Chapter 4 : Fungi in Polar Environments

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

Fungi in Polar Environments, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817183/9781555816049_Chap04-1.gif /docserver/preview/fulltext/10.1128/9781555817183/9781555816049_Chap04-2.gif


Although some fungi that are endemic to the extreme polar regions show psychrophilic behavior, the majority are instead psychrotolerant and globally distributed, ranging from the Arctic to Antarctica. It is important to note that although their natural ecological niches are in the polar environments, such fungi can also grow in human proximity; they can inhabit freezers and cold-storage rooms, and refrigerated and even frozen food. The methods used for fungal detection have been time appropriate, from the classical early microscope visualization to the more recent sophisticated DNA-based techniques, which have been complemented lately by metagenomic studies, although these have generally not been focused on fungi. Permafrost in polar regions covers more than 25% of the land surface and significant parts of the coastal sea shelves. Fungal diversity in the Arctic and Antarctic permafrost has been studied intensively over the last decade. The dominant species in Arctic glaciers environments was , which represented on average half of all of the isolated strains from the glaciers studied. Penicillia were the most frequently occurring filamentous fungi in all of our samples, including seawater, sea ice, snow/coastal ice in tidal zones, puddles on snow, subglacial ice, and glacial meltwater.

Citation: Zalar P, Sonjak S, Gunde-Cimerman N. 2012. Fungi in Polar Environments, p 79-94. In Miller R, Whyte L (ed), Polar Microbiology: Life in a Deep Freeze. ASM Press, Washington, DC. doi: 10.1128/9781555817183.ch4
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of FIGURE 1

Micromorphological structures of the most common fungi in polar regions. (A) ; (B) ; (C) a sp.; (D) ; (E) a sp.

Citation: Zalar P, Sonjak S, Gunde-Cimerman N. 2012. Fungi in Polar Environments, p 79-94. In Miller R, Whyte L (ed), Polar Microbiology: Life in a Deep Freeze. ASM Press, Washington, DC. doi: 10.1128/9781555817183.ch4
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Abyzov, S. S., 1993. Microorganisms in the Antarctic ice, p. 265 295. In E. I. Friedmann (ed.), Antarctic Microbiology. Wiley-Liss, New York, NY.
2. Abyzov, S. S.,, R. B. Hoover,, S. Imura,, I. N. Mitskevich,, T. Naganuma,, M. N. Poglazova,, and M. V. Ivanov. 2004. Use of different methods for discovery of ice-entrapped microorganisms in ancient layers of the Antarctic glacier. Adv. Space Res. 33: 1222 1230.
3. Azmi, O. R.,, and R. D. Seppelt. 1998. The broad-scale distribution of microfungi in the Windmill Islands region, continental Antarctica. Polar Biol. 19: 92 100.
4. Babjeva, I.,, and I. Reshetova. 1998. Yeast resources in natural habitats at polar circle latitude. Food Technol. Biotechnol. 36: 1 5.
5. Baublis, J. A.,, R. A. Wharton,, and P. A. Volz. 1991. Diversity of micro-fungi in an Antarctic dry valley. J. Basic Microbiol. 31: 1 12.
6. Belzile, C.,, W. F. Vincent,, J. A. Gibson,, and P. V. Hove. 2001. Bio-optical characteristics of the snow, ice, and water column of a perennially ice-covered lake in the High Arctic. Can. J. Fish. Aquat. Sci. 58: 2405 2418.
7. Bergero, R.,, M. Girlanda,, G. C. Varese,, D. Intili,, and A. M. Luppi. 1999. Psychrooligotrophic fungi from Arctic soils of Franz Joseph Land. Polar Biol. 21: 361 368.
8. Blehert, D. S.,, A. C. Hicks,, M. Behr,, C. U. Meteyer,, B. M. Berlowski-Zier,, E. L. Buckles,, J. T. H. Coleman,, S. R. Darling,, A. Gargas,, R. Niver,, J. C. Okoniewski,, R. J. Rudd,, and W. B. Stone. 2009. Bat white-nose syndrome: an emerging fungal pathogen? Science 323: 227.
9. Bodiselitsch, B.,, C. Koeberl,, S. Master,, and W. U. Reimold. 2005. Estimating duration and intensity of Neoproterozoic snowball glaciations from Ir anomalies. Science 308: 239 242.
10. Branda, E.,, B. Turchetti,, G. Diolaiuti,, M. Pecci,, C. Smiraglia,, and P. Buzzini. 2010. Yeast and yeast-like diversity in the southernmost glacier of Europe (Calderone Glacier, Apennines, Italy). FEMS Microbiol. Ecol. 72: 354 369.
11. Brown, M. V.,, and J. P. Bowman. 2001. A molecular phylogenetic survey of sea-ice microbial communities (SIMCO). FEMS Microbiol. Ecol. 35: 267 275.
12. Burford, E. P.,, M. Fomina,, and G. M. Gadd. 2003. Fungal involvement in bioweathering and biotransformation of rocks and minerals. Mineral. Mag. 67: 1127 1155.
13. Butinar, L.,, I. Spencer-Martins,, and N. Gunde-Cimerman. 2007. Yeasts in high Arctic glaciers: the discovery of a new habitat for eukaryotic microorganisms. Antonie van Leeuwenhoek 91: 277 289.
14. Butinar, L.,, T. Strmole,, and N. Gunde-Cimerman. 2011. Relative incidence of ascomycetous yeasts in Arctic coastal environments. Microbiol Ecol. 61: 832 843.
15. Cavicchioli, R.,, K. S. Siddiqui,, D. Andrews,, and K. R. Sowers. 2002. Low-temperature extremophiles and their applications. Curr. Opin. Biotechnol. 13: 253 261.
16. Chi, Z. M.,, F. Wang,, Z. Chi,, L. X. Yue,, G. L. Liu,, and T. Zhang. 2009. Bioproducts from Aureobasidium pullulans, a biotechnologically important yeast. Appl. Microbiol. Biotechnol. 82: 793 804.
17. Christner, B. C.,, E. Mosley-Thompson,, L. G. Thompson,, V. Zagorodnov,, K. Sandman,, and J. N. Reeve. 2000. Recovery and identification of viable bacteria immured in glacial ice. Icarus 144: 479 485.
18. de García, V.,, S. Brizzio,, D. Libkind,, P. Buzzini,, and M. van Broock. 2007. Biodiversity of cold-adapted yeasts from glacial meltwater rivers in Patagonia, Argentina. FEMS Microbiol. Ecol. 59: 331 341.
19. de García, V.,, S. Brizzio,, D. Libkind,, C. A. Rosa,, and M. van Broock. 2010a. Wickerhamomyces patagonicus sp. nov., an ascomycetous yeast species from Patagonia, Argentina. Int. J. Syst. Evol. Microbiol. 60: 1693 1696.
20. de García, V.,, S. Brizzio,, G. Russo,, C. A. Rosa,, T. Boekhout,, B. Theelen,, D. Libkind,, and M. van Broock. 2010b. Cryptococcus spencermartinsiae sp. nov., a basidiomycetous yeast isolated from glacial waters and apple fruits. Int. J. Syst. Evol. Microbiol. 60: 707 711.
21. de Hoog, G. S.,, E. Göttlich,, G. Platas,, O. Genilloud,, G. Leotta,, and J. van Brummelen. 2005. Evolution, taxonomy and ecology of the genus Thelebolus in Antarctica. Stud. Mycol. 51: 33 73.
22. de la Torre, J. R.,, B. M. Goebel,, E. I. Friedmann,, and N. R. Pace. 2003. Microbial diversity of cryptoendolithic communities from the McMurdo Dry Valleys, Antarctica. Appl. Environ. Microbiol. 69: 3858 3867.
23. D'Elia, T.,, R. Veerapaneni,, V. Theraisnathan,, and S. O. Rogers. 2009. Isolation of fungi from Lake Vostok accretion ice. Mycologia 101: 751 763.
24. de los Ríos, A.,, J. Wierzchos,, L. G. Sancho,, and C. Ascaso. 2003. Acid microenvironments in microbial biofilms of Antarctic endolithic microecosystems. Environ. Microbiol. 5: 231 237.
25. de los Ríos, A.,, L. G. Sancho,, M. Grube,, J. Wierzchos,, and C. Ascaso. 2005. Endolithic growth of two lecidea lichens in granite from Continental Antarctica detected by molecular and microscopy techniques. New Phytol. 165: 181 189.
26. Deming, J. W. 2002. Psychrophiles and polar regions. Curr. Opin. Microbiol. 5: 301 309.
27. De Wit, R.,, P. Dyer,, O. Genilloud,, E. Goetlich,, D. Hodgson,, G. S. de Hoog,, B. Jones,, J. Laybourn-Parry,, F. Marinelli,, E. Stackebrandt,, J. Swings,, B. J. Tindall,, W. Vyverman,, and A. Wilmotte,. 2003. Antarctic lakes—‘hot spots’ for microbial diversity and biotechnological screening, p. 228. In T. Avšič-Županc,, A. van Belkum,, C. Bruschi,, I. Chet,, J. Cole,, D. Farr,, W. Holzapfel,, R. J. Koerner,, A. Netrusov,, J.-C. Piffaretti,, E. Z. Ron,, R. Rosselló-Mora,, B. Schink,, S. Spiro,, B. J. Tindall,, and H. G. Trüper (ed.), 1st FEMS Congress of European Microbiologists, Slovenia, Ljubljana, June 29-July 3. Federation of European Microbiological Societies, Delft, The Netherlands.
28. Dmitriev, V. V.,, D. A. Gilichinsky,, R. N. Faizutdinova,, N. V. Ostroumova,, W. I. A. Golubev,, and V. I. Duda. 1997a. Yeasts in late Pleistocene-early Pleistocene Siberian permafrost. Cryosphera Zemli 1: 67 70. (In Russian.)
29. Dmitriev, V. V.,, D. A. Gilichinsky,, R. N. Faizutdinova,, I. N. Shershunov,, W. I. A. Golubev,, and V. I. Duda. 1997b. Occurrence of viable yeasts in 3-million-year-old permafrost in Siberia. Mikrobiologiya 66: 655 660. (In Russian.)
30. Domsch, K. H.,, W. Gams,, and T. H. Anderson. 1980. Compendium of Soil Fungi. Academic Press, London, United Kingdom.
31. Dugan, F.,, K. Schubert,, and U. Braun. 2004. Checklist of Cladosporium names. Schlechtendalia 11: 1 103.
32. Ekstrom, G.,, M. Nettles,, and G. A. Abers. 2003. Glacial earthquakes. Science 302: 622 624.
33. Ellis-Evans, J. C. 1985. Fungi from maritime Antarctic freshwater environments. Br. Antarct. Surv. Bull. 68: 37 45.
34. Fahnestock, M. 2003. Geophysics: glacial flow goes seismic. Science 302: 578 579.
35. Faizutdinova, R. N.,, N. E. Suzina,, V. I. Duda,, L. E. Petrovskaya,, and D. A. Gilichinsky,. 2005. Yeasts isolated from ancient permafrost, p. 118 126. In J. D. Castello, and S. O. Rogers (ed.), Life in Ancient Ice. Princeton University Press, Princeton, NJ.
36. Fell, J. W.,, G. Scorzetti,, L. Connell,, and S. Craig. 2006. Biodiversity of micro-eukaryotes in Antarctic Dry Valley soils with <5% soil moisture. Soil Biol. Biochem. 38: 3107 3119.
37. Foght, J.,, J. Aislabie,, S. Turner,, C. E. Brown,, J. Ryburn,, D. J. Saul,, and W. Lawson. 2004. Culturable bacteria in subglacial sediments and ice from two Southern Hemisphere glaciers. Microb. Ecol. 47: 329 340.
38. Freeman, K. R.,, A. P. Martin,, D. Karki,, R. C. Lynch,, M. S. Mitter,, A. F. Meyer,, J. E. Longcore,, D. R. Simmons,, and S. K. Schmidt. 2009. Evidence that chytrids dominate fungal communities in high-elevation soils. Proc. Natl. Acad. Sci. USA 106: 18315 18320.
39. Friedmann, E. I. 1982. Endolithic microorganisms in the Antarctic cold desert. Science 215: 1045 1053.
40. Friedmann, E. I.,, and A. M. Koriem. 1989. Life on Mars: how it disappeared (if it was ever there). Adv. Space Res. 9: 167 172.
41. Frisvad, J. C., 2008. Fungi in cold ecosystems, p. 137 156. In R. Margesin,, F. Schinner,, J.-C. Marx,, and C. Gerday (ed.), Psychrophiles: from Biodiversity to Biotechnology. Springer, Berlin, Germany.
42. Frisvad, J. C.,, T. O. Larsen,, P. W. Dalsgaard,, K. A. Seifert,, G. Louis-Seize,, E. K. Lyhne,, B. B. Jarvis,, J. C. Fettinger,, and D. P. Overy. 2006. Four psychrotolerant species with high chemical diversity consistently producing cycloaspeptide A, Penicillium jamesonlandense sp nov., Penicillium ribium sp nov., Penicillium soppii and Penicillium lanosum. Int. J. Syst. Evol. Microbiol. 56: 1427 1437.
43. Gadd, G. M. 2007. Geomycology: biogeochemical transformations of rocks, minerals, metals and radionuclides by fungi, bioweathering and bioremediation. Mycol. Res. 111: 3 49.
44. Gaidos, E.,, B. Lanoil,, T. Thorsteinsson,, A. Graham,, M. Skidmore,, S. K. Han,, T. Rust,, and B. Popp. 2004. A viable microbial community in a subglacial volcanic crater lake, Iceland. Astrobiology 4: 327 344.
45. Gilichinsky, D.,, E. Rivkina,, C. Bakermans,, V. Shcherbakova,, L. Petrovskaya,, S. Ozerskaya,, N. Ivanushkina,, G. Kochkina,, K. Laurinavichuis,, S. Pecheritsina,, R. Fattakhova,, and J. M. Tiedje. 2005. Biodiversity of cryopegs in permafrost. FEMS Microbiol. Ecol. 53: 117 128.
46. Gilichinsky, D. A.,, G. S. Wilson,, E. I. Friedmann,, C. P. McKay,, R. S. Sletten,, E. M. Rivkina,, T. A. Vishnivetskaya,, L. G. Erokhina,, N. E. Ivanushkina,, G. A. Kochkina,, V. A. Shcherbakova,, V. S. Soina,, E. V. Spirina,, E. A. Vorobyova,, D. G. Fyodorov-Davydov,, B. Hallet,, S. M. Ozerskaya,, V. A. Sorokovikov,, K. S. Laurinavichyus,, A. V. Shatilovich,, J. P. Chanton,, V. E. Ostroumov,, and J. M. Tiedje. 2007. Microbial populations in Antarctic permafrost: biodiversity, state, age, and implication for astrobiology. Astrobiology 7: 275 311.
47. Golubev, W. I. 1998. New species of basidiomycetous yeasts, Rhodotorula creatinovora and R. yakutica, isolated from permafrost soils of Eastern-Siberian Arctic. Mykol. Phytopathol. 32: 8 13. (In Russian.)
48. Golubic, S.,, E. I. Friedmann,, and J. Schneider. 1981. The lithobiontic ecological niche, with special reference to microorganisms. J. Sediment. Res. 51: 475 478.
49. Gorbushina, A. A.,, and W. J. Broughton. 2009. Microbiology of the atmosphere-rock interface: how biological interactions and physical stresses modulate a sophisticated microbial ecosystem. Annu. Rev. Microbiol. 63: 431 450.
50. Gosink, J. J.,, R. L. Irgens,, and J. T. Staley. 1993. Vertical distribution of bacteria in Arctic sea ice. FEMS Microbiol. Lett. 102: 85 90.
51. Gostinčar, C.,, M. Grube,, S. de Hoog,, P. Zalar,, and N. Gunde-Cimerman. 2010. Extremotolerance in fungi: evolution on the edge. FEMS Microbiol. Ecol. 71: 2 11.
52. Grabińska-Łoniewska, A.,, T. Koniłłowicz-Kowalska,, G. Wardzyńska,, and K. Boryn. 2007. Occurrence of fungi in water distribution system. Pol. J. Environ. Stud. 16: 539 547.
53. Gunde-Cimerman, N.,, L. Butinar,, S. Sonjak,, M. Turk,, V. Uršič,, P. Zalar,, and A. Plemenitaš,. 2005. Halotolerant and halophilic fungi from coastal environments in the Arctics, p. 397 423. In N. Gunde-Cimerman,, A. Orenand,, and A. Plemenitaš (ed.), Adaptation to Life at High Salt Concentrations in Archaea, Bacteria, and Eukarya. Springer, Dordrecht, The Netherlands.
54. Gunde-Cimerman, N.,, S. Sonjak,, P. Zalar,, J. C. Frisvad,, B. Diderichsen,, and A. Plemenitaš. 2003. Extremophilic fungi in arctic ice: a relationship between adaptation to low temperature and water activity. Phys. Chem. Earth B 28: 1273 1278.
55. Gunde-Cimerman, N.,, P. Zalar,, S. de Hoog,, and A. Plemenitaš. 2000. Hypersaline waters in salterns—natural ecological niches for halophilic black yeasts. FEMS Microbiol. Ecol. 32: 235 240.
56. Hölker, U.,, J. Bend,, R. Pracht,, L. Tetsch,, T. Müller,, M. Höfer,, and G. S. de Hoog. 2004. Hortaea acidophila, a new acid-tolerant black yeast from lignite. Antonie van Leeuwenhoek 86: 287 294.
57. Hughes, K. A.,, and B. Lawley. 2003. A novel Antarctic microbial endolithic community within gypsum crusts. Environ. Microbiol. 5: 555 565.
58. Ivanushkina, N. E.,, G. A. Kochkina,, and S. M. Ozerskaya,. 2005. Fungi in ancient permafrost sediments of the Arctic and Antarctic regions, p. 127 139. In J. D. Castello, and S. O. Rogers (ed.), Life in Ancient Ice. Princeton University Press, Princeton, NJ.
59. Jones, G. E. B. 1976. Recent Advances in Aquatic Mycology. The Gresham Press, Old Woking, Surrey, United Kingdom.
60. Junge, K.,, F. Imhoff,, T. Staley,, and W. Deming. 2002. Phylogenetic diversity of numerically important Arctic sea-ice bacteria cultured at subzero temperature. Microb. Ecol. 43: 315 328.
61. Kennedy, J.,, B. Flemer,, S. A. Jackson,, D. P. H. Lejon,, J. P. Morrissey,, F. O’Gara,, and A. D. W. Dobson. 2010. Marine metagenomics: new tools for the study and exploitation of marine microbial metabolism. Mar. Drugs 8: 608 628.
62. Kriss, A. E.,, I. N. Mitskevich,, E. P. Rozanova,, and L. K. Osnitskaia. 1976. Microbiological studies of the Wanda Lake (Antarctica). Mikrobiologiya 45: 1075 1081. (In Russian.)
63. Kurek, E.,, T. Korniłłowicz-Kowalska,, A. Słomka,, and A. J. Melke. 2007. Characteristics of soil filamentous fungi communities isolated from various micro-relief forms in the high Arctic tundra (Bellsund region, Spitsbergen). Pol. Polar Res. 28: 57 73.
64. Libkind, D.,, S. Brizzio,, A. Ruffini,, M. Gadanho,, M. van Broock,, and J. P. Sampaio. 2003. Molecular characterization of carotenogenic yeasts from aquatic environments in Patagonia, Argentina. Antonie van Leeuwenhoek 84: 313 322.
65. Libkind, D.,, M. Gadanho,, M. van Broock,, and J. P. Sampaio. 2005. Sporidiobolus longiusculus sp. nov. and Sporobolomyces patagonicus sp. nov., novel yeasts of the Sporidiobolales isolated from aquatic environments in Patagonia, Argentina. Int. J. Syst. Evol. Microbiol. 55: 503 509.
66. Libkind, D.,, M. Moline,, J. P. Sampaio,, and M. van Broock. 2009. Yeasts from high-altitude lakes: influence of UV radiation. FEMS Microbiol. Ecol. 69: 353 362.
67. López-García, P.,, F. Rodríguez-Valera,, C. Pedrós-Alió,, and D. Moreira. 2001. Unexpected diversity of small eukaryotes in deep-sea Antarctic plankton. Nature 409: 603 607.
68. Loque, C. P.,, A. O. Medeiros,, F. M. Pellizzari,, E. C. Oliveira,, C. A. Rosa,, and L. H. Rosa. 2010. Fungal community associated with marine macroalgae from Antarctica. Polar Biol. 33: 641 648.
69. Ludley, K. E.,, and C. H. Robinson. 2008. “Decomposer” Basidiomycota in Arctic and Antarctic ecosystems. Soil Biol. Biochem. 40: 11 29.
70. Lydolph, M. C.,, J. Jacobsen,, P. Arctander,, M. T. Gilbert,, D. A. Gilichinsky,, A. J. Hansen,, E. Willerslev,, and L. Lange. 2005. Beringian paleoecology inferred from permafrost-preserved fungal DNA. Appl. Environ. Microbiol. 71: 1012 1017.
71. Ma, L. J.,, C. M. Catranis,, W. T. Starmer,, and S. O. Rogers. 1999. Revival and characterization of fungi from ancient polar ice. Mycologist 13: 70 73.
72. Ma, L. J.,, S. O. Rogers,, C. M. Catranis,, and W. T. Starmer. 2000. Detection and characterization of ancient fungi entrapped in glacial ice. Mycologia 92: 286 295.
73. Margesin, R. 2009. Effect of temperature on growth parameters of psychrophilic bacteria and yeasts. Extremophiles 13: 257 262.
74. Margesin, R.,, and J. W. Fell. 2008. Mrakiella cryoconiti gen. nov., sp. nov., a psychrophilic, anamorphic, basidiomycetous yeast from alpine and arctic habitats. Int. J. Syst. Evol. Microbiol. 58: 2977 2982.
75. Margesin, R.,, P. A. Fonteyne,, F. Schinner,, and J. P. Sampaio. 2007. Rhodotorula psychrophila sp. nov., Rhodotorula psychrophenolica sp. nov. and Rhodotorula glacialis sp. nov., novel psychrophilic basidiomycetous yeast species isolated from alpine environments. Int. J. Syst. Evol. Microbiol. 57: 2179 2184.
76. Margesin, R.,, G. Zacke,, and F. Schinner. 2002. Characterization of heterotrophic microorganisms in alpine glacier cryoconite. Arct. Antarct. Alp. Res. 34: 88 93.
77. McLoughlin, N.,, M. D. Brasier,, D. Wacey,, O. R. Green,, and R. S. Perry. 2007. On biogenicity criteria for endolithic microborings on early Earth and beyond. Astrobiology 7: 10 26.
78. McRae, C. F.,, A. D. Hocking,, and R. D. Seppelt. 1999. Penicillium species from terrestrial habitats in the Windmill Islands, East Antarctica, including a new species, Penicillium antarcticum. Polar Biol. 21: 97 111.
79. Montes, M. J.,, C. Belloch,, M. Galiana,, M. D. Garcia,, C. Andrés,, S. Ferrer,, J. M. Torres-Rodriguez,, and J. Guinea. 1999. Polyphasic taxonomy of a novel yeast isolated from Antarctic environment; description of Cryptococcus victoriae sp. nov. Syst. Appl. Microbiol. 22: 97 105.
80. Morozova, D.,, D. Möhlmann,, and D. Wagner. 2007. Survival of methanogenic archaea from Siberian permafrost under simulated Martian thermal conditions. Orig. Life Evol. Biosph. 37: 189 200.
81. Mueller, D. R.,, W. F. Vincent,, W. H. Pollard,, and C. H. Fritsen. 2001. Glacial cryoconite ecosystems: a bipolar comparison of algal communities and habitats. Nova Hedwig. Beih. 123: 173 197.
82. Nagano, Y.,, T. Nagahama,, Y. Hatada,, T. Nunoura,, H. Takami,, J. Miyazaki,, K. Takai,, and K. Horikoshi. 2010. Fungal diversity in deep-sea sediments—the presence of novel fungal groups. Fungal Ecol. 3: 316 325.
83. Nienow, J. A.,, and E. I. Friedmann,. 1993. Terrestrial lithophytic (rock) communities, p. 343 412. In E. I. Friedmann (ed.), Antarctic Microbiology. Wiley-Liss, New York, NY.
84. Omelon, C. R.,, W. H. Pollard,, and F. G. Ferris. 2006. Environmental controls on microbial colonization of high Arctic cryptoendolithic habitats. Polar Biol. 30: 19 29.
85. Omelon, C. R.,, W. H. Pollard,, and F. G. Ferris. 2007. Inorganic species distribution and microbial diversity within high Arctic cryptoendolithic habitats. Microb. Ecol. 54: 740 752.
86. Onofri, S.,, D. Barreca,, L. Selbmann,, D. Isola,, E. Rabbow,, G. Horneck,, J. P. P. de Vera,, J. Hatton,, and L. Zucconi. 2008. Resistance of Antarctic black fungi and cryptoendolithic communities to simulated space and Martian conditions. Stud. Mycol. 61: 99 109.
87. Onofri, S.,, M. Fenice,, A. R. Cicalini,, S. Tosi,, A. Magrino,, S. Pagano,, L. Selbmann,, L. Zucconi,, H. S. Vishniac,, R. Ocampo-Friedmann,, and E. I. Friedmann. 2000. Ecology and biology of microfungi from Antarctic rocks and soils. Ital. J. Zool. 67: 163 167.
88. Onofri, S.,, S. Pagano,, L. Zucconi,, and S. Tosi. 1999. Friedmanniomyces endolithicus (Fungi, Hyphomycetes), anam.-gen. and sp. nov., from continental Antarctica. Nova Hedwig. Beih. 68: 175 181.
89. Onofri, S.,, L. Selbmann,, L. Zucconi,, and S. Pagano. 2004. Antarctic microfungi as models for exobiology. Planet. Space Sci. 52: 229 237.
90. Ozerskaya, S.,, G. Kochkina,, N. Ivanushkina,, and D. A. Gilichinsky,. 2009. Fungi in permafrost, p. 85 95. In R. Margesin (ed.), Permafrost Soils. Springer, Berlin, Germany.
91. Ozerskaya, S. M.,, G. A. Kochkina,, N. E. Ivanushkina,, E. V. Knyazeva,, and D. A. Gilichinskii. 2008. The structure of micromycete complexes in permafrost and cryopegs of the Arctic. Microbiology 77: 482 489.
92. Panikov, N. S., 2009. Microbial activity in frozen soils, p. 119 147. In R. Margesin (ed.), Permafrost Soils. Springer, Berlin, Germany.
93. Pathan, A.,, B. Bhadra,, Z. Begum,, and S. Shivaji. 2010. Diversity of yeasts from puddles in the vicinity of Midre Lovénbreen Glacier, Arctic and bioprospecting for enzymes and fatty acids. Curr. Microbiol. 60: 307 314.
94. Pennisi, E. 2003. Neither cold nor snow stops tundra fungi. Science 301: 1307.
95. Pitt, J. I.,, and A. D. Hocking. 1999. Fungi and Food Spoilage. Aspen Publishers, Gaithersburg, Maryland.
96. Pitt, J. I.,, R. A. Samson,, and J. C. Frisvad,. 2000. List of accepted species and their synonyms in the family Trichocomaceae, p. 9 47. In R. A. Samson, and J. I. Pitt (ed.), Integration of Modern Taxonomic Methods for Penicillium and Aspergillus Classification. Harwood Academic Publishers, Amsterdam, The Netherlands.
97. Poglazova, M. N.,, I. N. Mitskevich,, S. S. Abyzov,, and M. V. Ivanov. 2001. Microbiological characterization of the accreted ice of subglacial Lake Vostok, Antarctica. Microbiology 70: 723 730.
98. Price, P. B. 2000. A habitat for psychrophiles in deep Antarctic ice. Proc. Natl. Acad. Sci. USA 97: 1247 1251.
99. Price, P. B.,, and T. Sowers. 2004. Temperature dependence of metabolic rates for microbial growth, maintenance, and survival. Proc. Natl. Acad. Sci. USA 101: 4631 4636.
100. Priscu, J. C.,, C. H. Fritsen,, E. E. Adams,, S. J. Giovannoni,, H. W. Paerl,, C. P. McKay,, P. T. Doran,, D. A. Gordon,, B. D. Lanoil,, and J. L. Pinckney. 1998. Perennial Antarctic lake ice: an oasis for life in a polar desert. Science 280: 2095 2098.
101. Reeve, J. N.,, B. C. Christner,, B. H. Kvitko,, E. Mosley-Thompson,, and L. G. Thompson,. 2002. Life in glacial ice, p. 27. In M. Rossi,, S. Bartolucci,, M. Ciaramellaand,, and M. Moracci (ed.), Extremophiles 2002, The Fourth International Congress on Extremophiles, Naples, Italy. Institute of Protein Biochemistry and University of Naples “Federico II,” Naples, Italy.
102. Rivkina, E. M.,, E. I. Friedmann,, C. P. McKay,, and D. A. Gilichinsky. 2000. Metabolic activity of permafrost bacteria below the freezing point. Appl. Environ. Microbiol. 66: 3230 3233.
103. Rivkina, E.,, K. Laurinavichius,, J. McGrath,, J. Tiedje,, V. Shcherbakova,, and D. Gilichinsky. 2004. Microbial life in permafrost. Adv. Space Res. 33: 1215 1221.
104. Robinson, C. H. 2001. Cold adaptation in Arctic and Antarctic fungi. New Phytol. 151: 341 353.
105. Rohde, R. A.,, and P. B. Price. 2007. Diffusion-controlled metabolism for long-term survival of single isolated microorganisms trapped within ice crystals. Proc. Natl. Acad. Sci. USA 104: 16592 16597.
106. Ruibal, C.,, C. Gueidan,, L. Selbmann,, A. A. Gorbushina,, P. W. Crous,, J. Z. Groenewald,, L. Muggia,, M. Grube,, D. Isola,, C. L. Schoch,, J. T. Staley,, F. Lutzoni,, and G. S. de Hoog. 2009. Phylogeny of rock-inhabiting fungi related to Dothideomycetes. Stud. Mycol. 64: 123 133.
107. Ruisi, S.,, D. Barreca,, L. Selbmann,, L. Zucconi,, and S. Onofri. 2007. Fungi in Antarctica. Rev. Environ. Sci. Biotechnol. 6: 127 141.
108. Russell, N. J.,, P. Harrisson,, I. A. Johnston,, R. Jaenicke,, M. Zuber,, F. Franks,, and D. Wynn-Williams. 1990. Cold adaptation of microorganisms. Philos. Trans. R. Soc. London B 326: 595 611.
109. Samson, R. A.,, E. S. Hoekstra,, J. C. Frisvad,, and O. Filtenborg. 2002. Introduction to Food- and Airborne Fungi. C entralbureau voor Schimmelcultures, Utrecht, The Netherlands.
110. Schadt, C. W.,, A. P. Martin,, D. A. Lipson,, and S. K. Schmidt. 2003. Seasonal dynamics of previously unknown fungal lineages in tundra soils. Science 301: 1359 1361.
111. Schmidt, N.,, and M. Bölter. 2002. Fungal and bacterial biomass in tundra soils along an arctic transect from Taimyr Peninsula, central Siberia. Polar Biol. 25: 871 877.
112. Schubert, K.,, J. Z. Groenewald,, U. Braun,, J. Dijksterhuis,, M. Starink,, C. F. Hill,, P. Zalar,, G. S. de Hoog,, and P. W. Crous. 2007. Biodiversity in the Cladosporium herbarum complex ( Davidiellaceae, Capnodiales), with standardisation of methods for Cladosporium taxonomy and diagnostics. Stud. Mycol. 58: 105 156.
113. Scorzetti, G.,, I. Petrescu,, D. Yarrow,, and J. W. Fell. 2000. Cryptococcus adeliensis sp. nov., a xylanase producing basidiomycetous yeast from Antarctica. Antonie van Leeuwenhoek 77: 153 157.
114. Selbmann, L.,, G. S. de Hoog,, A. Mazzaglia,, E. I. Friedmann,, and S. Onofri. 2005. Fungi at the edge of life: cryptoendolithic black fungi from Antarctic desert. Stud. Mycol. 51: 1 32.
115. Selbmann, L.,, G. S. de Hoog,, L. Zucconi,, D. Isola,, S. Ruisi,, A. H. van den Ende,, C. Ruibal,, F. De Leo,, C. Urzi,, and S. Onofri. 2008. Drought meets acid: three new genera in a dothidealean clade of extremotolerant fungi. Stud. Mycol. 61: 1 20.
116. Siegert, M. J.,, J. C. Ellis-Evans,, M. Tranter,, C. Mayer,, J.-R. Petit,, A. Salamatin,, and J. C. Priscu. 2001. Physical, chemical and biological processes in Lake Vostok and other Antarctic subglacial lakes. Nature 414: 603 609.
117. Siegert, M. J.,, M. Tranter,, J. C. Ellis-Evans,, J. C. Priscu,, and W. Berry Lyons. 2003. The hydrochemistry of Lake Vostok and the potential for life in Antarctic subglacial lakes. Hydrol. Processes 17: 795 814.
118. Simon, C.,, A. Wiezer,, A. W. Strittmatter,, and R. Daniel. 2009. Phylogenetic diversity and metabolic potential revealed in a glacier ice metagenome. Appl. Environ. Microbiol. 75: 7519 7526.
119. Skidmore, M. L.,, J. M. Foght,, and M. J. Sharp. 2000. Microbial life beneath a high Arctic glacier. Appl. Environ. Microbiol. 66: 3214 3220.
120. Sonjak, S.,, J. C. Frisvad,, and N. Gunde-Cimerman. 2005. Comparison of secondary metabolite production by Penicillium crustosum strains, isolated from Arctic and other various ecological niches. FEMS Microbiol. Ecol. 53: 51 60.
121. Sonjak, S.,, J. C. Frisvad,, and N. Gunde-Cimerman. 2006. Penicillium mycobiota in Arctic subglacial ice. Microb. Ecol. 52: 207 216.
122. Sonjak, S.,, J. C. Frisvad,, and N. Gunde-Cimerman. 2007a. Genetic variation among Penicillium crustosum isolates from Arctic and other ecological niches. Microb. Ecol. 54: 298 305.
123. Sonjak, S.,, V. Uršič,, J. C. Frisvad,, and N. Gunde-Cimerman. 2007b. Penicillium svalbardense, a new species from Arctic glacial ice. Antonie van Leeuwenhoek 92: 43 51.
124. Stakhov, V.,, S. Gubin,, S. Maksimovich,, D. Rebrikov,, A. Savilova,, G. Kochkina,, S. Ozerskaya,, N. Ivanushkina,, and E. Vorobyova. 2008. Microbial communities of ancient seeds derived from permanently frozen Pleistocene deposits. Microbiology 77: 348 355.
125. Starmer, W.,, J. Fell,, C. Catranis,, V. Aberdeen,, L. Ma,, S. Zhou,, and S. Rogers,. 2005. Yeasts in the genus Rhodotorula recovered from the Greenland ice sheet, p. 181 195. In J. D. Castello, and S. O. Rogers (ed.), Life in Ancient Ice. Princeton University Press, Princeton, NJ.
126. Sterflinger, K.,, G. S. de Hoog,, and G. Haase. 1999. Phylogeny and ecology of meristematic ascomycetes. Stud. Mycol. 43: 5 22.
127. Sterflinger, K.,, and W. E. Krumbein. 1997. Dematiaceous fungi as a major agent for biopitting on Mediterranean marbles and limestones. Geomicrobiol. J. 14: 219 230.
128. Steven, B.,, R. Leveille,, W. H. Pollard,, and L. G. Whyte. 2006. Microbial ecology and biodiversity in permafrost. Extremophiles 10: 259 267.
129. Takano, Y.,, K. Kobayashi,, K. Marumo,, and Y. Ishikawa,. 2004. Biochemical indicators and enzymatic activity below permafrost environment, p. 84. In F. Robb,, M. W. Adams,, K. Horikoshi,, R. M. Kelly,, J. Littlechild,, K. E. Nelson,, J. Reeve,, R. Roberts,, K. R. Sowers,, and K. Stetter (ed.), Extremophiles 2004, 5th International Conference on Extremophiles, September 19-23, Cambridge, Maryland. American Society for Microbiology, Washington, DC.
130. Thomas, D. N.,, and G. S. Dieckmann. 2002. Antarctic sea ice—a habitat for extremophiles. Science 295: 641 644.
131. Thomas-Hall, S. R.,, B. Turchetti,, P. Buzzini,, E. Branda,, T. Boekhout,, B. Theelen,, and K. Watson. 2010. Cold-adapted yeasts from Antarctica and the Italian Alps—description of three novel species: Mrakia robertii sp. nov., Mrakia blollopis sp. nov. and Mrakiella niccombsii sp. nov. Extremophiles 14: 47 59.
132. Thomas-Hall, S.,, and K. Watson. 2002. Cryptococcus nyarrowii sp. nov., a basidiomycetous yeast from Antarctica. Int. J. Syst. Evol. Microbiol. 52: 1033 1038.
133. Thomas-Hall, S.,, K. Watson,, and G. Scorzetti. 2002. Cryptococcus statzelliae sp. nov. and three novel strains of Cryptococcus victoriae, yeasts isolated from Antarctic soils. Int. J. Syst. Evol. Microbiol. 52: 2303 2308.
134. Tosi, S.,, B. Casado,, R. Gerdol,, and G. Caretta. 2002. Fungi isolated from Antarctic mosses. Polar Biol. 25: 262 268.
135. Tosi, S.,, S. Onofri,, M. Brusoni,, L. Zucconi,, and H. Vishniac. 2005. Response of Antarctic soil fungal assemblages to experimental warming and reduction of UV radiation. Polar Biol. 28: 470 482.
136. Turchetti, B.,, P. Buzzini,, M. Goretti,, E. Branda,, G. Diolaiuti,, C. D'Agata,, C. Smiraglia,, and A. Vaughan-Martini. 2008. Psychrophilic yeasts in glacial environments of Alpine glaciers. FEMS Microbiol. Ecol. 63: 73 83.
137. Vincent, W. F. 2000. Evolutionary origins of Antarctic microbiota: invasion, selection and endemism. Antarct. Sci. 12: 374 385.
138. Vincent, W. F.,, D. R. Mueller,, and S. Bonilla. 2004. Ecosystems on ice: the microbial ecology of Markham Ice Shelf in the high Arctic. Cryobiology 48: 103 112.
139. Vishniac, H. S., 1993. The microbiology of Antarctic soils, p. 297 342. In E. I. Friedmann (ed.), Antarctic Microbiology. Wiley-Liss, New York, NY.
140. Vishniac, H. S. 2002. Cryptococcus tephrensis, sp. nov., and Cryptococcus heimaeyensis, sp. nov.; new anamorphic basidiomycetous yeast species from Iceland. Can. J. Microbiol. 48: 463 467.
141. Vishniac, H. S., 2006. Yeast biodiversity in the Antarctic, p. 419 440. In C. A. Rosaand, and G. Péter (ed.), Biodiversity and Ecophysiology of Yeasts. Springer, Berlin, Germany.
142. Vishniac, H. S.,, and S. Onofri. 2003. Cryptococcus antarcticus var. circumpolaris var. nov., a basidiomycetous yeast from Antarctica. Antonie van Leeuwenhoek 83: 231 233.
143. Vorobyova, E.,, V. Soina,, M. Gorlenko,, N. Minkovskaya,, N. Zalinova,, A. Mamukelashvili,, D. Gilichinsky,, E. Rivkina,, and T. Vishnivetskaya. 1997. The deep cold biosphere: facts and hypothesis. FEMS Microbiol. Rev. 20: 277 290.
144. Wagner, D., 2008. Microbial communities and processes in Arctic permafrost environments, p. 133 154. In P. Dionand, and C. S. Nautiyal (ed.), Microbiology of Extreme Soils. Springer, Berlin, Germany.
145. Wagner, D.,, A. Lipski,, A. Embacher,, and A. Gattinger. 2005. Methane fluxes in permafrost habitats of the Lena Delta: effects of microbial community structure and organic matter quality. Environ. Microbiol. 7: 1582 1592.
146. Wallenstein, M. D.,, S. McMahon,, and J. Schimel. 2007. Bacterial and fungal community structure in Arctic tundra tussock and shrub soils. FEMS Microbiol. Ecol. 59: 428 435.
147. Wicklow, D.,, and D. Malloch. 1971. Studies in the genus Thelebolus: temperature optima for growth and ascocarp development. Mycologia 63: 118 131.
148. Xiao, N.,, K. Suzuki,, Y. Nishimiya,, H. Kondo,, A. Miura,, S. Tsuda,, and T. Hoshino. 2010. Comparison of functional properties of two fungal antifreeze proteins from Antarctomyces psychrotrophicus and Typhula ishikariensis. FEBS J. 277: 394 403.
149. Xin, M. X.,, and P. J. Zhou. 2007. Mrakia psychrophila sp. nov., a new species isolated from Antarctic soil. J. Zhejiang Univ. Sci. B 8: 260 265.
150. Zalar, P.,, G. S. de Hoog,, H.-J. Schroers,, P. W. Crous,, J. Z. Groenewald,, and N. Gunde-Cimerman. 2007. Phylogeny and ecology of the ubiquitous saprobe Cladosporium sphaerospermum, with descriptions of seven new species from hypersaline environments. Stud. Mycol. 58: 157 183.
151. Zalar, P.,, C. Gostinčar,, G. S. de Hoog,, V. Uršič,, M. Sudhadham,, and N. Gunde-Cimerman. 2008. Redefinition of Aureobasidium pullulans and its varieties. Stud. Mycol. 61: 21 38.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error