Chapter 5 : General Characteristics of Cold-Adapted Microorganisms

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

General Characteristics of Cold-Adapted Microorganisms, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817183/9781555816049_Chap05-1.gif /docserver/preview/fulltext/10.1128/9781555817183/9781555816049_Chap05-2.gif


Although interest in microbes inhabiting low-temperature environments has increased in recent years, significant gaps remain in understanding what makes certain microorganisms cold adapted. Interest in the structural, biochemical, and physiological properties of psychrophilic microorganisms has motivated investigations to characterize the adaptations that maintain enzymatic reaction rates, macromolecular stability, and homeostasis at cold temperature. This chapter provides an overview on the state of knowledge about adaptations that allow certain bacteria and archaea to persist in the coldest regions of the biosphere. In general, the proteins of psychrophilic microorganisms must maintain flexibility to perform catalysis at low temperatures, whereas thermophilic proteins are rigid to protect them from thermal denaturation. Importantly, adaptations that enhance protein flexibility reduce the activation energy needed for the formation of the enzyme-substrate complex, resulting in enhanced catalytic activity at low temperature. The chapter discusses many of the most common and generally understood biochemical and physiological adaptations that appear unique to the psychrophilic lifestyle. Psychrophilic microorganisms use a range of strategies to persist at low temperatures, including possessing catalytically efficient enzymes, synthesizing specialized lipids that increase membrane flexibility, and producing proteins that affect freezing and ice structure. Coupled with technological advances in high-throughput DNA sequencing and proteomics, one can expect that information on cold-adapted bacteria and archaea will increase in the future.

Citation: Doyle S, Dieser M, Broemsen E, Christner B. 2012. General Characteristics of Cold-Adapted Microorganisms, p 103-125. In Miller R, Whyte L (ed), Polar Microbiology: Life in a Deep Freeze. ASM Press, Washington, DC. doi: 10.1128/9781555817183.ch5
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of FIGURE 1

The effect of temperature on the growth rate of K5 in liquid culture. values for bacterial growth increase with decreasing temperature ( ). A of 2.3, similar to published values for complex communities ( ), is obtained when using the high- and low-temperature data points. (Generation times are based on unpublished data [P. Amato] and the data for growth at −10°C are from .)

Citation: Doyle S, Dieser M, Broemsen E, Christner B. 2012. General Characteristics of Cold-Adapted Microorganisms, p 103-125. In Miller R, Whyte L (ed), Polar Microbiology: Life in a Deep Freeze. ASM Press, Washington, DC. doi: 10.1128/9781555817183.ch5
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2

Thermodependence of enzyme activity. α-Amylase activity for (•) and (°), illustrating the greater of the psychrophilic organism's enzyme at low temperature. (Adapted from )

Citation: Doyle S, Dieser M, Broemsen E, Christner B. 2012. General Characteristics of Cold-Adapted Microorganisms, p 103-125. In Miller R, Whyte L (ed), Polar Microbiology: Life in a Deep Freeze. ASM Press, Washington, DC. doi: 10.1128/9781555817183.ch5
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3

Bright field image of polycrystalline ice. The image shows narrow, intergranular veins and triple junctions formed between ice crystals. cells that were frozen in LB broth at −20°C on a cryostage were excluded into the vein network during ice formation. The width of the image is 230 µm.

Citation: Doyle S, Dieser M, Broemsen E, Christner B. 2012. General Characteristics of Cold-Adapted Microorganisms, p 103-125. In Miller R, Whyte L (ed), Polar Microbiology: Life in a Deep Freeze. ASM Press, Washington, DC. doi: 10.1128/9781555817183.ch5
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 4

(A) Bulk percentage estimates of unfrozen water in various icy substrates. The inclusion of 1 M NaCl is for comparison. (B) Predicted ionic strength and a of the unfrozen water. (Water chemistry data: Seawater, ; Antarctic Permafrost, ; Antarctic Glacial Ice, S. Montross [unpublished data]. Calculations were performed on dissolved major ions using FREZCHEM [v. 11.2; ].)

Citation: Doyle S, Dieser M, Broemsen E, Christner B. 2012. General Characteristics of Cold-Adapted Microorganisms, p 103-125. In Miller R, Whyte L (ed), Polar Microbiology: Life in a Deep Freeze. ASM Press, Washington, DC. doi: 10.1128/9781555817183.ch5
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Abyzov, S. S.,, I. N. Mitskevich,, and M. N. Poglazova. 1998. Microflora of the deep glacier horizons of central Antarctica. Microbiology 67: 66 73.
2. Aghajari, N.,, G. Feller,, C. Gerday,, and R. Haser. 1998. Structures of the psychrophilic Alteromonas haloplanctis α-amylase give insights into cold adaptation at a molecular level. Structure 6: 1503 1516.
3. Amato, P.,, and B. C. Christner. 2009. Energy metabolism response to low-temperature and frozen conditions in Psychrobacter cryohalolentis. Appl. Environ. Microbiol. 75: 711 718.
4. Amato, P.,, S. M. Doyle,, J. R. Battista,, and B. C. Christner. 2010. Implications of subzero metabolic activity on long-term microbial survival in terrestrial and extraterrestrial permafrost. Astrobiology 10: 789 798.
5. Amato, P.,, S. M. Doyle,, and B. C. Christner. 2009. Macromolecular synthesis by yeasts under frozen conditions. Environ. Microbiol. 11: 589 596.
6. Amato, P.,, M. Parazols,, M. Sancelme,, P. Laj,, G. Mailhot,, and A. Delort. 2007. Microorganisms isolated from the water phase of tropospheric clouds at the Puy de Dôme: major groups and growth abilities at low temperatures. FEMS Microbiol. Ecol. 59: 242 254.
7. Appelo, C. A. J.,, and D. Postma. 2005. Geochemistry, Groundwater and Pollution, 2nd ed. A. A. Balkerma Publishers, Leiden, The Netherlands.
8. Arpigny, J. L.,, J. Lamotte,, and C. Gerday. 1997. Molecular adaptation to cold of an Antarctic bacterial lipase. J. Mol. Catal. B Enzym. 3: 29 35.
9. Ayala-del-Río, H. L.,, P. S. Chain,, J. J. Grzymski,, M. A. Ponder,, N. Ivanova,, P. W. Bergholz,, G. Di Bartolo,, L. Hauser,, M. Land,, C. Bakermans,, D. Rodrigues,, J. Klappenbach,, D. Zarka,, F. Larimer,, P. Richardson,, A. Murray,, M. Thomashow,, and J. M. Tiedje. 2010. The genome sequence of Psychrobacter arcticus 273-4, a psychroactive Siberian permafrost bacterium, reveals mechanisms for adaptation to low-temperature growth. Appl. Environ. Microbiol. 76: 2304 2312.
10. Bakermans, C.,, S. L. Tollaksen,, C. S. Giometti,, C. Wilkerson,, J. M. Tiedje,, and M. F. Thomashow. 2007. Proteomic analysis of Psychrobacter cryohalolentis K5 during growth at subzero temperatures. Extremophiles 11: 343 354.
11. Bakermans, C.,, A. I. Tsapin,, V. Souza-Egipsy,, D. A. Gilichinsky,, and K. H. Nealson. 2003. Reproduction and metabolism at -10°C of bacteria isolated from Siberian permafrost. Environ. Microbiol. 5: 321 326.
12. Bentahir, M.,, G. Feller,, M. Aittaleb,, J. Lamotte-Brasseur,, T. Himri,, J.-P. Chessa,, and C. Gerday. 2000. Structural, kinetic, and calorimetric characterization of the cold-active phosphoglycerate kinase from the Antarctic Pseudomonas sp. TACII18. J. Biol. Chem. 275: 11147 11153.
13. Bidle, K. D.,, S. Lee,, D. R. Marchant,, and P. G. Falkowski. 2007. Fossil genes and microbes in the oldest ice on Earth. Proc. Natl. Acad. Sci. USA 104: 13455 13460.
14. Breezee, J.,, N. Cady,, and J. T. Staley. 2004. Subfreezing growth of the sea ice bacterium “ Psychromonas ingrahamii.” Microb. Ecol. 47: 300 304.
15. Brinton, K. L. F.,, A. I. Tsapin,, D. A. Gilichinsky,, and G. D. McDonald. 2002. Aspartic acid racemization and age-depth relationships for organic carbon in Siberian permafrost. Astrobiology 2: 77 82.
16. Britton, G. 1995. Structure and properties of carotenoids in relation to function. FASEB J. 9: 1551 1558.
17. Brooks, P. D.,, S. K. Schmidt,, and M. W. Williams. 1997. Winter production of CO 2 and N 2O from alpine tundra: environmental controls and relationship to inter-system C and N fluxes. Oecologia 110: 403 413.
18. Campen, R. K.,, T. Sowers,, and R. B. Alley. 2003. Evidence of microbial consortia metabolizing within a low-latitude mountain glacier. Geology 31: 231 234.
19. Carpenter, E. J.,, S. Lin,, and D. G. Capone. 2000. Bacterial activity in South Pole snow. Appl. Environ. Microbiol. 66: 4514 4517.
20. Chaikam, V.,, and D. T. Karlson. 2010. Comparison of structure, function and regulation of plant cold shock domain proteins to bacterial and animal cold shock domain proteins. BMB Rep. 43: 1 8.
21. Chattopadhyay, M. K.,, M. V. Jagannadham,, M. Vairamani,, and S. Shivaji. 1997. Carotenoid pigments of an Antarctic psychrotrophic bacterium Micrococcus roseus: temperature dependent biosynthesis, structure, and interaction with synthetic membranes. Biochem. Biophys. Res. Commun. 239: 85 90.
22. Christner, B. C. 2002. Incorporation of DNA and protein precursors into macromolecules by bacteria at -15°C. Appl. Environ. Microbiol. 68: 6435 6438.
23. Christner, B. C. 2010. Bioprospecting for microbial products that affect ice crystal formation and growth. Appl. Microbiol. Biotechnol. 85: 481 489.
24. Christner, B. C.,, E. Mosley-Thompson,, L. G. Thompson,, and J. N. Reeve. 2001. Isolation of bacteria and 16S rDNAs from Lake Vostok accretion ice. Environ. Microbiol. 3: 570 577.
25. Christner, B. C.,, E. Mosley-Thompson,, L. G. Thompson,, V. Zagorodnov,, K. Sandman,, and J. N. Reeve. 2000. Recovery and identification of viable bacteria immured in glacial ice. Icarus 144: 479 485.
26. Christner, B. C.,, E. Mosley-Thompson,, L. G. Thompson,, and J. N. Reeve. 2003. Bacterial recovery from ancient ice. Environ. Microbiol. 5: 433 436.
27. Christner, B. C.,, G. Royston-Bishop,, C. F. Foreman,, B. R. Arnold,, M. Tranter,, K. A. Welch,, W. B. Lyons,, A. I. Tsapin,, M. Studinger,, and J. C. Priscu. 2006. Limnological conditions in Subglacial Lake Vostok, Antarctica. Limnol. Oceanogr. 51: 2485 2501.
28. Collins, T.,, C. Gerday,, and G. Feller. 2005. Xylanases, xylanase families and extremophilic xylanases. FEMS Microbiol. Rev. 29: 3 23.
29. Cybulski, L. E.,, G. Solar,, P. O. Craig,, M. Espinosa,, and D. Mendoza. 2004. Bacillus subtilis DesR functions as a phosphorylation-activated switch to control membrane lipid fluidity. J. Biol. Chem. 279: 39340 39347.
30. Dalluge, J. J.,, T. Hamamoto,, K. Horikoshi,, R. Y. Morita,, K. O. Stetter,, and J. A. McCloskey. 1997. Posttranscriptional modification of tRNA in psychrophilic bacteria. J. Bacteriol. 179: 1918 1923.
31. Dalluge, J. J.,, T. Hashizume,, A. E. Sopchik,, J. A. McCloskey,, and D. R. Davis. 1996. Conformational flexibility in RNA: the role of dihydrouridine. Nucl. Acids Res. 24: 1073 1079.
32. D'Amico, S.,, T. Collins,, J.-C. Marx,, G. Feller,, and C. Gerday. 2006. Psychrophilic microorganisms: challenges for life. EMBO Rep. 7: 385 389.
33. D'Amico, S.,, C. Gerday,, and G. Feller. 2001. Structural determinants of cold adaptation and stability in a large protein. J. Biol. Chem. 276: 25791 25796.
34. DeVries, A. L.,, and D. E. Wohlschlag. 1969. Freezing resistance in some Antarctic fishes. Science 163: 1073 1075.
35. Dieser, M.,, M. Greenwood,, and C. M. Foreman. 2010. Carotenoid pigmentation in Antarctic heterotrophic bacteria as a strategy to withstand environmental stresses. Arct. Antarct. Alp. Res. 42: 396 405.
36. Dumon, C.,, A. Varvak,, M. A. Wall,, J. E. Flint,, R. J. Lewis,, J. H. Lakey,, C. Morland,, P. Luginbühl,, S. Healey,, T. Todaro,, G. DeSantis,, M. Sun,, L. Parra-Gessert,, X. Tan,, D. P. Weiner,, and H. J. Gilbert. 2008. Engineering hyperthermostability into a GH11 xylanase is mediated by subtle changes to protein structure. J. Biol. Chem. 283: 22557 22564.
37. Duplantis, B.,, M. Osusky,, C. L. Schmerk,, D. R. Ross,, C. M. Bosio,, and F. E. Nano. 2010. Essential genes from Arctic bacteria used to construct stable, temperature-sensitive bacterial vaccines. Proc. Natl. Acad. Sci. USA 107: 13456 13460.
38. Edmonds, C. G.,, P. F. Crain,, R. Gupta,, T. Hashizume,, C. H. Hocart,, J. A. Kowalak,, S. C. Pomerantz,, K. O. Stetter,, and J. A. McCloskey. 1991. Posttranscriptional modification of tRNA in thermophilic archaea (archaebacteria). J. Bacteriol. 173: 3138 3148.
39. Empadinhas, N.,, and M. S. da Costa. 2009. Diversity, distribution and biosynthesis of compatible solutes in prokaryotes. Contrib. Sci. 5: 95 109.
40. Fedøy, A.,, N. Yang,, A. Martinez,, H. S. Leiros,, and I. H. Steen. 2007. Structural and functional properties of isocitrate dehydrogenase from the psychrophilic bacterium Desulfotalea psychrophila reveal a cold-active enzyme with an unusual high thermal stability. J. Mol. Biol. 372: 130 149.
41. Feller, G.,, and C. Gerday. 2003. Psychrophilic enzymes: hot topics in cold adaptation. Nat. Rev. Microbiol. 1: 200 208.
42. Feller, G.,, T. Lonhienne,, C. Deroanne,, C. Libioulle,, J. Van Beeumen,, and C. Gerday. 1992. Purification, characterization, and nucleotide sequence of the thermolabile α-amylase from the Antarctic psychrotroph Alteromonas haloplanctis A23. J. Biol. Chem. 267: 5217 5221.
43. Feller, G.,, P. Sonnet,, and C. Gerday. 1995. The β-lactamase secreted by the Antarctic psychrophile Psychrobacter immobilis A8. Appl. Environ. Microbiol. 61: 4474 4476.
44. Fong, N. J. C.,, M. L. Burgess,, K. D. Barrow,, and D. R. Glenn. 2001. Carotenoid accumulation in the psychrotrophic bacterium Arthrobacter agilis in response to thermal and salt stress. Appl. Microbiol. Biotechnol. 56: 750 756.
45. Gabriel, J. L.,, and P. K. L. Chong. 2000. Molecular modeling of archaebacterial bipolar tetraether lipid membranes. Chem. Phys. Lipids 105: 193 200.
46. Garnham, C. P.,, J. A. Gilbert,, C. P. Hartman,, R. L. Campbell,, J. Laybourn-Parry,, and P. L. Davies. 2008. A Ca 2+ dependent bacterial antifreeze protein domain has a novel β-helical ice-binding fold. Biochem. J. 411: 171 180.
47. Georlette, D.,, V. Blaise,, T. Collins,, S. D'Amico,, E. Gratia,, A. Hoyoux,, J. C. Marx,, G. Sonan,, G. Feller,, and C. Gerday. 2004. Some like it cold: biocatalysis at low temperatures. FEMS Microbiol. Rev. 28: 25 42.
48. Georlette, D.,, B. Damien,, V. Blaise,, E. Depiereux,, V. N. Uversky,, C. Gerday,, and G. Feller. 2003. Structural and functional adaptations to extreme temperatures in psychrophilic, mesophilic, and thermophilic DNA ligases. J. Biol. Chem. 278: 37015 37023.
49. Georlette, D.,, Z. O. Jónsson,, F. Van Petegem,, J. Chessa,, J. Van Beeumen,, U. Hübscher,, and C. Gerday. 2000. A DNA ligase from the psychrophile Pseudoalteromonas haloplanktis gives insights into the adaptation of proteins to low temperatures. Eur. J. Biochem. 267: 3502 3512.
50. Giaquinto, L.,, P. M. G. Curmi,, K. S. Siddiqui,, A. Poljak,, E. DeLong,, S. DasSarma,, and R. Cavicchioli. 2007. Structure and function of cold shock proteins in archaea. J. Bacteriol. 189: 5738 5748.
51. Gibson, J. A. E.,, M. R. Miller,, N. W. Davies,, G. P. Neill,, D. S. Nichols,, and J. K. Volkman. 2005. Unsaturated diether lipids in the psychrotrophic archaeon Halorubrum lacusprofundi. Syst. Appl. Microbiol. 28: 19 26.
52. Gilbert, J. A.,, P. L. Davies,, and J. Laybourn-Parry. 2005. A hyperactive, Ca 2+-dependent antifreeze protein in an Antarctic bacterium. FEMS Microbiol. Lett. 245: 67 72.
53. Gilbert, J. A.,, P. J. Hill,, C. E. R. Dodd,, and J. Laybourn-Parry. 2004. Demonstration of antifreeze protein activity in Antarctic lake bacteria. Microbiology 150: 171 180.
54. Gilichinsky, D.,, E. Rivkina,, V. Shcherbakova,, K. Laurinavichuis,, and J. Tiedje. 2003. Supercooled water brines within permafrost—an unknown ecological niche for microorganisms: a model for astrobiology. Astrobiology 3: 331 341.
55. Giuliodori, A. M.,, F. Di Pietro,, S. Marzi,, B. Masquida,, R. Wagner,, P. Romby,, C. O. Gualerzi,, and C. L. Pon. 2010. The cspA mRNA is a thermosensor that modulates translation of the cold-shock protein CspA. Mol. Cell 37: 21 33.
56. Goldstein, J.,, N. S. Pollitt,, and M. Inouye. 1990. Major cold shock protein of Escherichia coli. Proc. Natl. Acad. Sci. USA 87: 283 287.
57. Goodchild, A.,, M. Raftery,, N. F. W. Saunders,, M. Guilhaus,, and R. Cavicchioli. 2005. Cold adaptation of the Antarctic archaeon, Methanococcoides burtonii assessed by proteomics using ICAT. J. Proteome Res. 4: 473 480.
58. Graumann, P. L.,, and M. A. Marahiel. 1998. A superfamily of proteins that contain the cold-shock domain. Trends Biochem. Sci. 23: 286 290.
59. Grossmann, S. 1994. Bacterial activity in sea ice and open water of the Weddell Sea, Antarctica: a microautoradiographic study. Microb. Ecol. 28: 1 18.
60. Gualerzi, C. O.,, A. M. Giuliodori,, and C. L. Pon. 2003. Transcriptional and post-transcriptional control of cold-shock genes. J. Mol. Biol. 331: 527 539.
61. Hansen, A. J.,, D. L. Mitchell,, C. Wiuf,, L. Paniker,, T. B. Brand,, J. Binladen,, D. A. Gilichinsky,, R. Rønn,, and E. Willerslev. 2006. Crosslinks rather than strand breaks determine access to ancient DNA sequences from frozen sediments. Genetics 173: 1175 1179.
62. Hébraud, M.,, and P. Potier. 1999. Cold shock response and low temperature adaptation in psychrotrophic bacteria. J. Mol. Microbiol. Biotechnol. 1: 211 219.
63. Hirano, S. S.,, and C. D. Upper,. 1995. Ecology of ice nucleation-active bacteria, p. 41 61. In R. E. Lee Jr.,, G. J. Warren,, and L. V. Gusta (ed.), Biological Ice Nucleation and Its Applications. APS Press, St. Paul, MN.
64. Hochachka, P.W.,, and G. N. Somero. 2002. Temperature, p. 290 449. In Biochemical Adaptation: Mechanism and Process in Physiological Evolution. Oxford University Press, New York, NY.
65. Hoshino, T.,, M. Kiriaki,, S. Ohgiya,, M. Fujiwara,, H. Kondo,, Y. Nishimiya,, I. Yumoto,, and S. Tsuda. 2003. Antifreeze proteins from snow mold fungi. C. J. Bot. 81: 1175 1181.
66. Hoyoux, A.,, I. Jennes,, P. Dubois,, S. Genicot,, F. Dubail,, J. M. François,, E. Baise,, G. Feller,, and C. Gerday. 2001. Cold-Adapted β-galactosidase from the Antarctic psychrophile Pseudoalteromonas haloplanktis. Appl. Environ. Microbiol. 67: 1529 1535.
67. Huston, A. L.,, B. Methe,, and J. W. Deming. 2004. Purification, characterization, and sequencing of an extracellular cold-active aminopeptidase produced by marine psychrophile Colwellia psychrerythraea strain 34H. Appl. Environ. Microbiol. 70: 3321 3328.
68. Jagannadham, M. V.,, M. K. Chattopadhyay,, C. Subbalakshmi,, M. Vairamani,, K. Narayanan,, C. M. Rao,, and S. Shivaji. 2000. Carotenoids of an Antarctic psychrotolerant bacterium, Sphingobacterium antarcticus, and a mesophilic bacterium, Sphingobacterium multivorum. Arch. Microbiol. 173: 418 424.
69. Jakosky, B. M.,, K. H. Nealson,, C. Bakermans,, R. E. Ley,, and M. T. Mellon. 2003. Subfreezing activity of microorganisms and the potential habitability of Mars’ polar region. Astrobiology 3: 343 350.
70. Janech, M. G.,, A. Krell,, T. Mock,, J. S. Kang,, and J. A. Raymond. 2006. Ice-binding proteins from sea ice diatoms (Bacillariophyceae). J. Phycol. 42: 410 416.
71. Johnson, S. S.,, M. B. Hebsgaard,, T. R. Christensen,, M. Mastepanov,, R. Nielsen,, K. Munch,, T. Brand,, M. T. P. Gilbert,, M. T. Zuber,, M. Bunce,, R. Rønn,, D. Gilichinsky,, D. Froese,, and E. Willerslev. 2007. Ancient bacteria show evidence of DNA repair. Proc. Natl. Acad. Sci. USA 104: 14401 14405.
72. Junge, K.,, B. C. Christner,, and J. T. Staley,. 2011. Diversity of psychrophilic bacteria from sea ice—and glacial ice communities, p. 794 815. In K. Horikoshi,, G. Antranikian,, A. T. Bull,, F. T. Robb,, and K. O. Stetter (ed.), Extremophiles Handbook. Springer, Berlin, Germany.
73. Junge, K.,, H. Eicken,, and J. W. Deming. 2003. Motility of Colwellia psychrerythraea strain 34H at subzero temperatures. Appl. Environ. Microbiol. 69: 4282 4284.
74. Junge, K.,, H. Eicken,, and J. W. Deming. 2004. Bacterial activity at -2 to -20°C in Arctic wintertime sea ice. Appl. Environ. Microbiol. 70: 550 557.
75. Junge, K.,, H. Eicken,, B. D. Swanson,, and J. W. Deming. 2006. Bacterial incorporation of leucine into protein down to -20°C with evidence for potential activity in sub-eutectic saline ice formations. Cryobiology 52: 417 429.
76. Kawahara, H.,, Y. Iwanaka,, S. Higa,, N. Muryoi,, M. Sato,, M. Honda,, H. Omura,, and H. Obata. 2007. A novel, intracellular antifreeze protein in an Antarctic bacterium, Flavobacterium xanthum. Cryo Lett. 28: 39 49.
77. Kawamoto, J.,, T. Kurihara,, M. Kitagawa,, I. Kato,, and N. Esaki. 2007. Proteomic studies of an Antarctic cold-adapted bacterium, Shewanella livingstonensis Ac10, for global identification of cold-inducible proteins. Extremophiles 11: 819 826.
78. Kempf, B.,, and E. Bremer. 1998. Uptake and synthesis of compatible solutes as microbial stress responses to high-osmolarity environments. Arch. Microbiol. 170: 319 330.
79. Kim, S. Y.,, K. Y. Hwang,, S. H. Kim,, H. C. Sung,, Y. S. Han,, and Y. Cho. 1999. Structural basis for cold adaptation. Sequence, biochemical properties, and crystal structure of malate dehydrogenase from a psychrophile Aquaspirillium arcticum. J. Biol. Chem. 274: 11761 11767.
80. Knoblauch, C.,, B. B. Jørgensen,, and J. Harder. 1999. Community size and metabolic rates of psychrophilic sulfate-reducing bacteria in Arctic marine sediments. Appl. Environ. Microbiol. 65: 4230 4233.
81. Ko, R.,, L. T. Smith,, and G. M. Smith. 1994. Glycine betaine confers enhanced osmotolerance and cryotolerance on Listeria monocytogenes. J. Bacteriol. 176: 426 431.
82. Koshland, D. E., Jr. 2002. The application and usefulness of the ratio k cat/ K M. Bioorg. Chem. 30: 211 213.
83. Krembs, C.,, H. Eicken,, K. Junge,, and J. W. Deming. 2002. High concentrations of exopolymeric substances in Arctic winter sea ice: implications for the polar ocean carbon cycle and cryoprotection of diatoms. Deep Sea Res. Part 1 Oceanogr. Res. Pap. 49: 2163 2181.
84. Lettinga, G.,, S. Rebac,, and G. Zeeman. 2001. Challenge of psychrophilic anaerobic wastewater treatment. Trends Biotechnol. 19: 363 370.
85. Li, Y.,, F. Li,, X. Zhang,, S. Qin,, Z. Zeng,, H. Dang,, and Y. Qin. 2008. Vertical distribution of bacterial and archaeal communities along discrete layers of a deep-sea cold sediment sample at the East Pacific Rise (~13°N). Extremophiles 12: 573 585.
86. Liebner, S.,, K. Rublack,, T. Stuehrmann,, and D. Wagner. 2009. Diversity of aerobic methanotrophic bacteria in a permafrost active layer soil of the Lena Delta, Siberia. Microb. Ecol. 57: 25 35.
87. Lim, J.,, T. Thomas,, and R. Cavicchioli. 2000. Low temperature regulated DEAD-box RNA helicase from the Antarctic archaeon, Methanococcoides burtonii. J. Mol. Biol. 297: 553 567.
88. Lipson, D. A.,, C. W. Schadt,, and S. K. Schmidt. 2002. Changes in microbial community structure and function in an alpine dry meadow following spring snow melt. Microb. Ecol. 43: 307 314.
89. Los, D. A.,, and N. Murata. 2004. Membrane fluidity and its role in the perceptions of environmental signals. Biochim. Biophys. Acta 1666: 142 147.
90. Lundheim, R. 2002. Physiological and ecological significance of biological ice nucleators. Philos. Trans. R. Soc. Lond. B 357: 937 943.
91. Mader, H. M.,, M. E. Pettitt,, J. L. Wadham,, E. W. Wolff,, and R. J. Parkes. 2006. Subsurface ice as a microbial habitat. Geology 34: 169 172.
92. Mancuso Nichols, C. A.,, J. Guezenec,, and J. P. Bowman. 2005. Bacterial exopolysaccharides from extreme marine environments with special consideration of the Southern Ocean, sea ice, and deep-sea hydrothermal vents: a review. Mar. Biotechnol. 7: 253 271.
93. Mandelman, D.,, M. Bentahir,, G. Feller,, C. Gerday,, and R. Haser. 2001. Crystallization and preliminary X-ray analysis of a bacterial psychrophilic enzyme, phosphoglycerate kinase. Acta Crystallogr. D Biol. Crystallogr. 57: 1666 1668.
94. McLeod, M.,, J. G. Bockheim,, and M. R. Balks. 2008. Glacial geomorphology, soil development and permafrost features in central-upper Wright Valley, Antarctica. Geoderma 144: 93 103.
95. Metpally, R. P. R.,, and B. V. B. Reddy. 2009. Comparative proteome analysis of psychrophilic versus mesophilic bacterial species: insights into the molecular basis of cold adaptation of proteins. BMC Genomics 10: 11.
96. Mikan, C. J.,, J. P. Schimel,, and A. P. Doyle. 2002. Temperature controls of microbial respiration in Arctic tundra soils above and below freezing. Soil Biol. Biochem. 34: 1785 1795.
97. Mironenko, M. V.,, S. A. Grant,, G. M. Marion,, and R. E. Farren. 1997. FREZCHEM2: a chemical thermodynamic model for electrolyte solutions at subzero temperatures. CRREL Spec. Rept. 97-5. USACRREL, Hanover, NH.
98. Miteva, V.,, T. Sowers,, and J. Brenchley. 2007. Production of N 2O by ammonia oxidizing bacteria at subfreezing temperatures as a model for assessing the N 2O anomalies in the Vostok ice core. Geomicrobiol. J. 24: 451 459.
99. Moissl, C.,, C. Rudolph,, R. Rachel,, M. Koch,, and R. Huber. 2003. In situ growth of the novel SM1 euryarchaeon from a string-of pearls-like microbial community in its cold biotope, its physical separation and insights into its structure and physiology. Arch. Microbiol. 180: 211 217.
100. Morita, R. Y. 1988. Bioavailability of energy and its relationship to growth and starvation survival in nature. Can. J. Microbiol. 34: 436 441.
101. Muryoi, N.,, M. Sato,, S. Kaneko,, H. Kawahara,, H. Obata,, M. W. Yaish,, M. Griffith,, and B. R. Glick. 2004. Cloning and expression of afpA, a gene encoding an antifreeze protein from the Arctic plant growth-promoting rhizobacterium Pseudomonas putida GR12-2. J. Bacteriol. 186: 5661 5671.
102. Nahvi, A.,, N. Sudarsan,, M. S. Ebert,, X. Zou,, K. L. Brown,, and R. R. Breaker. 2002. Genetic control by a metabolite binding mRNA. Chem. Biol. 9: 1043 1049.
103. Napolitano, M. J.,, and D. H. Shain. 2005. Distinctions in adenylate metabolism among organisms inhabiting temperature extremes. Extremophiles 9: 93 98.
104. Narberhaus, F.,, T. Waldminghaus,, and S. Chowdhury. 2006. RNA thermometers. FEMS Microbiol. Rev. 30: 3 16.
105. Narinx, E.,, E. Baise,, and C. Gerday. 1997. Subtilisin from psychrophilic Antarctic bacteria: characterization and site-directed mutagenesis of residues possibly involved in the adaptation to cold. Protein Eng. 10: 1271 1279.
106. Nichols, D. S.,, M. R. Miller,, N. W. Davies,, A. Goodchild,, M. Raftery,, and R. Cavicchioli. 2004. Cold adaptation in the Antarctic archaeon Methanococcoides burtonii involves membrane lipid unsaturation. J. Bacteriol. 186: 8508 8515.
107. Noon, K. R.,, R. Guymon,, P. F. Crain,, J. A. McCloskey,, M. Thomm,, J. Lim,, and R. Cavicchioli. 2003. Influence of temperature on tRNA modification in archaea: Methanococcoides burtonii (optimum growth temperature [ T opt], 23°C) and Stetteria hydrogenophila ( T opt, 95°C). J. Bacteriol. 185: 5483 5490.
108. Panikov, N. S., 2009. Microbial activity in frozen soils. p. 119 147. In R. Margesin (ed.), Permafrost Soils. Springer, Berlin, Germany.
109. Panikov, N. S.,, P. W. Flanagan,, W. C. Oechel,, M. A. Mastepanov,, and T. R. Christensen. 2006. Microbial activity in soils frozen to below -39°C. Soil Biol. Biochem. 38: 785 794.
110. Panikov, N. S.,, and M. V. Sizova. 2007. Growth kinetics of microorganisms isolated from Alaskan soil and permafrost in solid media frozen down to 35°C. FEMS Microbiol. Ecol. 59: 500 512.
111. Panoff, J. M.,, D. Corroler,, B. Thammavongs,, and P. Boutibonnes. 1997. Differentiation between cold shock proteins and cold acclimation proteins in a mesophilic gram-positive bacterium, Enterococcus faecalis JH2-2. J. Bacteriol. 179: 4451 4454.
112. Paul, S.,, S. K. Bag,, S. Das,, E. T. Harvill,, and C. Dutta. 2008. Molecular signature of hypersaline adaptation: insights from genome and proteome composition of halophilic prokaryotes. Genome Biol. 9: R70.
113. Pearson, R. T.,, and W. Derbyshire. 1974. NMR studies of water adsorbed on a number of silica surfaces. J. Colloid Interface Sci. 46: 232 248.
114. Phadtare, S.,, and M. Inouye,. 2008. Cold-shock proteins, p. 191 209. In R. Margesin,, F. Schinner,, J.-C. Marx,, and C. Gerday (ed.), Psychrophiles: from Biodiversity to Biotechnology. Springer, Berlin, Germany.
115. Piette, F.,, S. D'Amico,, C. Struvay,, G. Mazzucchelli,, J. Renaut,, M. L. Tutino,, A. Danchin,, P. Leprince,, and G. Feller. 2010. Proteomics of life at low temperatures: trigger factor is the primary chaperone in the Antarctic bacterium Pseudoalteromonas haloplanktis TAC125. Mol. Microbiol. 76: 120 132.
116. Poolman, B.,, and E. Glaasker. 1998. Regulation of compatible solute accumulation in bacteria. Mol. Microbiol. 29: 397 407.
117. Price, P. B. 2000. A habitat for psychrophiles in deep Antarctic ice. Proc. Natl. Acad. Sci. USA 97: 1247 1251.
118. Price, P. B.,, and T. Sowers. 2004. Temperature dependence of metabolic rates for microbial growth, maintenance, and survival. Proc. Natl. Acad. Sci. USA 101: 4631 4636.
119. Priscu, J. C.,, C. H. Fritsen,, E. E. Adams,, S. J. Giovannoni,, H. W. Paerl,, C. P. McKay,, P. T. Doran,, D. A. Gordon,, B. D. Lanoil,, and J. L. Pinckney. 1998. Perennial Antarctic lake ice: an oasis for life in a polar desert. Science 280: 2095 2098.
120. Qin, G.,, L. Zhu,, X. Chen,, P. G. Wang,, and Y. Zhang. 2007. Structural characterization and ecological roles of a novel exopolysaccharide from the deep-sea psychrotolerant bacterium Pseudoalteromonas sp. SM9913. Microbiology 153: 1566 1572.
121. Ræder, I. L. U.,, I. Leiros,, N. P. Willassen,, A. O. Smalas,, and E. Moe. 2008. Uracil-DNA N-glycosylase (UNG) from the marine pyschrophilic bacterium Vibrio salmonicida shows cold adapted features: a comparative analysis to Vibrio cholerae uracil-DNA N-glycosylase. Enzyme Microb. Technol. 42: 594 600.
122. Raymond, J. A.,, B. C. Christner,, and S. C. Schuster. 2008. A bacterial ice-binding protein from the Vostok ice core. Extremophiles 12: 713 717.
123. Raymond, J. A.,, and C. H. Fritsen. 2001. Semipurification and ice recrystallization inhibition activity of ice-active substances associated with Antarctic photosynthetic organisms. Cryobiology 43: 63 70.
124. Raymond, J. A.,, C. Fritsen,, and K. Shen. 2007. An ice-binding protein from an Antarctic sea ice bacterium. FEMS Microbiol. Ecol. 61: 214 221.
125. Reid, I. N.,, W. B. Sparks,, S. Lubow,, M. McGrath,, M. Livio,, J. Valenti,, K. R. Sowers,, H. D. Shukla,, S. MacAuley,, T. Miller,, R. Suvanasuthi,, R. Belas,, A. Colman,, F. T. Robb,, P. DasSarma,, J. A. Müller,, J. A. Coker,, R. Cavicchioli,, F. Chen,, and S. DasSarma. 2006. Terrestrial models for extraterrestrial life: methanogens and halophiles at Martian temperatures. Int. J. Astrobiol. 5: 89 97.
126. Ritzrau, W. 1997. Pelagic microbial activity in the Northeast Water Polynya, summer 1992. Polar Biol. 17: 259 267.
127. Rivkina, E. M.,, E. I. Friedmann,, C. P. McKay,, and D. A. Gilichinsky. 2000. Metabolic activity of permafrost bacteria below the freezing point. Appl. Environ. Microbiol. 66: 3230 3233.
128. Rivkina, E.,, K. Laurinavichius,, J. McGrath,, J. Tiedje,, V. Shcherbakova,, and D. Gilichinsky. 2004. Microbial life in permafrost. Adv. Space Res. 33: 1215 1221.
129. Roberts, M. F. 2005. Organic compatible solutes of halotolerant and halophilic microorganisms. Saline Systems 1: 5.
130. Rodionov, D. A.,, A. G. Vitreschak,, A. A. Mironov,, and M. S. Gelfand. 2003. Regulation of lysine biosynthesis and transport genes in bacteria: yet another RNA riboswitch? Nucl. Acids Res. 31: 3 16.
131. Russell, N. J., 2008. Membrane components and cold sensing, p. 177 190. In R. Margesin,, F. Schinner,, J.-C. Marx,, and C. Gerday (ed.), Psychrophiles: from Biodiversity to Biotechnology. Springer, Berlin, Germany.
132. Russell, R. J. M.,, U. Gerike,, M. J. Danson,, D. W. Hough,, and G. L. Taylor. 1998. Structural adaptations of the cold-active citrate synthase from an Antarctic bacterium. Structure 6: 351 361.
133. Sand-Jensen, K.,, N. L. Pedersen,, and M. Søndergaard. 2007. Bacterial metabolism in small temperate streams under contemporary and future climates. Freshw. Biol. 52: 2340 2353.
134. Saunders, N. F. W.,, T. Thomas,, P. M. G. Curmi,, J. S. Mattick,, E. Kuczek,, R. Slade,, J. Davis,, P. D. Franzmann,, D. Boone,, K. Rusterholtz,, R. Feldman,, C. Gates,, S. Bench,, K. Sowers,, K. Kadner,, A. Aerts,, P. Dehal,, C. Detter,, T. Glavina,, S. Lucas,, P. Richardson,, F. Larimer,, L. Hauser,, M. Land,, and R. Cavicchioli. 2003. Mechanisms of thermal adaptation revealed from the genomes of the Antarctic archaea Methanogenium frigidum and Methanococcoides burtonii. Genome Res. 13: 1580 1588.
135. Schimel, J. P.,, C. Bilbrough,, and J. M. Welker. 2004. Increased snow depth affects microbial activity and nitrogen mineralization in two Arctic tundra communities. Soil Biol. Biochem. 36: 217 227.
136. Schleper, C.,, R. V. Swanson,, E. J. Mathur,, and E. F. DeLong. 1997. Characterization of a DNA polymerase from the uncultivated psychrophilic archaeon Cenarchaeum symbiosum. J. Bacteriol. 179: 7803 7811.
137. Schouten, S.,, E. C. Hopmans,, E. Schefuss,, and J. S. Sinninghe Damsté. 2002. Distributional variations in marine crenarchaeotal membrane lipids: a new tool for reconstructing ancient sea water temperatures? Earth Planet. Sci. Lett. 204: 265 274.
138. Shivaji, S.,, and J. S. S. Prakash. 2010. How do bacteria sense and respond to low temperature? Arch. Microbiol. 192: 85 95.
139. Siddiqui, K. S.,, R. Cavicchioli,, and T. Thomas. 2002. Thermodynamic activation properties of elongation factor 2 (EF-2) proteins from psychrotolerant and thermophilic Archaea. Extremophiles 6: 143 150.
140. Sinensky, M. 1974. Homeoviscous adaptation—a homeostatic process that regulates the viscosity of membrane lipids in Escherichia coli. Proc. Natl. Acad. Sci. USA 71: 522 525.
141. Sinninghe Damsté, J. S.,, S. Schouten,, E. C. Hopmans,, A. C. T. van Duin,, and J. A. J. Geenevasen. 2002. Crenarchaeol: the characteristic core glycerol dibiphytanyl glycerol tetraether membrane lipid of cosmopolitan pelagic crenarchaeota. J. Lipid Res. 43: 1641 1651.
142. Smith, J. J.,, L. A. Tow,, W. Stafford,, C. Cary,, and D. Cowan. 2006. Bacterial diversity in three different Antarctic cold desert mineral soils. Microb. Ecol. 51: 413 421.
143. Smith, R. E. H.,, and P. Clement. 1990. Heterotrophic activity and bacterial productivity in assemblages of microbes from sea ice in the high Arctic. Polar Biol. 10: 351 357.
144. Sowers, T. 2001. The N 2O record spanning the penultimate deglaciation from the Vostok ice core. J. Geophys. Res. 106: 903 931.
145. Steven, B.,, R. Leveille,, W. H. Pollard,, and L. G. Whyte. 2006. Microbial ecology and biodiversity in permafrost. Extremophiles 10: 259 267.
146. Steven, B.,, W. H. Pollard,, C. W. Greer,, and L. G. Whyte. 2007. Microbial diversity and activity through a permafrost/ground ice core profile from the Canadian high Arctic. Environ. Microbiol. 10: 3388 3403.
147. Strand, A.,, S. Shivaji,, and S. Liaaen-Jensen. 1997. Bacterial carotenoids 55. C 50-carotenoids 25. Revised structures of carotenoids associated with membranes in psychrotrophic Micrococcus roseus. Biochem. Syst. Ecol. 25: 547 552.
148. Takacs, C. T.,, and J. C. Priscu. 1998. Bacterioplankton dynamics in the McMurdo Dry Valley lakes: production and biomass loss over four seasons. Microb. Ecol. 36: 239 250.
149. Thomas, T.,, and R. Cavicchioli. 1998. Archaeal cold-adapted proteins: structural and evolutionary analysis of the elongation factor 2 proteins from psychrophilic, mesophilic and thermophilic methanogens. FEBS Lett. 439: 281 286.
150. Thomas, T.,, and R. Cavicchioli. 2000. Effect of temperature on stability and activity of elongation factor 2 proteins from Antarctic and thermophilic methanogens. J. Bacteriol. 182: 1328 1332.
151. Thomas, T.,, and R. Cavicchioli. 2002. Cold adaptation of archaeal elongation factor 2 (EF-2) proteins. Curr. Prot. Pept. Sci. 3: 223 230.
152. Thomas, T.,, N. Kumar,, and R. Cavicchioli. 2001. Effects of ribosomes and intracellular solutes on activities and stabilities of elongation factor 2 proteins from psychrotolerant and thermophilic methanogens. J. Bacteriol. 183: 1974 1982.
153. Tung, H. C.,, P. B. Price,, N. E. Bramall,, and G. Vrdoljak. 2006. Microorganisms metabolizing on clay grains in 3-km-deep Greenland basal ice. Astrobiology 6: 69 86.
154. Vitreschak, A. G.,, D. A. Rodionov,, A. A. Mironov,, and M. S. Gelfand. 2004. Riboswitches: the oldest mechanism for the regulation of gene expression? Trends Genet. 20: 44 50.
155. Walker, V. K.,, G. R. Palmer,, and G. Voordouw. 2006. Freeze-thaw tolerance and clues to winter survival of a soil community. Appl. Environ. Microbiol. 72: 1784 1792.
156. Wallon, G.,, S. T. Lovett,, C. Magyar,, A. Svingor,, A. Szilagyi,, P. Zàvodszky,, D. Ringe,, and G. A. Petsko. 1997. Sequence and homology model of 3-isopropylmalate dehydrogenase from the psychrotrophic bacterium Vibrio sp. I5 suggest reasons for thermal instability. Protein Eng. 10: 665 672.
157. Watanabe, S.,, Y. Yasutake,, I. Tanaka,, and Y. Takada. 2005. Elucidation of stability determinants of cold-adapted monomeric isocitrate dehydrogenase from a psychrophilic bacterium, Colwellia maris, by construction of chimeric enzymes. Microbiology 151: 1083 1094.
158. Williams, T. J.,, D. W. Burg,, M. J. Raftery,, A. Poljak,, M. Guilhaus,, O. Pilak,, and R. Cavicchioli. 2010. Global proteomic analysis of the insoluble, soluble, and supernatant fractions of the psychrophilic archaeon Methanococcoides burtonii. Part I: The effect of growth temperature. J. Proteome Res. 9: 640 652.
159. Wood, J. M.,, E. Bremer,, L. N. Csonka,, R. Kraemer,, B. Poolman,, T. van der Heide,, and L. T. Smith. 2001. Osmosensing and osmoregulatory compatible solute accumulation by bacteria. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 130: 437 460.
160. Yamashita, Y. N. Nakamura,, K. Omiya,, J. Nishikawa,, H. Kawahara,, H. Obata. 2002. Identification of an antifreeze lipoprotein from Moraxella sp. of Antarctic origin. Biosci. Biotechnol. Biochem 66: 239 247.


Generic image for table

Examples of molecular adaptations in genes, proteins, and enzymes documented in psychrophilic prokaryotes

Citation: Doyle S, Dieser M, Broemsen E, Christner B. 2012. General Characteristics of Cold-Adapted Microorganisms, p 103-125. In Miller R, Whyte L (ed), Polar Microbiology: Life in a Deep Freeze. ASM Press, Washington, DC. doi: 10.1128/9781555817183.ch5
Generic image for table

Reports documenting evidence for subzero metabolic activity

CF-IRMS, continuous flow isotope ratio monitoring mass spectrometry; CTC, 5-cyano-2,3-ditolyl tetrazolium chloride.

Citation: Doyle S, Dieser M, Broemsen E, Christner B. 2012. General Characteristics of Cold-Adapted Microorganisms, p 103-125. In Miller R, Whyte L (ed), Polar Microbiology: Life in a Deep Freeze. ASM Press, Washington, DC. doi: 10.1128/9781555817183.ch5

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error