1887

Chapter 11 : Cryospheric Environments in Polar Regions (Glaciers and Ice Sheets, Sea Ice, and Ice Shelves)

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

Cryospheric Environments in Polar Regions (Glaciers and Ice Sheets, Sea Ice, and Ice Shelves), Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817183/9781555816049_Chap11-1.gif /docserver/preview/fulltext/10.1128/9781555817183/9781555816049_Chap11-2.gif

Abstract:

This chapter focuses on glaciers and ice sheets, sea ice, and ice shelves of the polar regions, i.e., those latitudes above the Arctic and Antarctic Circles where glaciers and ice sheets cover a significant proportion of the land mass and where large expanses of the surface waters of the Arctic and Southern Oceans undergo an annual cycle of freezing and melting. This chapter further introduces sea ice as a microbial habitat and summarizes from some of the aforementioned reviews what is known to date about the abundance, activity, diversity, and ecology of prokaryotic sea-ice microorganisms. It provides a brief outline of the role of microorganisms in biogeochemical cycling of elements in sea ice. The majority of bacteria isolated from sea ice are pigmented and highly cold adapted, with some able to form gas vesicles. Possible cold-adaptation strategies revealed by whole-genome sequence analysis also include the production of cryoprotective osmolytes and exopolymers. Polar ice shelves are thick masses of ice floating on the ocean. They are formed through glacial ice and ice sheets pushing onto the sea or long-term accumulations of sea ice. Analysis of ice-shelf heterotrophic bacteria and microbial eukaryotes suggests phylogenetic affiliation with taxa from diverse environments and climatic zones ranging from Antarctica and other cryosphere habitats to temperate ecozones. Microbial investigations on polar glaciers, ice sheets, and ice shelves are still largely in their infancy, with sea-ice research being somewhat more established.

Citation: Skidmore M, Jungblut A, Urschel M, Junge K. 2012. Cryospheric Environments in Polar Regions (Glaciers and Ice Sheets, Sea Ice, and Ice Shelves), p 218-239. In Miller R, Whyte L (ed), Polar Microbiology: Life in a Deep Freeze. ASM Press, Washington, DC. doi: 10.1128/9781555817183.ch11
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Cryoconite holes, John Evans Glacier, Nunavut, Canadian High Arctic. (a) Cryoconite with frozen lid. (b) Partially open cryoconite. (c) Open cryoconite. (d) Transition zone from individual cryoconite holes to broader zones of debris-covered surficial ice. (Photo credit: M. Skidmore.)

Citation: Skidmore M, Jungblut A, Urschel M, Junge K. 2012. Cryospheric Environments in Polar Regions (Glaciers and Ice Sheets, Sea Ice, and Ice Shelves), p 218-239. In Miller R, Whyte L (ed), Polar Microbiology: Life in a Deep Freeze. ASM Press, Washington, DC. doi: 10.1128/9781555817183.ch11
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

Subglacial stream sampling, John Evans Glacier, Nunavut, Canadian High Arctic. (Photo credit: M. Skidmore.)

Citation: Skidmore M, Jungblut A, Urschel M, Junge K. 2012. Cryospheric Environments in Polar Regions (Glaciers and Ice Sheets, Sea Ice, and Ice Shelves), p 218-239. In Miller R, Whyte L (ed), Polar Microbiology: Life in a Deep Freeze. ASM Press, Washington, DC. doi: 10.1128/9781555817183.ch11
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3
FIGURE 3

Taylor Glacier, Antarctica. (a) Debris-rich basal ice outcrops on northern margin. (b) Tunnel to access debris-rich ice. (c) Cutting a vertical profile into the debris-rich ice in the ice tunnel. (Photo credits: panels a and b, M. Skidmore; panel c, B. Christner.)

Citation: Skidmore M, Jungblut A, Urschel M, Junge K. 2012. Cryospheric Environments in Polar Regions (Glaciers and Ice Sheets, Sea Ice, and Ice Shelves), p 218-239. In Miller R, Whyte L (ed), Polar Microbiology: Life in a Deep Freeze. ASM Press, Washington, DC. doi: 10.1128/9781555817183.ch11
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 4
FIGURE 4

(Left) Scanning electron microscopy image of the brine channels system in columnar sea ice made visible by filling the system with epoxy resin under a vacuum. (Right) In situ microscopic images of (a) ice crystals and brine pockets and (b) detail of a brine pocket in panel a that harbors bacteria stained with the blue DNA stain 4′,6-diamidino-2-phenylindole in panel c. (Left image from Alfred-Wegener Institute for Polar and Marine Research, Bremerhaven, Germany; reprinted from Mock and Junge [2007] with permission of the publisher. Right images adapted from with permission of the publisher.)

Citation: Skidmore M, Jungblut A, Urschel M, Junge K. 2012. Cryospheric Environments in Polar Regions (Glaciers and Ice Sheets, Sea Ice, and Ice Shelves), p 218-239. In Miller R, Whyte L (ed), Polar Microbiology: Life in a Deep Freeze. ASM Press, Washington, DC. doi: 10.1128/9781555817183.ch11
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 5
FIGURE 5

Vertical gradients of temperature, salt content, brine volume, and irradiance (Io) through sea ice. These general patterns may vary due to changes in temperature. (Adapted from with permission of the publisher.)

Citation: Skidmore M, Jungblut A, Urschel M, Junge K. 2012. Cryospheric Environments in Polar Regions (Glaciers and Ice Sheets, Sea Ice, and Ice Shelves), p 218-239. In Miller R, Whyte L (ed), Polar Microbiology: Life in a Deep Freeze. ASM Press, Washington, DC. doi: 10.1128/9781555817183.ch11
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 6
FIGURE 6

Network of supraglacial lakes and ponds on the McMurdo Ice Shelf near Bratina Island, Antarctica. (Photo credit: A. Jungblut.)

Citation: Skidmore M, Jungblut A, Urschel M, Junge K. 2012. Cryospheric Environments in Polar Regions (Glaciers and Ice Sheets, Sea Ice, and Ice Shelves), p 218-239. In Miller R, Whyte L (ed), Polar Microbiology: Life in a Deep Freeze. ASM Press, Washington, DC. doi: 10.1128/9781555817183.ch11
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 7
FIGURE 7

Highly pigmented cyanobacteria-dominated microbial mats from a supraglacial pond on the McMurdo Ice Shelf, Antarctica. (Photo credit: A. Jungblut.)

Citation: Skidmore M, Jungblut A, Urschel M, Junge K. 2012. Cryospheric Environments in Polar Regions (Glaciers and Ice Sheets, Sea Ice, and Ice Shelves), p 218-239. In Miller R, Whyte L (ed), Polar Microbiology: Life in a Deep Freeze. ASM Press, Washington, DC. doi: 10.1128/9781555817183.ch11
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555817183.chap11
1. Amann, R. I.,, W. Ludwig,, and K. H. Schleifer. 1995. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol. Rev. 59: 143 169.
2. Anesio, A. M.,, A. J. Hodson,, A. Fritz,, R. Psenner,, and B. Sattler. 2009. High microbial activity on glaciers: importance to the global carbon cycle. Glob. Change Biol. 15: 955 960.
3. Anesio, A. M.,, B. Mindl,, J. Laybourn-Parry,, A. J. Hodson, and B. Sattler. 2007. Viral dynamics in cryoconite holes on a high Arctic glacier (Svalbard). J. Geophys. Res. 112: G04S31.
4. Arrigo, K. R.,, T. Mock,, and M. P. Lizotte,. 2010. Primary producers and sea ice, p. 283 375. In D. N. Thomas, and G. S. Dieckmann (ed.), Sea Ice: an Introduction to Its Physics, Chemistry, Biology, and Geology. Blackwell Science, Ltd., Oxford, United Kingdom.
5. Arrigo, K. R.,, D. H. Robinson,, R. B. Dunbar,, A. R. Leventer,, and M. P. Lizotte. 2003. Physical control of chlorophyll a, POC, and PON distributions in the pack ice of the Ross Sea, Antarctica. J. Geophys. Res. 108: 3316.
6. Bakermans, C.,, and M. L. Skidmore. 2011. Microbial metabolism in ice and brine at -5°C. Environ. Microbiol. 13: 2269 2278.
7. Benn, D. I.,, and D. J. A. Evans. 2010. Glaciers and Glaciation. Hodder Education, London, United Kingdom.
8. Bhatia, M. P.,, S. B. Das,, K. Longnecker,, M. A. Charette,, and E. B. Kujawinski. 2010. Molecular characterization of dissolved organic matter associated with the Greenland ice sheet. Geochim. Cosmochim. Acta 74: 3768 3784.
9. Bhatia, M.,, M. Sharp,, and J. Foght. 2006. Distinct bacterial communities exist beneath a high Arctic polythermal glacier. Appl. Environ. Microbiol. 72: 5838 5845.
10. Bonilla, S.,, and W. F. Vincent. 2005. Benthic and planktonic algal communities in a high Arctic lake: pigment structure and contrasting responses to nutrient enrichment. J. Phycol. 41: 1120 1130.
11. Boon, S.,, M. Sharp,, and P. Nienow. 2003. Impact of an extreme melt event on the runoff and hydrology of a high Arctic glacier. Hydrol. Processes 17: 1051 1072.
12. Bottos, E. M.,, W. F. Vincent,, C. W. Greer,, and L. G. Whyte. 2008. Prokaryotic diversity of arctic ice shelf microbial mats. Environ. Microbiol. 10: 950 966.
13. Bowman, J. P.,, J. J. Gosink,, S. A. McCammon,, T. E. Lewis,, D. S. Nichols,, P. D. Nichols,, J. H. Skerratt,, J. T. Staley,, and T. A. McMeekin. 1998. Colwellia demingiae sp. nov., Colwellia hornerae sp. nov., Colwellia rossensis sp. nov., and Colwellia psychrotropica sp. nov.: psychrophilic Antarctic species with the ability to synthesize docosahexaenoic acid (22:6ω3). Int. J. Syst. Bacteriol. 48: 1171 1180.
14. Bowman, J. P.,, S. A. McCammon,, M. V. Brown,, D. S. Nichols,, and T. A. McMeekin. 1997. Diversity and association of psychrophilic bacteria in Antarctic sea ice. Appl. Environ. Microbiol. 63: 3068 3078.
15. Boyd, E. S.,, R. K. Lange,, A. Mitchell,, J. R. Havig,, T. L. Hamilton,, M. J. Lafrenière,, E. L. Shock,, J. W. Peters,, and M. Skidmore. 2011. Diversity, abundance, and potential activity of nitrifying and nitrate reducing microbial assemblages in a subglacial ecosystem. Appl. Environ. Microbiol. 77: 4778 4787.
16. Boyd, E. S.,, M. Skidmore,, C. Bakermans,, A. Mitchell,, and J. W. Peters. 2010. Methanogenesis in subglacial sediments. Environ. Microbiol. Rep. 2: 685 692.
17. Brinkmeyer, R.,, F. O. Glöckner,, E. Helmke,, and R. Amann. 2004. Predominance of β-Proteobacteria in summer melt pools on Arctic pack ice. Limnol. Oceanogr. 49: 1013 1021.
18. Brinkmeyer, R.,, K. Knittel,, J. Jürgens,, H. Weyland,, R. Amann,, and E. Helmke. 2003. Diversity and structure of bacterial communities in Arctic versus Antarctic pack ice. Appl. Environ. Microbiol. 69: 6610 6619.
19. Brown, M. V.,, and J. P. Bowman. 2001. A molecular phylogenetic survey of sea-ice microbial communities (SIMCO). FEMS Microbiol. Ecol. 35: 267 275.
20. Caron, D. A.,, and R. J. Gast,. 2010. Heterotrophic protists associated with sea ice, p. 327 356. In D. N. Thomas, and G. S. Dieckmann (ed.), Sea Ice: an Introduction to Its Physics, Chemistry, Biology, and Geology. Blackwell Science, Ltd., Oxford, United Kingdom.
21. Cheng, S. M.,, and J. M. Foght. 2007. Cultivation-independent and -dependent characterization of Bacteria resident beneath John Evans Glacier. FEMS Microbiol. Ecol. 59: 318 330.
22. Christner, B. C.,, B. H. Kvitko II,, and J. N. Reeve. 2003. Molecular identification of Bacteria and Eukarya inhabiting an Antarctic cryoconite hole. Extremophiles 7: 177 183.
23. Christner, B. C.,, G. Royston-Bishop,, C. M. Foreman,, B. R. Arnold,, M. Tranter,, K. A. Welch,, W. B. Lyons,, A. I. Tsapin,, M. Studinger,, and J. C. Priscu. 2006. Limnological conditions in subglacial Lake Vostok, Antarctica. Limnol. Oceanogr. 51: 2485 2501.
24. Christner, B. C.,, M. L. Skidmore,, J. C. Priscu,, M. Tranter,, and C. M. Foreman,. 2008. Bacteria in subglacial environments, p. 51 71. In R. Margesin,, F. Schinner,, J.-C. Marx,, and C. Gerday (ed.), Psychrophiles: from Biodiversity to Biotechnology. Springer, Berlin, Germany.
25. Collins, R. E. 2009. Microbial evolution in sea ice: communities to genes. Ph.D. thesis. University of Washington, Seattle, WA.
26. Collins, R. E.,, G. Rocap,, and J. W. Deming. 2010. Persistence of bacterial and archaeal communities in sea ice through an Arctic winter. Environ. Microbiol. 12: 1828 1841.
27. Cota, G. F.,, S. T. Kottmeier,, D. H. Robinson,, W. O. Smith Jr., and C. W. Sullivan. 1990. Bacterioplankton in the marginal ice zone of the Weddell Sea: biomass, production and metabolic activities during austral autumn. Deep Sea Res. 37: 1145 1167.
28. Deming, J. W., 2010. Sea ice bacteria and viruses, p. 247 282. In D. N. Thomas, and G. S. Dieckmann (ed.), Sea Ice: an Introduction to Its Physics, Chemistry, Biology, and Geology. Blackwell Science, Ltd., Oxford, United Kingdom.
29. Dieckmann, G. S.,, and H. H. Heller,. 2010. Importance of sea ice: an overview, p. 1 22. In D. N. Thomas, and G. S. Dieckmann (ed.), Sea Ice: an Introduction to Its Physics, Chemistry, Biology, and Geology. Blackwell Science, Ltd., Oxford, United Kingdom.
30. Dieckmann, G. S.,, M. Spindler,, M. A. Lange,, S. F. Ackley,, and H. Eicken. 1991. Antarctic sea ice: a habitat for the foraminifer Neogloboquadrina pachyderma. J. Foramin. Res. 21: 184 191.
31. Edwards, A.,, A. M. Anesio,, S. M. Rassner,, B. Sattler,, B. Hubbard,, W. T. Perkins,, M. Young,, and G. W. Griffith. 2011. Possible interactions between bacterial diversity, microbial activity and supraglacial hydrology of cryoconite holes in Svalbard. ISME J. 5: 150 160.
32. Eicken, H. 1992. The role of sea ice in structuring Antarctic ecosystems. Polar Biol. 12: 3 13.
33. Fernández-Valiente, E.,, A. Quesada,, C. Howard-Williams,, and I. Hawes. 2001. N 2-fixation in cyanobacterial mats from ponds on the McMurdo Ice Shelf, Antarctica. Microb. Ecol. 42: 338 349.
34. Foreman, C. M.,, B. Sattler,, J. A. Mikucki,, D. L. Porazinska,, and J. C. Priscu. 2007. Metabolic activity and diversity of cryoconites in the Taylor Valley, Antarctica. J. Geophys. Res. 112: G04S32.
35. Fountain, A. G.,, and M. Tranter. 2008. Introduction to special section on Microcosms in Ice: the Biogeochemistry of Cryoconite Holes. J. Geophys. Res. 113: G02S91.
36. Fuhrman, J. A. 1999. Marine viruses and their biogeochemical and ecological effects. Nature 399: 541 548.
37. Garneau, M. E.,, W. F. Vincent,, R. Terrado,, and C. Lovejoy. 2009. Importance of particle-associated bacterial heterotrophy in a coastal Arctic ecosystem. J. Mar. Sys. 75: 185 197.
38. Gerdel, R. W.,, and F. Drouet. 1960. The cryoconite of the Thule area, Greenland. Trans. Am. Microsc. Soc. 79: 256 272.
39. Gleitz, M.,, M. R. Loeff,, D. N. Thomas,, G. S. Dieckmann,, and F. J. Miller. 1995. Comparison of summer and winter inorganic carbon, oxygen and nutrient concentrations in Antarctic sea ice brine. Mar. Chem. 51: 81 91.
40. Gleitz, M.,, and D. N. Thomas. 1993. Variation in phytoplankton standing stock, chemical composition and physiology during sea-ice formation in the southeastern Weddell Sea, Antarctica. J. Exp. Mar. Biol. Ecol. 173: 211 230.
41. Golden, K. M.,, S. F. Ackley,, and V. I. Lytle. 1998. The percolation phase transition in sea ice. Science 282: 2238 2241.
42. Gosink, J. J.,, R. L. Irgens,, and J. T. Staley. 1993. Vertical distribution of bacteria in arctic sea ice. FEMS Microbiol. Lett. 102: 85 90.
43. Gosink, J. J.,, and J. T. Staley. 1995. Biodiversity of gas vacuolate bacteria from Antarctic sea ice and water. Appl. Environ. Microbiol. 61: 3486 3489.
44. Gosselin, M.,, L. Legendre,, J.-C. Therriault,, and S. Demers. 1990. Light and nutrient limitation of sea-ice microalgae (Hudson Bay, Canadian Arctic). J. Phycol. 26: 220 232.
45. Grossi, S. M.,, S. T. Kottmeier,, and C. W. Sullivan. 1984. Sea ice microbial communities. III. Seasonal abundance of microalgae and associated bacteria. Microb. Ecol. 10: 231 242.
46. Günther, S.,, and G. S. Dieckmann. 1999. Seasonal development of algal biomass in snow-covered fast ice and the underlying platelet layer in the Weddell Sea, Antarctica. Antarct. Sci. 11: 305 315.
47. Hawes, I.,, C. Howard-Williams,, and A. G. Fountain,. 2008. Ice-based freshwater ecosystems, p. 103 115. In W. F. Vincent, and J. Laybourn-Perry (ed.), Polar Lakes and Rivers. Oxford University Press, Oxford, United Kingdom.
48. Hawes, I.,, C. Howard-Williams,, and R. D. Pridmore. 1993. Environmental control of microbial biomass in the ponds of the McMurdo Ice Shelf, Antarctica. Arch. Hydrobiol. 127: 271 287.
49. Hawes, I.,, R. Smith,, C. Howard-Williams,, and A.-M. Schwarz. 1999. Environmental conditions during freezing, and response of microbial mats in ponds of the McMurdo Ice Shelf, Antarctica. Antarct. Sci. 11: 198 208.
50. Helmke, E.,, and H. Weyland. 2004. Psychrophilic versus psychrotolerant bacteria—occurrence and significance in polar and temperate marine habitats. Cell. Mol. Biol. 50: 553 561.
51. Hodgson, D. A.,, W. Vyverman,, E. Verleyen,, K. Sabbe,, P. Leavitt,, A. Taton,, A. Squier,, and B. Keely. 2004. Environmental factors influencing the pigment composition of in situ benthic microbial communities in east Antarctic lakes. Aquat. Microb. Ecol. 37: 247 263.
52. Hodson, A.,, A. M. Anesio,, F. Ng,, R. Watson,, J. Quirk,, T. Irvine-Fynn,, A. Dye,, C. Clark,, P. McCloy,, J. Kohler,, and B. Sattler. 2007. A glacier respires: quantifying the distribution and respiration CO 2 flux of cryoconite across an entire Arctic supraglacial ecosystem. J. Geophys. Res. 112: G04S36.
53. Hodson, A.,, C. Boggild,, E. Hanna,, P. Huybrechts,, H. Langford,, K. Cameron,, and A. Houldsworth. 2010. The cryoconite ecosystem on the Greenland ice sheet. Ann. Glaciol. 51: 123 129.
54. Horner, R.,, and G. C. Schrader. 1982. Relative contributions of ice algae, phytoplankton, and benthic microalgae to primary production in nearshore regions of the Beaufort Sea. Arctic 35: 485 503.
55. Howard-Williams, C.,, R. Pridmore,, M. Downes,, and W. Vincent. 1989. Microbial biomass, photosynthesis and chlorophyll a related pigments in the ponds of the McMurdo Ice Shelf, Antarctica. Antarct. Sci. 1: 125 131.
56. Huston, A. L. 2003. Bacterial adaptation to the cold: in situ activities of extracellular enzymes in the North Water polynya and characterization of a cold-active aminopeptidase from Colwellia psychrerythraea strain 34H. Ph.D. thesis. University of Washington, Seattle, WA.
57. Huston, A. L.,, B. B. Krieger-Brockett,, and J. W. Deming. 2000. Remarkably low temperature optima for extracellular enzyme activity from Arctic bacteria and sea ice. Environ. Microbiol. 2: 383 388.
58. Huston, A. L.,, B. Methe,, and J. W. Deming. 2004. Purification, characterization and sequencing of an extracellular cold-active aminopeptidase produced by marine psychrophile Colwellia psychrerythraea strain 34H. Appl. Environ. Microbiol. 70: 3321 3328.
59. IPCC. 2007. Climate Change 2007: the Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY.
60. Jungblut, A. D.,, M. A. Allen,, B. P. Burns,, and B. A. Neilan. 2009. Lipid biomarker analysis of cyanobacterial dominated microbial mats in meltwater ponds on the McMurdo Ice Shelf, Antarctica. Organ. Geochem. 40: 258 269.
61. Jungblut, A. D.,, I. Hawes,, D. Mountfort,, B. Hitzfeld,, D. R. Dietrich,, B. P. Burns,, and B. A. Neilan. 2005. Diversity within cyanobacterial mat communities in variable salinity meltwater ponds of McMurdo Ice Shelf, Antarctica. Environ. Microbiol. 7: 519 529.
62. Jungblut, A. D.,, C. Lovejoy,, and W. F. Vincent. 2010. Global distribution of cyanobacterial ecotypes in the cold biosphere. ISME J. 4: 191 202.
63. Jungblut, A. D.,, D. R. Mueller,, and W. F. Vincent,. Arctic ice shelf ecosystems. In L. Copland, and D. R. Mueller (ed.), Arctic Ice Shelves and Ice Islands, in press. Springer, Berlin, Germany.
64. Junge, K.,, B. C. Christner,, and J. T. Staley,. 2011. Diversity of psychrophilic bacteria from sea ice—and glacial ice communities, p. 793 815. In K. Horikoshi,, G. Antranikian,, A. T. Bull,, F. T. Robb,, and K. O. Stetter (ed.), Extremophiles Handbook. Springer, Berlin, Germany.
65. Junge, K.,, H. Eicken,, and J. W. Deming. 2003. Motility of Colwellia psychrerythraea strain 34H at subzero temperatures. Appl. Environ. Microbiol. 69: 4282 4284.
66. Junge, K.,, H. Eicken,, and J. W. Deming. 2004. Bacterial activity at -2 to -20°C in Arctic wintertime sea ice. Appl. Environ. Microbiol. 70: 550 557.
67. Junge, K.,, H. Eicken,, B. D. Swanson,, and J. W. Deming. 2006. Bacterial incorporation of leucine into protein down to -20°C with evidence for potential activity in sub-eutectic saline ice formations. Cryobiology 52: 417 429.
68. Junge, K.,, F. Imhoff,, T. Staley,, and J. W. Deming. 2002. Phylogenetic diversity of numerically important Arctic sea-ice bacteria cultured at subzero temperature. Microb. Ecol. 43: 315 328.
69. Junge, K.,, C. Krembs,, J. Deming,, A. Stierle,, and H. Eicken. 2001. A microscopic approach to investigate bacteria under in situ conditions in sea-ice samples. Ann. Glaciol. 33: 304 310.
70. Kellogg, C. T. E.,, and J. W. Deming. 2009. Comparison of free-living, suspended particle, and aggregate-associated bacterial and archaeal communities in the Laptev Sea. Aquat. Microb. Ecol. 57: 1 18.
71. Kennedy, H.,, D. N. Thomas,, G. Kattner,, C. Haas,, and G. S. Dieckmann. 2002. Particulate organic matter in Antarctic summer sea ice: concentration and stable isotopic composition. Mar. Ecol. Prog. Ser. 238: 1 13.
72. Kirchman, D. L.,, X. A. G. Morán,, and H. Ducklow. 2009. Microbial growth in the polar oceans—role of temperature and potential impact of climate change. Nat. Rev. Microbiol. 7: 451 459.
73. Krembs, C.,, J. W. Deming,, and H. Eicken. 2011. Exopolymer alteration of physical properties of sea ice and implications for ice habitability and biogeochemistry in a warmer Arctic. Proc. Natl. Acad. Sci. USA 108: 3653 3658.
74. Lannuzel, D.,, V. Schoemann,, J. de Jong,, B. Pasquer,, P. van der Merwe,, F. Masson,, J.-L. Tison,, and A. Bowie. 2010. Distribution of dissolved iron in Antarctic sea ice: spatial, seasonal, and inter-annual variability. J. Geophys. Res. 115: G03022.
75. Lanoil, B.,, M. Skidmore,, J. C. Priscu,, S. Han,, W. Foo,, S. W. Vogel,, S. Tulaczyk,, and H. Engelhardt. 2009. Bacteria beneath the West Antarctic Ice Sheet. Environ. Microbiol. 11: 609 615.
76. Legendre, L. 1990. The significance of microalgal blooms for fisheries and for the export of particulate organic carbon in oceans. J. Plankton Res. 12: 681 699.
77. Legendre, L.,, S. F. Ackley,, G. S. Dieckmann,, B. Gulliksen,, R. Horner,, T. Hoshiai,, I. A. Melnikov,, W. S. Reeburgh,, M. Spindler,, and C. W. Sullivan. 1992. Ecology of sea ice biota. Polar Biol. 12: 429 444.
78. Loveland-Curtze, J.,, V. Miteva,, and J. Brenchley. 2010. Novel ultramicrobacterial isolates from a deep Greenland ice core represent a proposed new species, Chryseobacterium greenlandense sp. nov. Extremophiles 14: 61 69.
79. Measures, C. I. 1999. The role of entrained sediments in sea ice in the distribution of aluminum and iron in the surface waters of the Arctic Ocean. Mar. Chem. 68: 59 70.
80. Meese, D. A. 1989. The Chemical and Structural Properties of Sea Ice in the Southern Beaufort Sea. CRREL Report 89-25. Cold Regions Research and Engineering Lab, Hanover, NH.
81. Methe, B. A.,, K. E. Nelson,, J. W. Deming,, B. Momen,, E. Melamud,, X. Zhang,, J. Moult,, R. Madupu,, W. C. Nelson,, R. J. Dodson,, L. M. Brinkac,, S. C. Daugherty,, A. S. Durkin,, R. T. DeBoy,, J. F. Kolonay,, S. A. Sullivan,, L. Zhou,, T. M. Davidsen,, M. Wu,, A. L. Huston,, M. Lewis,, B. Weaver,, J. F. Weidman,, H. Khouri,, T. R. Utterback,, T. V. Feldblyum,, and C. M. Fraser. 2005. The psychrophilic lifestyle as revealed by the genome sequence of Colwellia psychrerythraea 34H through genomic and proteomic analyses. Proc. Natl. Acad. Sci. USA 102: 10913 10918.
82. Mikucki, J. A.,, A. Pearson,, D. T. Johnston,, A. V. Turchyn,, J. Farquhar,, D. P. Schrag,, A. D. Anbar,, J. C. Priscu,, and P. A. Lee. 2009. A contemporary microbially maintained subglacial ferrous “ocean.” Science 324: 397 400.
83. Miteva, V., 2008. Bacteria in snow and glacier ice, p. 31 50. In R. Margesin,, F. Schinner,, J.-C. Marx,, and C. Gerday (ed.), Psychrophiles: from Biodiversity to Biotechnology. Springer, Berlin, Germany.
84. Miteva, V. I.,, and J. E. Brenchley. 2005. Detection and isolation of ultrasmall microorganisms from a 120,000-year-old Greenland glacier ice core. Appl. Environ. Microbiol. 71: 7806 7818.
85. Miteva, V. I.,, P. P. Sheridan,, and J. E. Brenchley. 2004. Phylogenetic and physiological diversity of microorganisms isolated from a deep Greenland glacier ice core. Appl. Environ. Microbiol. 70: 202 213.
86. Miteva, V.,, C. Teacher,, T. Sowers,, and J. Brenchley. 2009. Comparison of the microbial diversity at different depths of the GISP2 Greenland ice core in relationship to deposition climates. Environ. Microbiol. 11: 640 656.
87. Mock, T.,, and K. Junge,. 2007. Psychrophilic diatoms: mechanisms for survival in freeze-thaw cycles, p. 343 364. In J. Seckbach (ed.), Algae and Cyanobacteria in Extreme Environments. Springer, Dordrecht, The Netherlands.
88. Mock, T.,, and D. N. Thomas. 2005. Recent advances in sea-ice microbiology. Environ. Microbiol. 7: 605 619.
89. Mountfort, D. O.,, H. F. Kaspar,, M. Downes,, and R. A. Asher. 1999. Partitioning effects during terminal carbon and electron flow in sediments of a low-salinity meltwater pond near Bratina Island, McMurdo Ice Shelf, Antarctica. Appl. Environ. Microbiol. 65: 5493 5499.
90. Mountfort, D. O.,, F. A. Rainey,, J. Burghardt,, H. F. Kaspar,, and E. Stackebrandt. 1997. Clostridium vincentii sp. nov., a new obligately anaerobic, saccharolytic, psychrophilic bacterium isolated form low-salinity pond sediment of the McMurdo Ice Shelf, Antarctica. Arch. Microbiol. 167: 54 60.
91. Mountfort, D. O.,, F. A. Rainey,, J. Burghardt,, H. F. Kaspar,, and E. Stackebrandt. 1998. Psychromonas antarcticus gen. nov., sp. nov., a new aerotolerant anaerobic, halophilic psychrophile isolated from pond sediment of the McMurdo Ice Shelf, Antarctica. Arch. Microbiol. 169: 231 238.
92. Mueller, D. R.,, and W. F. Vincent. 2006. Microbial habitat dynamics and ablation control on the Ward Hunt Ice Shelf. Hydrol. Processes 20: 857 876.
93. Mueller, D. R.,, W. F. Vincent,, S. Bonilla,, and I. Laurion. 2005. Extremotrophs, extremophiles and broadband pigmentation strategies in a high arctic ice shelf ecosystem. FEMS Microbiol. Ecol. 53: 73 87.
94. Mueller, D. R.,, W. F. Vincent,, and M. O. Jeffries. 2006. Environmental gradients, fragmented habitats, and microbiota of a northern ice shelf cryoecosystem, Ellesmere Island, Canada. Arctic Antarctic Alpine Res. 38: 593 607.
95. Mueller, D. R.,, W. F. Vincent,, W. H. Pollard,, and C. H. Fritsen. 2001. Glacial cryoconite ecosystems: a bipolar comparison of algal communities and habitats. Nova Hedwigia 123: 171 195.
96. Nadeau, T. L.,, E. C. Milbrandt,, and R. W. Castenholz. 2001. Evolutionary relationships of cultivated Antarctic oscillatorians (cyanobacteria). J. Phycol. 37: 650 654.
97. Oerlemans, J. 2001. Glaciers and Climate Change. Swets & Zeitlinger, Lisse, The Netherlands.
98. Papadimitriou, S.,, D. N. Thomas,, H. Kennedy,, C. Haas,, H. Kuosa,, A. Krell,, and G. S. Dieckmann. 2007. Biogeochemical composition of natural sea ice brines from the Weddell Sea during early austral summer. Limnol. Oceanogr. 52: 1809 1823.
99. Petrich, C.,, and H. Eicken,. 2010. Growth, structure and properties of sea ice, p. 23 78. In D. N. Thomas, and G. S. Dieckmann (ed.), Sea Ice: an Introduction to Its Physics, Chemistry, Biology, and Geology. Blackwell Science, Ltd., Oxford, United Kingdom.
100. Priscu, J. C.,, M. T. Downes,, L. R. Priscu,, A. C. Palmisano,, and C. W. Sullivan. 1990. Dynamics of ammonium oxidizer activity and nitrous-oxide (N 2O) within and beneath Antarctic sea ice. Mar. Ecol. Prog. Ser. 62: 37 46.
101. Priscu, J.,, S. Tulaczyk,, M. Studinger,, M. C. Kennicutt II,, B. Christner,, and C. M. Foreman,. 2008. Antarctic subglacial water: origin, evolution, and ecology, p. 119 135. In W. F. Vincent, and J. Laybourn-Perry (ed.), Polar Lakes and Rivers. Oxford University Press, Oxford, United Kingdom.
102. Raymond, J. A.,, B. C. Christner,, and S. C. Schuster. 2008. A bacterial ice-binding protein from the Vostok ice core. Extremophiles 12: 713 717.
103. Riedel, A.,, C. Michel,, M. Gosselin,, and B. LeBlanc. 2008. Winter-spring dynamics in sea-ice carbon cycling in the coastal Arctic Ocean. J. Mar. Syst. 74: 918 932.
104. Ross, J. C.,, and W. F. Vincent. 1998. Temperature dependence of UV radiation effects on Antarctic cyanobacteria. J. Phycol. 34: 118 125.
105. Rysgaard, S.,, and R. N. Glud. 2004. Anaerobic N 2 production in Arctic sea ice. Limnol. Oceanogr. 49: 86 94.
106. Rysgaard, S.,, R. N. Glud,, M. K. Sejr,, M. E. Blicher,, and H. J. Stahl. 2008. Denitrification activity and oxygen dynamics in Arctic sea ice. Polar Biol. 31: 527 537.
107. Säwström, C.,, J. Laybourn-Parry,, W. Granéli,, and A. M. Anesio. 2007. Heterotrophic bacterial and viral dynamics in Arctic freshwaters: results from a field study and nutrient-temperature manipulation experiments. Polar Biol. 30: 1407 1415.
108. Säwström, C.,, P. Mumford,, W. Marshall,, A. Hodson,, and J. Laybourn-Parry. 2002. The microbial communities and primary productivity of cryoconite holes in an Arctic glacier (Svalbard 79°N). Polar Biol. 25: 591 596.
109. Serreze, M. C.,, M. M. Holland,, and J. Stroeve. 2007. Perspectives on the Arctic's shrinking sea-ice cover. Science 315: 1533 1536.
110. Sjöling, S.,, and D. A. Cowan. 2003. High 16S rDNA bacterial diversity in glacial meltwater lake sediment, Bratina Island, Antarctica. Extremophiles 7: 275 282.
111. Skidmore, M., 2011. Microbial communities in Antarctic subglacial aquatic environments, p. 61 81. In M. J. Siegert,, M. C. Kennicutt II,, and R. A. Bindschadler (ed.), Antarctic Subglacial Aquatic Environments. AGU Press, Washington, DC.
112. Skidmore, M.,, S. P. Anderson,, M. Sharp,, J. Foght,, and B. D. Lanoil. 2005. Comparison of microbial community compositions of two subglacial environments reveals a possible role for microbes in chemical weathering processes. Appl. Environ. Microbiol. 71: 6986 6997.
113. Skidmore, M.,, C. Bakermans,, T. Brox,, B. Christner,, and S. Montross. 2009. Microbial respiration at sub-zero temperatures in laboratory ices. Geochim. Cosmochim. Acta 73: A1234.
114. Skidmore, M. L.,, J. M. Foght,, and M. J. Sharp. 2000. Microbial life beneath a high Arctic glacier. Appl. Environ. Microbiol. 66: 3214 3220.
115. Skidmore, M.,, M. Tranter,, S. Tulaczyk,, and B. Lanoil. 2010. Hydrochemistry of ice stream beds—evaporitic or microbial effects? Hydrol. Processes 24: 517 523.
116. Smith, R. E. H.,, M. Gosselin,, S. Kudoh,, B. Robineau,, and S. Taguchi. 1997. DOC and its relation to algae in bottom ice communities. J. Mar. Syst. 11: 71 80.
117. Smith, R. E. H.,, W. G. Harrison,, L. R. Harris,, and A. W. Herman. 1990. Vertical fine structure of particulate matter and nutrients in sea ice of the High Arctic. Can. J. Fish. Aquat. Sci. 47: 1348 1355.
118. Staley, J. T.,, R. L. Irgens,, and R. P. Herwig. 1989. Gas vacuolate bacteria found in Antarctic sea ice with ice algae. Appl. Environ. Microbiol. 55: 1033 1036.
119. Stibal, M.,, M. Tranter,, L. G. Benning,, and J. Rehak. 2008. Microbial primary production on an Arctic glacier is insignificant in comparison with allochthonous organic carbon input. Environ. Microbiol. 10: 2172 2178.
120. Stroeve, J.,, M. M. Holland,, W. Meier,, T. Scambos,, and M. Serreze. 2007. Arctic sea ice decline: faster than forecast. Geophys. Res. Lett. 34: L09501.
121. Sullivan, C. W.,, and A. C. Palmisano. 1984. Sea ice microbial communities: distribution, abundance, and diversity of ice bacteria in McMurdo Sound, Antarctica, in 1980. Appl. Environ. Microbiol. 47: 788 795.
122. Tang, E. P. Y.,, R. F. Tremblay,, and W. F. Vincent. 1997. Cyanobacterial dominance of polar freshwater ecosystems: are high-latitude mat-formers adapted to low temperatures? J. Phycol. 33: 171 181.
123. Telling, J.,, A. Anesio,, J. Hawkings,, M. Tranter,, J. L. Wadham,, A. Hodson,, T. Irvine-Fynn,, and M. L. Yallop. 2010. Measuring rates of gross photosynthesis and net community production in cryoconite holes: a comparison of field methods. Ann. Glaciol. 51: 153 162.
124. Thomas, D. N.,, and G. S. Dieckmann (ed). Sea Ice: an Introduction to Its Physics, Chemistry, Biology, and Geology. Blackwell Science, Ltd., Oxford, United Kingdom.
125. Thomas, D. N.,, G. Kattner,, R. Engbrodt,, V. Gianelli,, H. Kennedy,, C. Haas,, and G. S. Dieckmann. 2001. Dissolved organic matter in Antarctic sea ice. Ann. Geol. 33: 297 303.
126. Thomas, D. N.,, S. Papadimitriou,, and C. Michel,. 2010. Biogeochemistry of sea ice, p. 425 467. In D. N. Thomas, and G. S. Dieckmann (ed.), Sea Ice: an Introduction to Its Physics, Chemistry, Biology, and Geology. Blackwell Science, Ltd., Oxford, United Kingdom.
127. Tranter, M.,, M. Skidmore,, and J. Wadham. 2005. Hydrological controls on microbial communities in subglacial environments. Hydrol. Processes 19: 995 998.
128. Vancoppenolle, M.,, H. Goosse,, A. de Montety,, T. Fichefet,, B. Tremblay,, and J.-L. Tison. 2010. Modeling brine and nutrient dynamics in Antarctic sea ice: the case of dissolved silica. J. Geophys. Res. 115: C02005.
129. Varin, T.,, C. Lovejoy,, A. D. Jungblut,, W. F. Vincent,, and J. Corbeil. 2010. Metagenomic profiling of Arctic microbial mat communities as nutrient scavenging and recycling systems. Limnol. Oceanogr. 55: 1901 1911.
130. Vincent, W. F. 1988. Microbial Ecosystems of Antarctica. Cambridge University Press, Cambridge, United Kingdom.
131. Vincent, W. F. 2010. Microbial ecosystem responses to rapid climate change in the Arctic. ISME J. 4: 1087 1090.
132. Vincent, W. F.,, R. W. Castenholz,, M. T. Downes,, and C. Howard-Williams. 1993. Antarctic cyanobacteria: light, nutrients, and photosynthesis on the microbial mat environments. J. Phycol. 29: 745 755.
133. Vincent, W. F.,, J. A. E. Gibson,, R. Pienitz,, V. Villeneuve,, P. A. Broady,, P. B. Hamilton,, and C. Howard-Williams. 2000. Ice shelf microbial ecosystems in the High Arctic and implications for life on Snowball Earth. Naturwissenschaften 87: 137 141.
134. Vincent, W. F.,, and C. Howard-Williams. 1989. Microbial communities in southern Victoria Land streams (Antarctica) II. The effects of low temperature. Hydrobiology 172: 39 49.
135. Vincent, W. F.,, D. R. Mueller,, and S. Bonilla. 2004. Ecosystems on ice: the microbial ecology of Markham Ice Shelf in the high Arctic. Cryobiology 48: 103 112.
136. von Quillfeldt, C. H.,, W. G. Ambrose Jr.,, and L. M. Clough. 2003. High number of diatoms species in first-year ice from the Chukchi Sea. Polar Biol. 26: 806 818.
137. Wadham, J. L.,, S. Bottrell,, M. Tranter,, and R. Raiswell. 2004. Stable isotope evidence for microbial sulphate reduction at the bed of a polythermal high Arctic glacier. Earth Planet. Sci. Lett. 219: 341 355.
138. Wadham, J. L.,, M. Tranter,, A. J. Hodson,, R. Hodgkins,, S. Bottrell,, R. Cooper,, and R. Raiswell. 2010a. Hydro-biogeochemical coupling beneath a large polythermal Arctic glacier: implications for subice sheet biogeochemistry. J. Geophys. Res. 115: F04017.
139. Wadham, J. L.,, M. Tranter,, M. Skidmore,, A. J. Hodson,, J. Priscu,, W. B. Lyons,, M. Sharp,, P. Wynn,, and M. Jackson. 2010b. Biogeochemical weathering under ice: size matters. Glob. Biogeochem. Cycles 24: GB3025.
140. Wells, L. E.,, and J. W. Deming. 2006. Characterization of a cold-active bacteriophage on two psychrophilic marine hosts. Aquat. Microb. Ecol. 45: 15 29.
141. Wharton, R. A.,, C. P. McKay,, G. M. Simmons,, and B. C. Parker. 1985. Cryoconite holes on glaciers. Bioscience 35: 499 503.
142. Wharton, R. A.,, W. C. Vinyard,, B. C. Parker,, G. M. Simmons,, and K. G. Seaburg. 1981. Algae in cryoconite holes on Canada Glacier in southern Victoria Land, Antarctica. Phycologia 20: 208 211.
143. Wynn, P. M.,, A. J. Hodson,, T. H. E. Heaton,, and S. R. Chenery. 2007. Nitrate production beneath a High Arctic glacier, Svalbard. Chem. Geol. 244: 88 102.
144. Yde, J. C.,, K. W. Finster,, R. Raiswell,, J. P. Steffensen,, J. Heinemeier,, J. Olsen,, H. P. Gunnlaugsson,, and O. B. Nielsen. 2010. Basal ice microbiology at the margin of the Greenland ice sheet. Ann. Glaciol. 51: 71 79.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error