Chapter 21 : Back to the Future: Mitochondria and Energetics

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

Back to the Future: Mitochondria and Energetics, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817176/9781555815394_Chap21-1.gif /docserver/preview/fulltext/10.1128/9781555817176/9781555815394_Chap21-2.gif


This chapter reviews the role of mitochondria in human fungal pathogens, focusing upon , , and . The respiratory pathways of species are highlighted along with the roles of mitochondria in morphogenesis, adaptive responses to oxidant stress and carbon depletion, and antifungal drug resistance and sensitivity. The focus therefore is on the role of mitochondria in the pathogenesis of candidiasis and developing the concept that there are differences in mitochondria of mammalian cells versus pathogens. The study of mitochondria in species first followed those that were of industrial importance, examples being and . The morphogenesis of has long been featured as critical to the establishment of candidiasis. Mitochondria play an active role in detoxifying reactive oxidant species (ROS) produced during cell metabolism. This has been convincingly shown through the use of inhibitors of respiratory complexes. 7-Chlorotetrazolo[5,1-c]benzo[1,2,4]triazine (CTBT) increases the activity of several antimycotics, including flucytosine as well as azoles. The target of histatin 5, a human basic salivary peptide that has demonstrated antifungal activity, was initially shown to be the energized mitochondria. There is ample proof that mitochondrial functions as well as regulation of these functions vary among pathogenic and model fungi, and that mammalian mitochondria have less complexity with regard to respiratory pathways.

Citation: Alex D, Calderone R, Li D. 2012. Back to the Future: Mitochondria and Energetics, p 331-341. In Calderone R, Clancy C (ed), and Candidiasis, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555817176.ch21
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of FIGURE 1

The respiratory pathway of and . Complexes I, II, III, and IV are part of the classical respiratory pathway. Protons are transported to the IMS as a result of electron transfer across complexes in the respiratory pathways, thereby building a potential across the membrane. CoQ is the hub for transfer of electrons from complex I and complex II. Additionally, there are alternative NADH dehydrogenases that can separately sequester NADH from internal and external sources and feed electrons to CoQ. The AOX pathway branches at the level of CoQ and is able to reduce oxygen and produce ATP. The PAR pathway also branches at the level of CoQ but is also able to accept electrons from cytochrome (cyt ) of the classical pathway, which is further downstream of CoQ. Inhibitors of the complexes are shown. Of importance to energetics, the potential that is built up by the transfer of protons is used to generate ATP as the protons are pumped back into the matrix. oxi c, cytochrome oxidase. Adapted from reference . doi:10.1128/9781555817176.ch21.f1

Citation: Alex D, Calderone R, Li D. 2012. Back to the Future: Mitochondria and Energetics, p 331-341. In Calderone R, Clancy C (ed), and Candidiasis, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555817176.ch21
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2

Pathways of mitochondrial protein import and distribution to the mitochondria. Translocases are of two types, TOM (of the OM) and TIM (of the IM). SAM, sorting and assembling machinery; MDM, mitochondrial distribution and morphology; PAM, presequence translocase-associated motors; MIA, mitochondrial IMS assembly; MPP, mitochondrial processing peptidase. See reference . doi:10.1128/9781555817176.ch21.f2

Citation: Alex D, Calderone R, Li D. 2012. Back to the Future: Mitochondria and Energetics, p 331-341. In Calderone R, Clancy C (ed), and Candidiasis, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555817176.ch21
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3

Possible roles of Goa1p in mitochondrial function. CRC complexes I to IV as well as AOX and PAR are represented as circles. Since strain GOA31 () is defective in building a membrane potential and ATP formation, we hypothesize that the lesion could be associated with several dysfunctions, including inhibition of complex I, III, or IV, that may lead to the phenotypic traits seen in this mutant. Mitochondrial functions that are affected in the mutant are shown (see also reference ). doi:10.1128/9781555817176.ch21.f3

Citation: Alex D, Calderone R, Li D. 2012. Back to the Future: Mitochondria and Energetics, p 331-341. In Calderone R, Clancy C (ed), and Candidiasis, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555817176.ch21
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Alonso-Monge, R.,, S. Carvaihlo,, C. Nombela,, E. Rial, and, J. Pla. 2009. The Hog1 MAP kinase controls respiratory metabolism in the fungal pathogen Candida albicans. Microbiology 155: 413423.
2. Aoki, S.,, S. Ito-Kuwa,, Y. Nakamura, and, T. Masuhara. 1990. Comparative pathogenicity of a wild type strain and a respiratory mutant of Candida albicans in mice. Zentralbl. Bakteriol. 273: 332343.
3. Askew, C.,, A. Sellam,, E. Epp,, H. Hogues,, A. Mullick,, A. Nantel, and, M. Whiteway. 2009. Transcriptional regulation of carbohydrate metabolism in the human pathogen Candida albicans. PLoS Pathog. 5: e1000612.
4. Bambach, A.,, M. Fernandes,, A. Ghosh,, M. Kruppa,, D. Alex,, D. Li,, O. Agrellos,, W. Fonzi,, R. Rolfes, and, R. Calderone. 2009. Goa1p of Candida albicans localizes to the mitochondria during stress and is required for mitochondrial function and virulence. Eukaryot. Cell 8: 17061720.
5. Barelle, C. J.,, C. L. Priest,, D. M. Mccallum,, N. A. Gow,, F. C. Odds, and, A. J. Brown. 2006. Niche-specific regulation of central metabolic pathways in a fungal pathogen. Cell. Microbiol. 8: 961971.
6. Batova, M.,, V. Klobucnikova,, Z. Oblasova,, J. Gregan,, P. Zahradnik,, I. Hapala,, J. Subik, and, C. Schuller. 2010. Chemogenomic and transcriptome analysis identifies mode of action of the chemosensitizing agent CTBT (7-chlorotetrazolo[5,1-c]benzo[1,2,4]triazine). BMC Genomics 4: 153169.
7. Biggs, D.,, H. Nakamura,, E. Kearney,, E. Rocca, and, T. Singer. 1970. Studies on the respiratory chain-linked nicotinamide adenine dinucleotide dehydrogenase. XVI. Characteristics for the membrane-bound dehydrogenase in Candida utilis and Saccharomyces cerevisiae. Arch. Biochem. Biophys. 137: 1229.
8. Bouchara, J.,, R. Zouhair,, S. Le Boudouil,, G. Renier,, R. Filmon,, D. Chabasse,, J. Hallet, and, A. Defontaine. 2000. In vivo selection of an azole-resistant petite mutant of Candida glabrata. J. Med. Microbiol. 49: 977984.
9. Camougrand, N.,, J. Velours,, M. Denis, and, M. Guerin. 1993. Isolation, characterization and function of the 2 cytochrome Cs from Candida parapsilosis. Biochim. Biophys. Acta 1143: 135141.
10. Camougrand, N.,, S. Zniber, and, M. Guerin. 1991. The antimycin-A-insensitive respiratory pathway of Candida parapsilosis: evidence for a second quinine involved specificity in its function. Biochim. Biophys. Acta 1057: 124130.
11. Cavalheiro, R.,, F. Borecky,, V. Faustinoni,, A. Schreiber, and, A. Vercesi. 2004. Respiration, oxidative phosphorylation and uncoupling protein in Candida albicans. Braz. J. Med. Biol. Res. 37: 14551461.
12. Chabrier-Rosello, Y.,, T. Foster,, S. Mitra, and, C. Haidaris. 2008. Respiratory deficiency enhances the sensitivity of the pathogenic fungus Candida to photodynamic treatment. Photochem. Photobiol. 84: 11411148.
13. Chacinska, A.,, C. Koehler,, D. Milenkovic,, T. Lithgrow, and, N. Pfanner. 2009. Importing mitochondrial proteins: machineries and mechanisms. Cell 13: 628644.
14. Chamilos, G.,, R. Lewis, and, D. Kontoyiannis. 2006. Inhibition of Candida parapsilosis mitochondrial respiratory pathways enhances susceptibility to caspofungin. Antimicrob. Agents Chemother. 50: 744747.
15. Chattaway, F. W.,, R. Bishop,, M. R. Holmes,, F. C. Odds, and, A. J. Barlow. 1973. Enzyme activities associated with carbohydrate synthesis and breakdown in the yeast and mycelial forms of Candida albicans. J. Gen. Microbiol. 75: 97109.
16. Cheng, S.,, C. Clancy,, K. Nguyen,, W. Clapp, and, M. Nguyen. 2007. A petite Candida albicans mutant strain with uncoupled oxidative phosphorylation overexpresses MDR1 and has diminished susceptibility to fluconazole and voriconazole. Antimicrob. Agents Chemother. 51: 18551858.
17. Cheng, S. J.,, C. Clancy,, Z. Zhang,, B. Hao,, W. Wang,, K. A. Iczkowski,, M. A. Pfaller, and, M. H. Nguyen. 2007. Uncoupling of oxidative phosphorylation enables Candida albicans to resist phagocytosis and persist in tissues. Cell. Microbiol. 9: 492501.
18. Dai, B.,, Y. Cao,, S. Huang,, Y. Xu,, P. Gao,, Y. Wang, and, J. Jiang. 2009. Baicalen induces programmed cell death in Candida albicans. J. Microbiol. Biotechnol. 19: 803809.
19. De Nollin, S.,, F. Thone, and, M. Borgers. 1975. Enzyme cytochemistry of Candida albicans. J. Histochem. Cytochem. 23: 758765.
20. Derdak, Z.,, N. Mark,, G. Beldi,, S. Robson,, J. Wands, and, G. Baffy. 2008. The mitochondrial uncoupling protein-2 promotes chemoresistance in cancer cells. Cancer Res. 68: 28132819.
21. Endo, T., and, K. Yamano. 2009. Multiple pathways for mitochondrial traffic. Biol. Chem. 390: 723730.
22. Fitzpatrick, D.,, M. Logue,, J. Stajich, and, G. Butler. 2006. A fungal phylogeny based upon 42 complete genomes derived from supertree and combined gene analysis. BMC Evol. Biol. 6: 99114.
23. Fradin, G.,, P. DeGroot,, D. MacCallum,, M. Schaller,, F. Klis,, F. C. Odds, and, B. Hube. 2005. Granulocytes govern the transcriptional response, morphology, and proliferation of Candida albicans in human blood. Mol. Microbiol. 56: 397415.
24. Fradin, G.,, M. Kretschmar,, T. Nichterlein,, C. Gaillardin,, C. d’Enfert, and, B. Hube. 2003. Stage-specific gene expression of Candida albicans in human blood. Mol. Microbiol. 47: 15231543.
25. Gogvadze, V.,, S. Orrenius, and, B. Zhivotovsky. 2009. Mitochondria as targets for cancer chemotherapy. Semin. Cancer Biol. 19: 5766.
26. Gohil, V.,, S. Sheth,, R. Nilsson,, A. Wojtovich,, J. Lee,, F. Perocchi,, W. Chen,, C. Clish,, C. Ayata,, P. Brookes, and, V. Mootha. 2010. Nutrient-sensitized screening for drugs that shift energy metabolism from mitochondria respiration to glycolysis. Nat. Biotechnol. doi:10.1038/nbt.1606.
27. Guerin, M. G., and, N. M. Camougrand. 1994. Partitioning of electron flux between the respiratory chains of the yeast Candida parapsilosis: parallel working of two chains. Biochim. Biophys. Acta 1184: 111117.
28. Gyurko, C.,, U. Lendenmann,, R. Troxler, and, F. Oppenheim. 2000. Candida albicans mutants deficient in respiration are resistant to the small cationic salivary antimicrobial peptide histatin 5. Antimicrob. Agents Chemother. 44: 348354.
29. Hamaide-Deplus, M., and, E. Nyns. 1974. Cyanide-insensitive respiration of Candida lipolytica. Antonie van Leeuwenhoek 40: 7991.
30. Helmerhorst, E.,, M. Stan,, M. Murphy,, F. Sherman, and, F. Oppenheim. 2005 The concomitant expression and availability of conventional and alternative, cyanide-insensitive, respiratory pathways in Candida albicans. Mitochondrion 5: 200211.
31. Helmerhorst, E.,, M. Murphy,, R. Troxler, and, F. Oppenheim. 2002. Characterization of the mitochondrial respiratory pathways in Candida albicans. Biochim. Biophys. Acta 1556: 7380.
32. Helmerhorst, E.,, P. Breeuwer,, W. van’t Hof,, E. Walgreen-Weterings,, L. Oomen,, E. Veerman,, A. Amerongen, and, T. Abee. 1999. The cellular target for histatin 5 of Candida albicans is the energized mitochondria. J. Biol. Chem. 274: 72867291.
33. Huh, W.-K., and, S. Kang. 2001. Characterization of a gene family encoding alternative oxidase from Candida albicans. Biochem. J. 356: 595604.
34. Huh, W.-K., and, S. Kang. 1999. Molecular cloning and functional expression of an alternated oxidase from Candida albicans. J. Bacteriol 181: 40984102.
35. Reference deleted.
36. Jarmuszkiewicz, W.,, G. Milani,, F. Fortes,, A. Schreiber,, F. Sluse, and, A. Vercesi. 2000. First evidence and characterization of an uncoupling protein in the fungal kingdom. FEBS Lett. 467: 145149.
37. Jia, J.,, Y. Wang,, Y. Cao,, P. Gao,, X. Jia,, Z. Ma,, Y. Xu,, B. Dai, and, Y. Jiang. 2007. CalPF7817 is involved in the regulation of redox homeostasis in Candida albicans. Biochem. Biophys. Res. Commun. 359: 163167.
38. Joseph-Horne, T.,, D. Hollomon, and, P. Wood. 2001. Fungal respiration: a fusion of standard and alternative components. Biochim. Biphys. Acta 1504: 179195.
39. Kaur, R.,, I. Castaño, and, B. P. Cormack. 2004. Functional genomic analysis of fluconazole susceptibility in the pathogenic yeast Candida glabrata: roles of calcium signaling and mitochondria. Antimicrob. Agents Chemother. 48: 16001613.
40. Konopka, K.,, B. Dorocka-Bobkowska,, S. Gebremedhin, and, N. Düzgünesş. 2010. Susceptibility of Candida biofilms to histatin 5 and fluconazole. Antonie van Leeuwenhoek doi:10.1008/s10482-010-9417-5.
41. Kot, E.,, J. Rolewic,, V. Olson, and, D. McClary. 1975. Growth, respiration and cytology of acetate-negative mutants of Candida albicans. Antonie van Leewenhoek 41: 229248.
42. Kutik, S.,, B. Guiard,, B. Meyer,, N. Wiedemann, and, N. Pfanner. 2007. Cooperation of translocase complexes in mitochondrial protein import. J. Cell Biol. 179: 585591.
43. Land, G.,, W. McDonald,, R. Stjernholm, and, L. Friedman. 1975. Factors affecting filamentation in Candida albicans. Relationship of the uptake and distribution of proline to morphogenesis in Candida albicans. Infect. Immun. 11: 10141023.
44. Land, G.,, W. McDonald,, R. Stjernholm, and, L. Friedman. 1974. Factors affecting filamentation in Candida albicans: changes in respiratory activity of Candida albicans during filamentation. Infect. Immun. 12: 119127.
45. Lorenz, M.,, J. Bender, and, G. Fink. 2004. Transcriptional response of Candida albicans upon internalization by macrophages. Eukaryot. Cell 3: 10761087.
46. Martchenko, M.,, A. Alarco,, D. Harcus, and, M. White-way. 2004. Superoxide dismutases in Candida albicans: transcriptional regulation and functional characterization of the hyphal-induced SOD5 gene. Mol. Biol. Cell 15: 456467.
47. McDonough, J.,, V. Bhattacherjee,, T. Sadlon, and, M. Hostetter. 2002. Involvement of Candida albicans NADH dehydrogenase complex I in filamentation. Fungal Genet. Biol. 36: 117127.
48. Milani, G.,, W. Jarmuskiewicz,, C. Sluse-Goffart,, A. Schreiber,, A. Vercesi, and, F. Sluse. 2001. Respiratory chain network in mitochondria of Candida parapsilosis: ADP/O appraisal of the multiple electron networks. FEBS Lett. 508: 231235.
49. Mulhern, S.,, M. Logue, and, G. Butler. 2006. Candida albicans transcription factor Ace2 regulates metabolism and is required for filamentation in hypoxic conditions. Eukaryot. Cell 5: 20012013.
50. Nyns, E., and, M. Hamaide. 1972. Cyanide-insensitive respiration of Candida lipolytica. Arch. Int. Physiol. Bochim. 80: 978980.
51. Palou, C.,, M. Pico,, M. Bonet, and, P. Olover. 1998. The uncoupling protein, thermogenin. Int. J. Biochem. Cell Biol. 30: 711.
52. Quail, J.,, C. McQuillan,, C. Munro,, A. Pain,, R. Poulter,, H. Rajandream,, H. Renauld,, M. Spiering,, A. Tivey,, N. Gow,, B. Barell,, D. Sullivan, and, M. Berriman. 2009. Comparative genomics of the fungal pathogens Candida dubliniensis and Candida albicans. Genome Res. 19: 22312234.
53. Ramirez, M., and, M. Lorenz. 2007. Mutations in alternative carbon utilization pathways in Candida albicans attenuate virulence and confer pleiotropic phenotypes. Eukaryot. Cell 6: 280290.
54. Rikhvanov, E. G.,, N. N. Varakina,, T. M. Rusaleva,, E. I. Rachenko,, D. A. Knorre, and, V. K. Voinikov. 2005. Do mitochondria regulate heat shock response in Saccharomyces cerevisiae? Curr. Genet. 48: 4459.
55. Ruy, F.,, A. Vercesi, and, A. Kowaltowski. 2006. Inhibition of specific electron transport pathways leads to oxidative stress and decreased Candida albicans proliferation. J. Bioenerg. Biomembr. 38: 129135.
56. Sanglard, D.,, F. Ischer, and, J. Bille. 2001. Role of ATP-binding-cassette transporter genes in high-frequency acquisition of resistance to azole antifungals in Candida glabrata. Antimicrob. Agents Chemother. 45: 11741183.
57. Santos, R.,, N. Buisson,, S. Knight,, A. Dancis,, A. Camado, and, E. Lesuisse. 2004. Candida albicans lacking the frataxin homologue: a relevant yeast model for studying the role of frataxin. Mol. Microbiol. 54: 507519.
58. Shepard, M., and, P. Sullivan. 1976. The production and growth characteristics of yeast and mycelial forms of Candida albicans in continuous culture. J. Gen. Microbiol. 93: 361370.
59. Shepard, M.,, C. Chin, and, P. Sullivan. 1976. The alternative respiratory pathway of Candida albicans. Arch. Microbiol. 116: 6171.
60. Shigematsu, M.,, J. Uno, and, T. Arai. 1982. The effect of ketoconazole on isolated mitochondria from Candida albicans. Antimicrob. Agents Chemother. 21: 919924.
61. Shimiada, H.,, K. Kondo,, P. Fraser,, Y. Miura,, T. Saito, and, N. Misawa. 1998. Increased carotenoid production by the food yeast Candida utilis through metabolic engineering of the isoprenoid pathway. Appl. Environ. Microbiol. 64: 26762680.
62. Swoboda, R.,, G. Bertram,, S. Delbruck,, J. Ernst,, N. Gow,, G. Gooday, and, A. Brown. 1994. Fluctuations in glycolytic mRNA levels during morphogenesis in Candida albicans reflect underlying changes in growth and are not a response to cellular dimorphism. Mol. Microbiol. 13: 663672.
63. Vellucci, V.,, S. Gygax, and, M. Hostetter. 2007 Involvement of Candida albicans pyruvate dehydrogenase complex protein X (Pdx1) in filamentation. Fungal Genet. Biol. 44: 979990.
64. Vercesi, A.,, J. Borecky,, G. Maia,, P. Arrunda,, I. Cuccovia, and, H. Chaimovich. 2006. Plant uncoupling mitochondrial proteins. Annu. Rev. Plant Biol. 57: 383404.
65. Ward, J., and, W. Nickerson. 1957. Respiratory metabolism of normal and divisionless strains of Candida albicans. J. Gen. Physiol. 41: 703725.
66. Weiss, E.,, C. Kurischko,, C. Zhang,, K. Shokat,, D. Drubin, and, F. Luca. 2002. The Saccharomyces cerevisiae Mob-2pCbk1p kinase complex promotes polarized growth and acts with the mitotic exit network to facilitate daughter-cell-specific localization of Ace2p transcription factor. J. Cell Biol. 158: 885900.
67. Wu, X.,, A. Cheng,, L. Sun,, S. Sun, and, H. Lou. 2009. Plagiochin E, an antifungal bis(bibenzyl), exerts its antifungal activity through mitochondrial dysfunction-induced reactive oxygen species accumulation in Candida albicans. Biochim. Biophys. Acta 1790: 770777.
68. Wu, Z.,, W. Chang,, A. Cheng,, L. Sun, and, H. Lou. 2010. Plagiochin E, an antifungal active macrocyclic bis(bibenzyl), induced apoptosis in Candida albicans through a metacaspase-dependent apoptotic pathway. Biochim. Biophys. Acta 1800: 439447.
69. Xie, C.,, Z. Wu,, N. Liu,, M. Ji, and, H. Lou. 2010. Antifungal macrocyclic bis(bibenzyls) from the Chinese liverwort Ptagiochasm intermedlum[sic] L. Nat. Prod. Res. 23: 16.
70. Yan, L.,, M. Li,, Y. Cao,, P. Cao,, Y. Wang, and, Y. Jiang. 2009. The alternative oxidase of Candida albicans causes reduced fluconazole susceptibility. J. Antimicrob. Chemother. 64: 764773.


Generic image for table

Differences in respiratory pathways among organisms

Citation: Alex D, Calderone R, Li D. 2012. Back to the Future: Mitochondria and Energetics, p 331-341. In Calderone R, Clancy C (ed), and Candidiasis, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555817176.ch21

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error