Chapter 10 : Polar Marine Microbiology

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

Polar Marine Microbiology, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817183/9781555816049_Chap10-1.gif /docserver/preview/fulltext/10.1128/9781555817183/9781555816049_Chap10-2.gif


At the highest taxonomic levels, microbial communities in the polar oceans are similar to those in temperate oceans, and contain diverse representatives from the three domains of life: (protists), , and . This chapter presents a brief overview of pelagic microbes and their diversity, vertical distribution, and influences on biogeochemistry and upper food webs. The focus is on recent advances following the application of molecular biological techniques to polar marine systems. A revolution has occurred with the application of molecular biological techniques, especially small-subunit rRNA gene surveys, and identification of , , and picoeukaryotes is now possible. The two most abundant archaeal phyla in the ocean belong to the and Marine Groups (MG) I, which were originally classified as part of another phylum, the . A microbial loop begins with organic matter in the ocean being taken up by bacteria; the bacteria are eaten by small flagellates that excrete organic matter, which is used by bacteria that are eaten by small flagellates. All higher trophic levels, including whales, seals, and birds at both poles and polar bears in the Arctic, ultimately depend on microbes to convert inorganic carbon and solar energy into organic carbon, maintain it in a biologically available form, and recycle nutrients.

Citation: Lovejoy C. 2012. Polar Marine Microbiology, p 201-217. In Miller R, Whyte L (ed), Polar Microbiology: Life in a Deep Freeze. ASM Press, Washington, DC. doi: 10.1128/9781555817183.ch10
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of FIGURE 1

Epifluorescence micrograph of a mixotrophic haptophyte flagellate from the Beaufort Sea. 4′,6-Diamidino-2-phenylindole is used to stain nucleic acids, especially the nucleus. In this overexposed micrograph the flagella, haptonema, and organic scales can also be seen. The cell is ca. 10 × 5 microns.

Citation: Lovejoy C. 2012. Polar Marine Microbiology, p 201-217. In Miller R, Whyte L (ed), Polar Microbiology: Life in a Deep Freeze. ASM Press, Washington, DC. doi: 10.1128/9781555817183.ch10
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2

(A) Water column profile taken 15 August 2007 from the Canada Basin, showing the distinct layering of different water masses. Temperature is indicated in light gray, sigma theta in dark gray, and practical salinity units in black. SML, summer mixed layer; WML, winter mixed layer; PSW, Pacific summer water; PWW, Pacific winter water; AHW, lower halocline water; AW, deep water from the Atlantic Ocean. (B) The upper 100 m of the same water column with the addition of the fluorescence trace (dark gray triangles), indicating the chlorophyll maximum layer within the PSW.

Citation: Lovejoy C. 2012. Polar Marine Microbiology, p 201-217. In Miller R, Whyte L (ed), Polar Microbiology: Life in a Deep Freeze. ASM Press, Washington, DC. doi: 10.1128/9781555817183.ch10
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3

Conceptual diagram of microbial food webs from polar seas including links to macrozooplankton and advective input of nitrate and inorganic carbon fixation. Arrows indicate pathways relevant to both nitrogen and carbon cycling. The POM triangle indicates aggregation of particles and zooplankton fecal pellets, which feed the benthos. DOM is released by active phototrophs and taken up by γ- (GammaP) and , the most abundant bacteria in polar surface waters. MASTs are the primary bacterial grazers, and the interactions between these two groups are a microbial loop. The upper portion shows names of organisms for a classic scenario, while the lower portion includes MGI and a nitrification component. In this case diatoms may be maintained for longer in the upper euphotic zone. The net effect would result in an additional pathway for inorganic carbon fixation via the . doi:10.1128/9781555817183.ch10.f3

Citation: Lovejoy C. 2012. Polar Marine Microbiology, p 201-217. In Miller R, Whyte L (ed), Polar Microbiology: Life in a Deep Freeze. ASM Press, Washington, DC. doi: 10.1128/9781555817183.ch10
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Alonso-Sáez, L.,, O. Sánchez,, J. M. Gasol,, V. Balagué,, and C. Pedrós-Alio. 2008. Winter-to-summer changes in the composition and single-cell activity of near-surface Arctic prokaryotes. Environ. Microbiol. 10: 2444 2454.
2. Angly, F. E.,, B. Felts,, M. Breitbart,, P. Salamon,, R. A. Edwards,, C. Carlson,, A. M. Chan,, M. Haynes,, S. Kelley,, H. Liu,, J. M. Mahaffy,, J. E. Mueller,, J. Nulton,, R. Olson,, R. Parsons,, S. Rayhawk,, C. A. Suttle,, and F. Rohwer. 2006. The marine viromes of four oceanic regions. PLoS Biol. 4: e368.
3. Arrigo, K. R.,, and G. L. van Dijken. 2003. Phytoplankton dynamics within 37 Antarctic coastal polynya systems. J. Geophys. Res. 108: 3271.
4. Azam, F.,, and F. Malfatti. 2007. Microbial structuring of marine ecosystems. Nat. Rev. Microbiol. 5: 782 791.
5. Azam, F.,, D. C. Smith,, G. F. Steward, and Å. Hagström. 1994. Bacteria-organic matter coupling and its significance for oceanic carbon cycling. Microb. Ecol. 28: 167 179.
6. Bano, N.,, S. Ruffin,, B. Ransom,, and J. T. Hollibaugh. 2004. Phylogenetic composition of Arctic Ocean archaeal assemblages and comparison with Antarctic assemblages. Appl. Environ. Microbiol. 70: 781 789.
7. Beja, O.,, M. T. Suzuki,, J. F. Heidelberg,, W. C. Nelson,, C. M. Preston,, T. Hamada,, J. A. Eisen,, C. M. Fraser,, and E. F. DeLong. 2002. Unsuspected diversity among marine aerobic anoxygenic phototrophs. Nature 415: 630 633.
8. Bell, E. M.,, and J. Laybourn-Parry. 2003. Mixotrophy in the Antarctic phytoflagellate, Pyramimonas gelidicola (Chlorophyta: Prasinophyceae). J. Phycol. 39: 644 649.
9. Carmack, E. C. 2007. The alpha/beta ocean distinction: a perspective on freshwater fluxes, convection, nutrients and productivity in high-latitude seas. Deep Sea Res. Part 2 Top. Stud. Oceanogr. 54: 2578 2598.
10. Carmack, E. C.,, and R. W. MacDonald. 2002. Oceanography of the Canadian shelf of the Beaufort Sea: a setting for marine life. Arctic 55: 29 45.
11. Carmack, E.,, and P. Wassmann. 2006. Food webs and physical-biological coupling on pan-Arctic shelves: unifying concepts and comprehensive perspectives. Prog. Oceanogr. 71: 446 477.
12. Church, M. J.,, E. F. DeLong,, H. W. Ducklow,, M. B. Karner,, C. M. Preston,, and D. M. Karl. 2003. Abundance and distribution of planktonic Archaea and Bacteria in the waters west of the Antarctic Peninsula. Limnol. Oceanogr. 48: 1893 1902.
13. Clarke, A.,, E. J. Murphy,, M. P. Meredith,, J. C. King,, L. S. Peck,, D. K. A. Barnes,, and R. C. Smith. 2007. Climate change and the marine ecosystem of the western Antarctic Peninsula. Philos. Trans. R. Soc. Lond. B Biol. Sci. 362: 149 166.
14. Coale, K. H.,, X. Wang,, S. J. Tanner,, and K. S. Johnson. 2003. Phytoplankton growth and biological response to iron and zinc addition in the Ross Sea and Antarctic Circumpolar Current along 170°W. Deep Sea Res. Part 2 Top. Stud. Oceanogr. 50: 635 653.
15. Cottrell, M. T.,, and D. L. Kirchman. 2009. Photoheterotrophic microbes in the Arctic Ocean in summer and winter. Appl. Environ. Microbiol. 75: 4958 4966.
16. Damm, E.,, E. Helmke,, S. Thoms,, U. Schauer,, E. Nothig,, K. Bakker,, and R. P. Kiene. 2010. Methane production in aerobic oligotrophic surface water in the central Arctic Ocean. Biogeosciences 7: 1099 1108.
17. Daugbjerg, N. 2000. Pyramimonas tychotreta, sp. nov. (Prasinophyceae), a new marine species from Antarctica: light and electron microscopy of the motile stage and notes on growth rates. J. Phycol. 36: 160 171.
18. De Laender, F.,, D. Van Oevelen,, K. Soetaert,, and J. J. Middelburg. 2010. Carbon transfer in herbivore- and microbial loop-dominated pelagic food webs in the southern Barents Sea during spring and summer. Mar. Ecol. Prog. Ser. 398: 93 107.
19. DeLong, E. F. 1992. Archaea in coastal marine environments. Proc. Natl. Acad. Sci. USA 89: 5685 5689.
20. Deming, J. W.,, L. Fortier,, and M. Fukuchi. 2002. The International North Water Polynya Study (NOW): a brief overview. Deep Sea Res. Part 2 Top. Stud. Oceanogr. 49: 4887 4892.
21. Dethleff, D. 2010. Linear model estimates of potential salt rejection and theoretical salinity increase in a standardized water column of recurrent Arctic flaw leads and polynyas. Cold Regions Sci. Technol. 61: 82 89.
22. Ducklow, H. W.,, K. Baker,, D. G. Martinson,, L. B. Quetin,, R. M. Ross,, R. Smith,, S. E. Stammerjohn,, M. Vernet,, and W. Fraser. 2007. Marine pelagic ecosystems: the west Antarctic Peninsula. Philos. Trans. R. Soc. Lond. B Biol. Sci. 362: 67 94.
23. Dumont, D.,, Y. Gratton,, and T. E. Arbetter. 2010. Modeling wind-driven circulation and landfast ice-edge processes during polynya events in northern Baffin Bay. J. Phys. Oceanogr. 40: 1356 1372.
24. Elifantz, H.,, A. I. Dittell,, M. T. Cottrell,, and D. L. Kirchman. 2007. Dissolved organic matter assimilation by heterotrophic bacterial groups in the western Arctic Ocean. Aquat. Microb. Ecol. 50: 39 49.
25. Falk-Petersen, S.,, T. Haug,, H. Hop,, K. T. Nilssen,, and A. Wold. 2009. Transfer of lipids from plankton to blubber of harp and hooded seals off East Greenland. Deep Sea Res. Part 2 Top. Stud. Oceanogr. 56: 2080 2086.
26. Farnelid, H.,, W. Tarangkoon,, G. Hansen,, P. J. Hansen,, and L. Riemann. 2010. Putative N 2-fixing heterotrophic bacteria associated with dinoflagellate- Cyanobacteria consortia in the low-nitrogen Indian Ocean. Aquat. Microb. Ecol. 61: 105 117.
27. Field, C. B.,, M. J. Behrenfeld,, J. T. Randerson,, and P. Falkowski. 1998. Primary production of the biosphere: integrating terrestrial and oceanic components. Science 281: 237 240.
28. Francis, C. A.,, J. M. Beman,, and M. M. M. Kuypers. 2007. New processes and players in the nitrogen cycle: the microbial ecology of anaerobic and archaeal ammonia oxidation. ISME J. 1: 19 27.
29. Fuhrman, J. A.,, and L. Campbell. 1998. Marine ecology: microbial microdiversity. Nature 393: 410 411.
30. Fuhrman, J. A.,, and Å. Hagström., 2008. Bacterial and archaeal community structure and its patterns, p. 45 90. In D. L. Kirchman (ed.), Microbial Ecology of the Oceans. Wiley-Blackwell, New York, NY.
31. Fuhrman, J. A.,, K. McCallum,, and A. A. Davis. 1992. Novel major archaebacterial group from marine plankton. Nature 356: 148 149.
32. Galand, P. E.,, E. O. Casamayor,, D. L. Kirchman,, and C. Lovejoy. 2009a. Ecology of the rare microbial biosphere of the Arctic Ocean. Proc. Natl. Acad. Sci. USA 106: 22427 22432.
33. Galand, P. E.,, E. O. Casamayor,, D. L. Kirchman,, M. Potvin,, and C. Lovejoy. 2009b. Unique archaeal assemblages in the Arctic Ocean unveiled by massively parallel tag sequencing. ISME J. 3: 860 869.
34. Galand, P. E.,, C. Lovejoy,, A. K. Hamilton,, R. G. Ingram,, E. Pedneault,, and E. C. Carmack. 2009c. Archaeal diversity and a gene for ammonia oxidation are coupled to oceanic circulation. Environ. Microbiol. 11: 971 980.
35. Galand, P. E.,, M. Potvin,, E. O. Casamayor,, and C. Lovejoy. 2010. Hydrography shapes bacterial biogeography of the deep Arctic Ocean ISME J. 4: 564 576.
36. Garneau, M. E.,, S. Roy,, C. Lovejoy,, Y. Gratton,, and W. F. Vincent. 2008. Seasonal dynamics of bacterial biomass and production in a coastal arctic ecosystem: Franklin Bay, western Canadian Arctic. J. Geophys. Res. 113: C07S91.
37. Garneau, M. E.,, W. F. Vincent,, L. Alonso-Sáez,, Y. Gratton,, and C. Lovejoy. 2006. Prokaryotic community structure and heterotrophic production in a river-influenced coastal arctic ecosystem. Aquat. Microb. Ecol. 42: 27 40.
38. Giovannoni, S. J.,, R. A. Foster,, M. S. Rappe,, and S. Epstein. 2007. New cultivation strategies bring more microbial plankton species into the laboratory. Oceanography 20: 62 69.
39. Gómez, F.,, D. Moreira,, K. Benzerara,, and P. López-García. 2011. Solenicola setigera is the first characterized member of the abundant and cosmopolitan uncultured marine stramenopile group MAST-3. Environ. Microbiol. 13: 193 202.
40. Gómez-Consarnau, L.,, N. Akram,, K. Lindell,, A. Pedersen,, R. Neutze,, D. L. Milton,, J. M. González,, and J. Pinhassi. 2010. Proteorhodopsin phototrophy promotes survival of marine bacteria during starvation. PLoS Biol. 8: e1000358.
41. Grebmeier, J. M.,, L. W. Cooper,, H. M. Feder,, and B. I. Sirenko. 2006. Ecosystem dynamics of the Pacific-influenced Northern Bering and Chukchi Seas in the Amerasian Arctic. Prog. Oceanogr. 71: 331 361.
42. Guillou, L.,, M. Viprey,, A. Chambouvet,, R. M. Welsh,, A. R. Kirkham,, R. Massana,, D. J. Scanlan,, and A. Z. Worden. 2008. Widespread occurrence and genetic diversity of marine parasitoids belonging to Syndiniales ( Alveolata). Environ. Microbiol. 10: 3349 3365.
43. Hollibaugh, J. T.,, C. Lovejoy,, and A. E. Murray. 2007. Microbiology in polar oceans. Oceanography 20: 140 145.
44. Ichinomiya, M.,, S. Yoshikawa,, M. Kamiya,, K. Ohki,, S. Takaichi,, and A. Kuwata. 2011. Isolation and characterization of Parmales (Heterokonta/Heterokontophyta/Stramenopiles) from the Oyashio region, western North Pacific. J. Phycol. 47: 144 151.
45. Jahn, A.,, L. B. Tremblay,, R. Newton,, M. M. Holland,, L. A. Mysak,, and I. A. Dmitrenko. 2010. A tracer study of the Arctic Ocean's liquid freshwater export variability. J. Geophys. Res. 115: C07015.
46. Jungblut, A. D.,, C. Lovejoy,, and W. F. Vincent. 2010. Global distribution of cyanobacterial ecotypes in the cold biosphere. ISME J. 4: 191 202.
47. Juul-Pedersen, T.,, C. Michel,, and M. Gosselin. 2010. Sinking export of particulate organic material from the euphotic zone in the eastern Beaufort Sea. Mar. Ecol. Prog. Ser. 410: 55 70.
48. Kalanetra, K. M.,, N. Bano,, and J. T. Hollibaugh. 2009. Ammonia-oxidizing Archaea in the Arctic Ocean and Antarctic coastal waters. Environ. Microbiol. 11: 2434 2445.
49. Kirchman, D. L.,, M. T. Cottrell,, and C. Lovejoy. 2010. The structure of bacterial communities in the western Arctic Ocean as revealed by pyrosequencing of 16S rRNA genes. Environ. Microbiol. 12: 1132 1143.
50. Kirchman, D. L.,, H. Elifantz,, A. I. Dittel,, R. R. Malmstrom,, and M. T. Cottrell. 2007. Standing stocks and activity of archaea and bacteria in the western Arctic Ocean. Limnol. Oceanogr. 52: 495 507.
51. Kirchman, D. L.,, X. A. G. Morán,, and H. Ducklow. 2009. Microbial growth in the polar oceans—role of temperature and potential impact of climate change. Nat. Rev. Microbiol. 7: 451 459.
52. Koh, E. Y.,, N. Atamna-Ismaeel,, A. Martin,, R. O. M. Cowie,, O. Beja,, S. K. Davy,, E. W. Maas,, and K. G. Ryan. 2010. Proteorhodopsin-bearing bacteria in Antarctic sea ice. Appl. Environ. Microbiol. 76: 5918 5925.
53. Konneke, M.,, A. E. Bernhard,, J. R. de la Torre,, C. B. Walker,, J. B. Waterbury,, and D. A. Stahl. 2005. Isolation of an autotrophic ammonia-oxidizing marine archaeon. Nature 437: 543 546.
54. Kusahara, K.,, H. Hasumi,, and T. Tamura. 2010. Modeling sea ice production and dense shelf water formation in coastal polynyas around East Antarctica. J. Geophys. Res. 115: C10006.
55. Larsen, A.,, G. A. F. Flaten,, R. A. Sandaa,, T. Castberg,, R. Thyrhaug,, S. R. Erga,, S. Jacquet,, and G. Bratbak. 2004. Spring phytoplankton bloom dynamics in Norwegian coastal waters: microbial community succession and diversity. Limnol. Oceanogr. 49: 180 190.
56. Li, W. K. W.,, F. A. McLaughlin,, C. Lovejoy,, and E. C. Carmack. 2009. Smallest algae thrive as the Arctic Ocean freshens. Science 326: 539.
57. Lichtschlag, A.,, J. Felden,, V. Bruchert,, A. Boetius,, and D. de Beer. 2010. Geochemical processes and chemosynthetic primary production in different thiotrophic mats of the Hakon Mosby Mud Volcano (Barents Sea). Limnol. Oceanogr. 55: 931 949.
58. López-García, P.,, F. Rodríguez-Valera,, C. Pedrós-Alió,, and D. Moreira. 2001. Unexpected diversity of small eukaryotes in deep-sea Antarctic plankton. Nature 409: 603 607.
59. Lovejoy, C.,, P. E. Galand,, and D. L. Kirchman. 2010. Picoplankton diversity in the Arctic Ocean and surrounding seas. Mar. Biodiv. 41: 5 12.
60. Lovejoy, C.,, L. Legendre,, M. J. Martineau,, J. Bacle,, and C. H. von Quillfeldt. 2002. Distribution of phytoplankton and other protists in the North Water. Deep Sea Res. Part 2 Top. Stud. Oceanogr. 49: 5027 5047.
61. Lovejoy, C.,, R. Massana,, and C. Pedrós-Alió. 2006. Diversity and distribution of marine microbial eukaryotes in the Arctic Ocean and adjacent seas. Appl. Environ. Microbiol. 72: 3085 3095.
62. Lovejoy, C.,, and M. Potvin. 2011. Microbial eukaryotic distribution in a dynamic Beaufort Sea and the Arctic Ocean. J. Plankton Res. 33: 431 444.
63. Lovejoy, C.,, W. F. Vincent,, S. Bonilla,, S. Roy,, M. J. Martineau,, R. Terrado,, M. Potvin,, R. Massana,, and C. Pedrós-Alió. 2007. Distribution, phylogeny, and growth of cold-adapted picoprasinophytes in arctic seas. J. Phycol. 43: 78 89.
64. Manganelli, M.,, F. Malfatti,, T. J. Samo,, B. G. Mitchell,, H. Wang,, and F. Azam. 2009. Major role of microbes in carbon fluxes during austral winter in the southern Drake Passage. PLoS One 4: e6941.
65. Marchant, H.,, A. Davidson,, S. Wright,, and J. Glazebrook. 2000. The distribution and abundance of viruses in the Southern Ocean during spring. Antarct. Sci. 12: 414 417.
66. Martin, S.,, R. S. Drucker,, and R. Kwok. 2007. The areas and ice production of the western and central Ross Sea polynyas, 1992-2002, and their relation to the B-15 and C-19 iceberg events of 2000 and 2002. J. Mar. Syst. 68: 201 214.
67. Martin-Cuadrado, A. B.,, F. Rodriguez-Valera,, D. Moreira,, J. C. Alba,, E. Ivars-Martínez,, M. R. Henn,, E. Talla,, and P. López-García. 2008. Hindsight in the relative abundance, metabolic potential and genome dynamics of uncultivated marine archaea from comparative metagenomic analyses of bathypelagic plankton of different oceanic regions . ISME J. 2: 865 886.
68. Massana, R.,, J. Castresana,, V. Balague,, L. Guillou,, K. Romari,, A. Groisillier,, K. Valentin,, and C. Pedrós-Alió. 2004. Phylogenetic and ecological analysis of novel marine stramenopiles. Appl. Environ. Microbiol. 70: 3528 3534.
69. Massana, R.,, L. J. Taylor,, A. E. Murray,, K. Y. Wu,, W. H. Jeffrey,, and E. F. DeLong. 1998. Vertical distribution and temporal variation of marine planktonic archaea in the Gerlache Strait, Antarctica, during early spring. Limnol. Oceanogr. 43: 607 617.
70. Massana, R.,, R. Terrado,, I. Forn,, C. Lovejoy,, and C. Pedrós-Alió. 2006. Distribution and abundance of uncultured heterotrophic flagellates in the world oceans. Environ. Microbiol. 8: 1515 1522.
71. Medlin, L. K. 2009. The use of the terms centric and pennate. Diatom Res. 24: 499 501.
72. Medlin, L. K.,, and J. Priddle (ed.). 1990. Polar Marine Diatoms. British Antarctic Survey, Natural Environment Research Council, Cambridge, United Kingdom.
73. Montagnes, D. J. S.,, J. Allen,, L. Brown,, C. Bulit,, R. Davidson,, S. Fielding,, M. Heath,, N. P. Holliday,, J. Rasmussen,, R. Sanders,, J. J. Waniek,, and D. Wilson. 2010. Role of ciliates and other microzooplankton in the Irminger Sea (NW Atlantic Ocean). Mar. Ecol. Prog. Ser. 411: 101 115.
74. Montresor, M.,, C. Lovejoy,, L. Orsini,, G. Procaccini,, and S. Roy. 2003. Bipolar distribution of the cyst-forming dinoflagellate Polarella glacialis. Polar Biol. 26: 186 194.
75. Muller, F.,, T. Brissac,, N. Le Bris,, H. Felbeck,, and O. Gros. 2010. First description of giant Archaea ( Thaumarchaeota) associated with putative bacterial ectosymbionts in a sulfidic marine habitat. Environ. Microbiol. 12: 2371 2383.
76. Murray, A. E.,, C. M. Preston,, R. Massana,, L. T. Taylor,, A. Blakis,, K. Wu,, and E. F. DeLong. 1998. Seasonal and spatial variability of bacterial and archaeal assemblages in the coastal waters near Anvers Island, Antarctica. Appl. Environ. Microbiol. 64: 2585 2595.
77. Niemann, H.,, D. Fischer,, D. Graffe,, K. Knittel,, A. Montiel,, O. Heilmayer,, K. Nothen,, T. Pape,, S. Kasten,, G. Bohrmann,, A. Boetius,, and J. Gutt. 2009. Biogeochemistry of a low-activity cold seep in the Larsen B area, western Weddell Sea, Antarctica. Biogeosciences 6: 2383 2395.
78. Not, F.,, K. Valentin,, K. Romari,, C. Lovejoy,, R. Massana,, K. Töbe,, D. Vaulot,, and L. K. Medlin. 2007. Picobiliphytes: a marine picoplanktonic algal group with unknown affinities to other eukaryotes. Science 315: 253 255.
79. Obernosterer, I.,, and G. J. Herndl. 1995. Phytoplankton extracellular release and bacterial-growth—dependence on the inorganic N-P ratio. Mar. Ecol. Prog. Ser. 116: 247 257.
80. Okolodkov, Y. B.,, and J. D. Dodge. 1996. Biodiversity and biogeography of planktonic dinoflagellates in the Arctic Ocean. J. Exp. Mar. Biol. Ecol. 202: 19 27.
81. O’Regan, M.,, and K. Moran. 2010. Deep water methane hydrates in the Arctic Ocean: reassessing the significance of a shallow BSR on the Lomonosov Ridge. J. Geophys. Res. 115: B05102.
82. Ouverney, C. C.,, and J. A. Fuhrman. 2000. Marine planktonic Archaea take up amino acids. Appl. Environ. Microbiol. 66: 4829 4833.
83. Payet, J. P.,, and C. A. Suttle. 2008. Physical and biological correlates of virus dynamics in the southern Beaufort Sea and Amundsen Gulf. J. Mar. Syst. 74: 933 945.
84. Poulin, F. J.,, and P. J. S. Franks. 2010. Size-structured planktonic ecosystems: constraints, controls and assembly instructions. J. Plankton Res. 32: 1121 1130.
85. Poulin, M.,, N. Daugbjerg,, R. Gradinger,, L. Ilyash,, T. Ratkova,, and C. von Quillfeldt. 2010. The pan-Arctic biodiversity of marine pelagic and sea-ice unicellular eukaryotes: a first-attempt assessment. Mar. Biodiv. doi:10.1007/s12526-010-0058-8.
86. Romanovskii, N. N.,, H. W. Hubberten,, A. V. Gavrilov,, A. A. Eliseeva,, and G. S. Tipenko. 2005. Offshore permafrost and gas hydrate stability zone on the shelf of East Siberian Seas. Geo Mar. Lett. 25: 167 182.
87. Rose, J. M.,, Y. Feng,, G. R. DiTullio,, R. B. Dunbar,, C. E. Hare,, P. A. Lee,, M. Lohan,, M. Long,, W. O. Smith,, B. Sohst,, S. Tozzi,, Y. Zhang,, and D. A. Hutchins. 2009. Synergistic effects of iron and temperature on Antarctic phytoplankton and microzooplankton assemblages. Biogeosciences 6: 3131 3147.
88. Round, F. E.,, R. M. Crawford,, and D. G. Mann. 1990. The Diatoms: Biology & Morphology of the Genera. Cambridge University Press, Cambridge, United Kingdom.
89. Rozanska, M.,, M. Poulin,, and M. Gosselin. 2008. Protist entrapment in newly formed sea ice in the coastal Arctic Ocean. J. Mar. Syst. 74: 887 901.
90. Rusch, D. B.,, A. L. Halpern,, G. Sutton,, K. B. Heidelberg,, S. Williamson,, S. Yooseph,, D. Wu,, J. A. Eisen,, J. M. Hoffman,, K. Remington,, K. Beeson,, B. Tran,, H. Smith,, H. Baden-Tillson,, C. Stewart,, J. Thorpe,, J. Freeman,, C. Andrews-Pfannkoch,, J. E. Venter,, K. Li,, S. Kravitz,, J. F. Heidelberg,, T. Utterback,, Y. H. Rogers,, L. I. Falcón,, V. Souza,, G. Bonilla-Rosso,, L. E. Eguiarte,, D. M. Karl,, S. Sathyendranath,, T. Platt,, E. Bermingham,, V. Gallardo,, G. Tamayo-Castillo,, M. R. Ferrari,, R. L. Strausberg,, K. Nealson,, R. Friedman,, M. Frazier,, and J. C. Venter. 2007. The Sorcerer II Global Ocean Sampling expedition: Northwest Atlantic through eastern tropical Pacific. Plos Biol. 5: e77.
91. Sallee, J. B.,, K. G. Speer,, and S. R. Rintoul. 2010. Zonally asymmetric response of the Southern Ocean mixed-layer depth to the Southern Annular Mode. Nat. Geosci. 3: 273 279.
92. Sarmento, H.,, J. M. Montoya,, E. Vazquez-Dominguez,, D. Vaque,, and J. M. Gasol. 2010. Warming effects on marine microbial food web processes: how far can we go when it comes to predictions? Philos. Trans. R. Soc. Lond. B Biol. Sci 365: 2137 2149.
93. Scott, F. J.,, and H. J. Marchant (ed.). 2005. Antarctic Marine Protists. Australian Biological Resources Study/Australian Antarctic Division, Canberra, Australia.
94. Sherr, E. B.,, B. F. Sherr,, P. A. Wheeler,, and K. Thompson. 2003. Temporal and spatial variation in stocks of autotrophic and heterotrophic microbes in the upper water column of the central Arctic Ocean. Deep Sea Res. Part 1 Ocean Res. 50: 557 571.
95. Sieburth, J. M., 1978. About bacterioplankton, p. 283 287. In A. Sournia (ed.), Phytoplankton Manual. UNESCO, Paris, France.
96. Skovgaard, A.,, R. Massana,, V. Balague,, and E. Saiz. 2005. Phylogenetic position of the copepod-infesting parasite Syndinium turbo (Dinoflagellata, Syndinea). Protist 156: 413 423.
97. Smetacek, V.,, C. Klaas,, S. Menden-Deuer,, and T. A. Rynearson. 2002. Mesoscale distribution of dominant diatom species relative to the hydrographical field along the Antarctic Polar Front. Deep Sea Res. Part 2 Top. Stud. Oceanogr. 49: 3835 3848.
98. Smith, K. L.,, B. H. Robison,, J. J. Helly,, R. S. Kaufmann,, H. A. Ruhl,, T. J. Shaw,, B. S. Twining,, and M. Vernet. 2007. Free-drifting icebergs: hot spots of chemical and biological enrichment in the Weddell Sea. Science 317: 478 482.
99. Smith, W. O.,, M. S. Dinniman,, S. Tozzi,, G. R. DiTullio,, O. Mangoni,, M. Modigh,, and V. Saggiomo. 2010. Phytoplankton photosynthetic pigments in the Ross Sea: patterns and relationships among functional groups. J. Mar. Syst. 82: 177 185.
100. Sogin, M. L.,, H. G. Morrison,, J. A. Huber,, D. M. Welch,, S. M. Huse,, P. R. Neal,, J. M. Arrieta,, and G. J. Herndl. 2006. Microbial diversity in the deep sea and the underexplored “rare biosphere.” Proc. Natl. Acad. Sci USA 103: 12115 12120.
101. Song, B.,, and B. B. Ward. 2007. Molecular cloning and characterization of high-affinity nitrate transporters in marine phytoplankton. J. Phycol. 43: 542 552.
102. Soreide, J. E.,, E. Leu,, J. Berge,, M. Graeve,, and S. Falk-Petersen. 2010. Timing of blooms, algal food quality and Calanus glacialis reproduction and growth in a changing Arctic. Glob. Change Biol. 16: 3154 3163.
103. Spang, A.,, R. Hatzenpichler,, C. Brochier-Armanet,, T. Rattei,, P. Tischler,, E. Spieck,, W. Streit,, D. A. Stahl,, M. Wagner,, and C. Schleper. 2010. Distinct gene set in two different lineages of ammonia-oxidizing archaea supports the phylum Thaumarchaeota. Trends Microbiol. 18: 331 340.
104. Steward, G. F.,, D. C. Smith,, and F. Azam. 1996. Abundance and production of bacteria and viruses in the Bering and Chukchi Seas. Mar. Ecol. Prog. Ser. 131: 287 300.
105. Suttle, C. A. 2007. Marine viruses—major players in the global ecosystem. Nat. Rev. Microbiol. 5: 801 812.
106. Tavormina, P. L.,, W. Ussler,, S. B. Joye,, B. K. Harrison,, and V. J. Orphan. 2010. Distributions of putative aerobic methanotrophs in diverse pelagic marine environments. ISME J. 4: 700 710.
107. Taylor, F. J. R.,, M. Hoppenrath,, and J. F. Saldarriaga. 2008. Dinoflagellate diversity and distribution. Biodivers. Conserv. 17: 407 418.
108. Terrado, R.,, W. F. Vincent,, and C. Lovejoy. 2009. Mesopelagic protists: diversity and succession in a coastal Arctic ecosystem. Aquat. Microb. Ecol. 56: 25 39.
109. Vila-Costa, M.,, R. Simo,, L. Alonso-Sáez,, and C. Pedrós-Alió. 2008. Number and phylogenetic affiliation of bacteria assimilating dimethylsulfoniopropionate and leucine in the ice-covered coastal Arctic Ocean. J. Mar. Syst. 74: 957 963.
110. Vincent, W. F., 2000. Cyanobacterial dominance in the polar regions, p. 321 340. In B. Whitton, and M. Potts (ed.), Ecology of the Cyanobacteria: Their Diversity in Space and Time. Kluwers Academic Press, Amsterdam, The Netherlands.
111. von Quillfeldt, C. H. 2000. Common diatom species in arctic spring blooms: their distribution and abundance. Botanica Marina 43: 499 516.
112. Waleron, M.,, K. Waleron,, W. F. Vincent,, and A. Wilmotte. 2007. Allochthonous inputs of riverine picocyanobacteria to coastal waters in the Arctic Ocean. FEMS Microbiol. Ecol. 59: 356 365.
113. Walker, C. B.,, J. R. de la Torre,, M. G. Klotz,, H. Urakawa,, N. Pinel,, D. J. Arp,, C. Brochier-Armanet,, P. S. G. Chain,, P. P. Chan,, A. Gollabgir,, J. Hemp,, M. Hugler,, E. A. Karr,, M. Konneke,, M. Shin,, T. J. Lawton,, T. Lowe,, W. Martens-Habbena,, L. A. Sayavedra-Soto,, D. Lang,, S. M. Sievert,, A. C. Rosenzweig,, G. Manning,, and D. A. Stahl. 2010. Nitrosopumilus maritimus genome reveals unique mechanisms for nitrification and autotrophy in globally distributed marine crenarchaea. Proc. Natl. Acad. Sci. USA 107: 8818 8823.
114. Ward, B. B.,, D. G. Capone,, and J. P. Zehr. 2007. What's new in the nitrogen cycle? Oceanography 20: 101 109.
115. Wells, L. E.,, M. Cordray,, S. Bowerman,, L. A. Miller,, W. F. Vincent,, and J. W. Deming. 2006. Archaea in particle-rich waters of the Beaufort Shelf and Franklin Bay, Canadian Arctic: clues to an allochthonous origin? Limnol. Oceanogr. 51: 47 59.
116. Winsor, P.,, and G. Bjork. 2000. Polynya activity in the Arctic Ocean from 1958 to 1997. J. Geophys. Res. 105: 8789 8803.
117. Yoon, H. S.,, D. C. Price,, R. Stepanauskas,, V. D. Rajah,, M. E. Sieracki,, W. H. Wilson,, E. C. Yang,, S. Duffy,, and D. Bhattacharya. 2011. Single-cell genomics reveals organismal interactions in uncultivated marine protists. Science 332: 714 717.
118. Yooseph, S.,, K. H. Nealson,, D. B. Rusch,, J. P. McCrow,, C. L. Dupont,, M. Kim,, J. Johnson,, R. Montgomery,, S. Ferriera,, K. Beeson,, S. J. Williamson,, A. Tovchigrechko,, A. E. Allen,, L. A. Zeigler,, G. Sutton,, E. Eisenstadt,, Y. H. Rogers,, R. Friedman,, M. Frazier,, and J. C. Venter. 2010. Genomic and functional adaptation in surface ocean planktonic prokaryotes. Nature 468: 60 66.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error