 33: 451459.
38. Hromatka, B. S.,, S. M. Noble, and, A. D. Johnson. 2005. Transcriptional response of Candida albicans to nitric oxide and the role of the YHB1 gene in nitrosative stress and virulence. Mol. Biol. Cell 16: 48144826.
39. Hube, B. 2004. From commensal to pathogen: stage- and tissue-specific gene expression of Candida albicans. Curr. Opin. Microbiol. 7: 336341.
40. Hube, B. 2009. Fungal adaptation to the host environment. Curr. Opin. Microbiol. 12: 347349.
41. Hube, B., and, J. Naglik. 2001. Candida albicans proteinases: resolving the mystery of a gene family. Microbiology (Reading) 147: 19972005.
42. Jong, A. Y.,, M. F. Stins,, S. H. Huang,, S. H. Chen, and, K. S. Kim. 2001. Traversal of Candida albicans across human blood-brain barrier in vitro. Infect. Immun. 69: 45364544.
43. Knight, S. A.,, G. Vilaire,, E. Lesuisse, and, A. Dancis. 2005. Iron acquisition from transferrin by Candida albicans depends on the reductive pathway. Infect. Immun. 73: 54825492.
44. Koh, A. Y.,, J. R. Kohler,, K. T. Coggshall,, N. Van Rooijen, and, G. B. Pier. 2008. Mucosal damage and neutropenia are required for Candida albicans dissemination. PLoS Pathog. 4: e35.
45. Lan, C. Y.,, G. Rodarte,, L. A. Murillo,, T. Jones,, R. W. Davis,, J. Dungan,, G. Newport, and, N. Agabian. 2004. Regulatory networks affected by iron availability in Candida albicans. Mol. Microbiol. 53: 14511469.
46. Lee, R. E.,, T. T. Liu,, K. S. Barker,, R. E. Lee, and, P. D. Rogers. 2005. Genome-wide expression profiling of the response to ciclopirox olamine in Candida albicans. J. Antimicrob. Chemother. 55: 655662.
47. Lewis, J. G.,, R. P. Learmonth, and, K. Watson. 1995. Induction of heat, freezing and salt tolerance by heat and salt shock in Saccharomyces cerevisiae. Microbiology (Reading) 141 (Pt. 3): 687694.
48. Liu, T. T.,, R. E. Lee,, K. S. Barker,, R. E. Lee,, L. Wei,, R. Homayouni, and, P. D. Rogers. 2005. Genome-wide expression profiling of the response to azole, polyene, echinocandin, and pyrimidine antifungal agents in Candida albicans. Antimicrob. Agents Chemother. 49: 22262236.
49. Lorenz, M. C.,, J. A. Bender, and, G. R. Fink. 2004. Transcriptional response of Candida albicans upon internalization by macrophages. Eukaryot. Cell 3: 10761087.
50. MacCallum, D. M., and, F. C. Odds. 2005. Temporal events in the intravenous challenge model for experimental Candida albicans infections in female mice. Mycoses 48: 151161.
51. Martchenko, M.,, A. M. Alarco,, D. Harcus, and, M. Whiteway. 2004. Superoxide dismutases in Candida albicans: transcriptional regulation and functional characterization of the hyphal-induced SOD5 gene. Mol. Biol. Cell 15: 456467.
52. Mavor, A. L.,, S. Thewes, and, B. Hube. 2005. Systemic fungal infections caused by Candida species: epidemiology, infection process and virulence attributes. Curr. Drug Targets 6: 863874.
53. Mitchell, A.,, G. H. Romano,, B. Groisman,, A. Yona,, E. Dekel,, M. Kupiec,, O. Dahan, and, Y. Pilpel. 2009. Adaptive prediction of environmental changes by microorganisms. Nature 460: 220224.
54. Monk, B. C.,, M. B. Kurtz,, J. A. Marrinan, and, D. S. Perlin. 1991. Cloning and characterization of the plasma membrane H +-ATPase from Candida albicans. J. Bacteriol. 173: 68266836.
55. Monteoliva, L.,, M. Sanchez,, J. Pla,, C. Gil, and, C. Nom-bela. 1996. Cloning of Candida albicans SEC14 gene homologue coding for a putative essential function. Yeast (Chichester) 12: 10971105.
56. Muhlschlegel, F. A., and, W. A. Fonzi. 1997. PHR2 of Candida albicans encodes a functional homolog of the pH-regulated gene PHR1 with an inverted pattern of pH-dependent expression. Mol. Cell. Biol. 17: 59605967.
57. Naglik, J.,, A. Albrecht,, O. Bader, and, B. Hube. 2004. Candida albicans proteinases and host/pathogen interactions. Cell. Microbiol. 6: 915926.
58. Naglik, J. R.,, S. J. Challacombe, and, B. Hube. 2003. Candida albicans secreted aspartyl proteinases in virulence and pathogenesis. Microbiol. Mol. Biol. Rev. 67: 400428.
59. Naglik, J. R.,, P. L. Fidel, Jr., and, F. C. Odds. 2008. Animal models of mucosal Candida infection. FEMS Microbiol. Lett. 283: 129139.
60. Naglik, J. R.,, F. Fostira,, J. Ruprai,, J. F. Staab,, S. J. Challacombe, and, P. Sundstrom. 2006. Candida albicans HWP1 gene expression and host antibody responses in colonization and disease. J. Med. Microbiol. 55: 13231327.
61. Nakagawa, Y.,, K. Koide,, K. Watanabe,, Y. Morita,, I. Mizuguchi, and, T. Akashi. 1999. The expression of the pathogenic yeast Candida albicans catalase gene in response to hydrogen peroxide. Microbiol. Immunol. 43: 645651.
62. Nantel, A.,, D. Dignard,, C. Bachewich,, D. Harcus,, A. Marcil,, A. P. Bouin,, C. W. Sensen,, H. Hogues,, M. van het Hoog,, P. Gordon,, T. Rigby,, F. Benoit,, D. C. Tessier,, D. Y. Thomas, and, M. Whiteway. 2002. Transcription profiling of Candida albicans cells undergoing the yeast-to-hyphal transition. Mol. Biol. Cell 13: 34523465.
63. Nicholls, S.,, M. D. Leach,, C. L. Priest, and, A. J. Brown. 2009. Role of the heat shock transcription factor, Hsf1, in a major fungal pathogen that is obligately associated with warm-blooded animals. Mol. Microbiol. 74: 844861.
64. Niewerth, M.,, D. Kunze,, M. Seibold,, M. Schaller,, H. C. Korting, and, B. Hube. 2003. Ciclopirox olamine treatment affects the expression pattern of Candida albicans genes encoding virulence factors, iron metabolism proteins, and drug resistance factors. Antimicrob. Agents Chem-other. 47: 18051817.
65. Nucci, M., and, E. Anaissie. 2001. Revisiting the source of candidemia: skin or gut? Clin. Infect. Dis. 33: 19591967.
66. Ostrander, D. B., and, J. A. Gorman. 1994. Characterization of the Candida albicans TRP1 gene and construction of a homozygous trp1 mutant by sequential co-transformation. Gene 148: 179185.
67. Pappas, P. G.,, J. H. Rex,, J. D. Sobel,, S. G. Filler,, W. E. Dismukes,, T. J. Walsh, and, J. E. Edwards. 2004. Guidelines for treatment of candidiasis. Clin. Infect. Dis. 38: 161189.
68. Park, H.,, Y. Liu,, N. Solis,, J. Spotkov,, J. Hamaker,, J. R. Blankenship,, M. R. Yeaman,, A. P. Mitchell,, H. Liu, and, S. G. Filler. 2009. Transcriptional responses of Candida albicans to epithelial and endothelial cells. Eukaryot. Cell 8: 14981510.
69. Paulitsch, A.,, W. Weger,, G. Ginter-Hanselmayer,, E. Marth, and, W. Buzina. 2006. A 5-year (2000–2004) epidemiological survey of Candida and non- Candida yeast species causing vulvovaginal candidiasis in Graz, Austria. Mycoses 49: 471475.
70. Pendrak, M. L.,, M. P. Chao,, S. S. Yan, and, D. D. Roberts. 2004. Heme oxygenase in Candida albicans is regulated by hemoglobin and is necessary for metabolism of exogenous heme and hemoglobin to alpha-biliverdin. J. Biol. Chem. 279: 34263433.
71. Pendrak, M. L.,, S. S. Yan, and, D. D. Roberts. 2004. Sensing the host environment: recognition of hemoglobin by the pathogenic yeast Candida albicans. Arch. Biochem. Biophys. 426: 148156.
72. Phan, Q. T.,, C. L. Myers,, Y. Fu,, D. C. Sheppard,, M. R. Yeaman,, W. H. Welch,, A. S. Ibrahim,, J. E. Edwards, Jr., and, S. G. Filler. 2007. Als3 is a Candida albicans invasin that binds to cadherins and induces endocytosis by host cells. PLoS Biol. 5: e64.
73. Pitarch, A.,, R. Diez-Orejas,, G. Molero,, M. Pardo,, M. Sanchez,, C. Gil, and, C. Nombela. 2001. Analysis of the serologic response to systemic Candida albicans infection in a murine model. Proteomics 1: 550559.
74. Pultz, N. J.,, U. Stiefel,, M. Ghannoum,, M. S. Helfand, and, C. J. Donskey. 2005. Effect of parenteral antibiotic administration on establishment of intestinal colonization by Candida glabrata in adult mice. Antimicrob. Agents Chemother. 49: 438440.
75. Ramon, A. M., and, W. A. Fonzi. 2003. Diverged binding specificity of Rim101p, the Candida albicans ortholog of PacC. Eukaryot. Cell 2: 718728.
76. Rubin-Bejerano, I.,, I. Fraser,, P. Grisafi, and, G. R. Fink. 2003. Phagocytosis by neutrophils induces an amino acid deprivation response in Saccharomyces cerevisiae and Candida albicans. Proc. Natl. Acad. Sci. USA 100: 1100711012.
77. Ruhnke, M. 2002. Skin and mucous membrane infections, p. 307325. In R. Calderone (ed.), Candida and Candidiasis. ASM Press, Washington, DC.
78. Ruis, H., and, C. Schuller. 1995. Stress signaling in yeast. Bioessays 17: 959965.
79. Samonis, G.,, E. Mantadakis,, E. Barbounakis,, D. Kofteridis,, G. Papadakis,, L. Sifaki, and, S. Maraki. 2008. Effects of tigecycline and daptomycin on murine gut colonization by Candida albicans. Mycoses 51: 324327.
80. Sandovsky-Losica, H.,, L. Barr-Nea, and, E. Segal. 1992. Fatal systemic candidiasis of gastrointestinal origin: an experimental model in mice compromised by anti-cancer treatment. J. Med. Vet. Mycol. 30: 219231.
81. Sandovsky-Losica, H.,, N. Chauhan,, R. Calderone, and, E. Segal. 2006. Gene transcription studies of Candida albicans following infection of HEp2 epithelial cells. Med. Mycol. 44: 329334.
82. Saporito-Irwin, S. M.,, C. E. Birse,, P. S. Sypherd, and, W. A. Fonzi. 1995. PHR1, a pH-regulated gene of Candida albicans, is required for morphogenesis. Mol. Cell. Biol. 15: 601613.
83. Saville, S. P.,, A. L. Lazzell,, A. P. Bryant,, A. Fretzen,, A. Monreal,, E. O. Solberg,, C. Monteagudo,, J. L. Lopez-Ribot, and, G. T. Milne. 2006. Inhibition of filamentation can be used to treat disseminated candidiasis. Antimicrob. Agents Chemother. 50: 33123316.
84. Saville, S. P.,, A. L. Lazzell,, C. Monteagudo, and, J. L. Lopez-Ribot. 2003. Engineered control of cell morphology in vivo reveals distinct roles for yeast and filamentous forms of Candida albicans during infection. Eukaryot. Cell 2: 10531060.
85. Sawyer, R. T.,, R. J. Moon, and, E. S. Beneke. 1976. Hepatic clearance of Candida albicans in rats. Infect. Immun. 14: 13481355.
86. Schaller, M.,, W. Schafer,, H. C. Korting, and, B. Hube. 1998. Differential expression of secreted aspartyl proteinases in a model of human oral candidosis and in patient samples from the oral cavity. Mol. Microbiol. 29: 605615.
87. Schaller, M.,, K. Zakikhany,, J. R. Naglik,, G. Weindl, and, B. Hube. 2006. Models of oral and vaginal candidiasis based on in vitro reconstituted human epithelia. Nat. Protoc. 1: 27672773.
88. Schofield, D. A.,, C. Westwater,, T. Warner, and, E. Balish. 2005. Differential Candida albicans lipase gene expression during alimentary tract colonization and infection. FEMS Microbiol. Lett. 244: 359365.
89. Schroter, C.,, U. C. Hipler,, A. Wilmer,, W. Kunkel, and, U. Wollina. 2000. Generation of reactive oxygen species by Candida albicans in relation to morphogenesis. Arch. Dermatol. Res. 292: 260264.
90. Setiadi, E. R.,, T. Doedt,, F. Cottier,, C. Noffz, and, J. F. Ernst. 2006. Transcriptional response of Candida albicans to hypoxia: linkage of oxygen sensing and Efg1p-regulatory networks. J. Mol. Biol. 361: 399411.
91. Sohn, K.,, I. Senyurek,, J. Fertey,, A. Konigsdorfer,, C. Joffroy,, N. Hauser,, G. Zelt,, H. Brunner, and, S. Rupp. 2006. An in vitro assay to study the transcriptional response during adherence of Candida albicans to different human epithelia. FEMS Yeast Res. 6: 10851093.
92. Sosinska, G. J.,, P. W. de Groot,, M. J. Teixeira de Mattos,, H. L. Dekker,, C. G. de Koster,, K. J. Hellingwerf, and, F. M. Klis. 2008. Hypoxic conditions and iron restriction affect the cell-wall proteome of Candida albicans grown under vagina-simulative conditions. Microbiology (Reading) 154: 510520.
93. Staab, J. F.,, S. D. Bradway,, P. L. Fidel, and, P. Sundstrom. 1999. Adhesive and mammalian transglutaminase substrate properties of Candida albicans Hwp1. Science 283: 15351538.
94. Staib, P.,, M. Kretschmar,, T. Nichterlein,, G. Kohler,, S. Michel,, H. Hof,, J. Hacker, and, J. Morschhauser. 1999. Host-induced, stage-specific virulence gene activation in Candida albicans during infection. Mol. Microbiol. 32: 533546.
95. Stichternoth, C., and, J. F. Ernst. 2009. Hypoxic adaptation by Efg1 regulates biofilm formation by Candida albicans. Appl. Environ. Microbiol. 75: 36633672.
96. Stribinskis, V.,, H. C. Heyman,, S. R. Ellis,, M. C. Steffen, and, N. C. Martin. 2005. Rpm2p, a component of yeast mitochondrial RNase P, acts as a transcriptional activator in the nucleus. Mol. Cell. Biol. 25: 65466558.
97. Sundgren-Andersson, A. K.,, P. Ostlund, and, T. Bartfai. 1998. IL-6 is essential in TNF-alpha-induced fever. Am. J. Physiol. 275: R2028–R2034.
98. Taylor, B. N.,, P. Staib,, A. Binder,, A. Biesemeier,, M. Sehnal,, M. Rollinghoff,, J. Morschhauser, and, K. Schroppel. 2005. Profile of Candida albicans-secreted aspartic proteinase elicited during vaginal infection. Infect. Immun. 73: 18281835.
99. Thewes, S.,, M. Kretschmar,, H. Park,, M. Schaller,, S. G. Filler, and, B. Hube. 2007. In vivo and ex vivo comparative transcriptional profiling of invasive and non-invasive Candida albicans isolates identifies genes associated with tissue invasion. Mol. Microbiol. 63: 16061628.
100. Timpel, C.,, S. Zink,, S. Strahl-Bolsinger,, K. Schroppel, and, J. Ernst. 2000. Morphogenesis, adhesive properties, and antifungal resistance depend on the Pmt6 protein mannosyltransferase in the fungal pathogen Candida albicans. J. Bacteriol. 182: 30633071.
101. Turner, J. R.,, T. F. Butler,, M. E. Johnson, and, R. S. Gordee. 1976. Colonization of the intestinal tract of conventional mice with Candida albicans and treatment with antifungal agents. Antimicrob. Agents Chemother. 9: 787792.
102. van Ogtrop, M. L.,, H. F. Guiot,, H. Mattie, and, R. van Furth. 1991. Modulation of the intestinal flora of mice by parenteral treatment with broad-spectrum cephalosporins. Antimicrob. Agents Chemother. 35: 976982.
103. van Ogtrop, M. L.,, H. Mattie,, H. F. Guiot, and, R. van Furth. 1990. Relation between the therapeutic efficacy of imipenem in an experimental infection in granulocytopenic mice and its effect on murine intestinal microbial ecology. J. Antimicrob. Chemother. 26: 399409.
104. Voss, A.,, R. J. Hollis,, M. A. Pfaller,, R. P. Wenzel, and, B. N. Doebbeling. 1994. Investigation of the sequence of colonization and candidemia in nonneutropenic patients. J. Clin. Microbiol. 32: 975980.
105. Vylkova, S.,, X. S. Li,, J. C. Berner, and, M. Edgerton. 2006. Distinct antifungal mechanisms: beta-defensins require Candida albicans Ssa1 protein, while Trk1p mediates activity of cysteine-free cationic peptides. Antimicrob. Agents Chemother. 50: 324331.
106. Wächtler, B.,, D. Wilson,, K. Haedicke,, F. Dalle, and, B. Hube. 2011. From attachment to damage: defined genes of Candida albicans mediate adhesion, invasion and damage during interaction with oral epithelial cells. PLoS One 6: e17046.
107. Walker, L. A.,, D. M. Maccallum,, G. Bertram,, N. A. Gow,, F. C. Odds, and, A. J. Brown. 2009. Genome-wide analysis of Candida albicans gene expression patterns during infection of the mammalian kidney. Fungal Genet. Biol. 46: 210219.
108. White, S. J.,, A. Rosenbach,, P. Lephart,, D. Nguyen,, A. Benjamin,, S. Tzipori,, M. Whiteway,, J. Mecsas, and, C. A. Kumamoto. 2007. Self-regulation of Candida albicans population size during GI colonization. PLoS Pathog. 3: e184.
109. Wilson, D., and, B. Hube. 2010. Hgc1 mediates dynamic Candida albicans-endothelium adhesion events during circulation. Eukaryot. Cell 9: 278287.
110. Wysong, D. R.,, L. Christin,, A. M. Sugar,, P. W. Robbins, and, R. D. Diamond. 1998. Cloning and sequencing of a Candida albicans catalase gene and effects of disruption of this gene. Infect. Immun. 66: 19531961.
111. Zakikhany, K.,, J. R. Naglik,, A. Schmidt-Westhausen,, G. Holland,, M. Schaller, and, B. Hube. 2007. In vivo transcript profiling of Candida albicans identifies a gene essential for interepithelial dissemination. Cell. Microbiol. 9: 29382954.
112. Zhao, X.,, S. H. Oh,, G. Cheng,, C. B. Green,, J. A. Nuessen,, K. Yeater,, R. P. Leng,, A. J. Brown, and, L. L. Hoyer. 2004. ALS3 and ALS8 represent a single locus that encodes a Candida albicans adhesin; functional comparisons between Als3p and Als1p. Microbiology (Reading) 150: 24152428.
113. Zhao, X.,, S. H. Oh, and, L. L. Hoyer. 2007. Deletion of ALS5, ALS6 or ALS7 increases adhesion of Candida albicans to human vascular endothelial and buccal epithelial cells. Med. Mycol. 45: 429434.
114. Zhao, X.,, S. H. Oh, and, L. L. Hoyer. 2007. Unequal contribution of ALS9 alleles to adhesion between Candida albicans and human vascular endothelial cells. Microbiology (Reading) 153: 23422350.
115. Zhao, X.,, S. H. Oh,, R. Jajko,, D. J. Diekema,, M. A. Pfaller,, C. Pujol,, D. R. Soll, and, L. L. Hoyer. 2007. Analysis of ALS5 and ALS6 allelic variability in a geographically diverse collection of Candida albicans isolates. Fungal Genet. Biol. 44: 12981309.
116. Zhao, X.,, S. H. Oh,, K. M. Yeater, and, L. L. Hoyer. 2005. Analysis of the Candida albicans Als2p and Als4p adhesins suggests the potential for compensatory function within the Als family. Microbiology (Reading) 151: 16191630.
117. Zhu, W., and, S. G. Filler. Interactions of Candida albicans with epithelial cells. Cell. Microbiol. 12: 273282.


Generic image for table

Summary of transcriptional profiling of infection model studies

Citation: Wilson D, Mayer F, Hube B. 2012. Gene Expression during the Distinct Stages of Candidiasis, p 283-298. In Calderone R, Clancy C (ed), and Candidiasis, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555817176.ch18

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error