Chapter 7 : Metagenomic Analysis of Polar Ecosystems

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

Metagenomic Analysis of Polar Ecosystems, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817183/9781555816049_Chap07-1.gif /docserver/preview/fulltext/10.1128/9781555817183/9781555816049_Chap07-2.gif


Polar environments can be among the simplest environments on Earth, making them excellent models to understand ecosystem processes and the responses of microorganisms to environmental perturbations. This vulnerability and the rate of the ongoing change make polar environments a priority in climate change and bioremediation studies. This chapter covers studies based on large-scale 16S rRNA gene libraries, environmental microarrays, large-insert clone libraries, and shotgun genome sequencing that are applying metagenomic techniques to characterize and understand polar ecosystems. A recent study at sites ranging from the Falkland Islands all the way to the base of the Antarctic Peninsula used 454 GS FLX Titanium sequencing of the 16S rRNA gene to compare the bacterial community structure and diversity in warmed versus control plots. This study revealed that soil warming induced significant shifts in the major soil bacterial groups like and α-Proteobacteria, which led to changes in soil respiration. A recent shotgun metagenomic study in the Canadian High Arctic sequenced a permafrost sample and its overlying active-layer soil and focused particularly on genes that might be important for greenhouse gas emissions following permafrost thaw. The only metagenomic study of polar freshwater ecosystems published to date looked at the viral communities of an Antarctic lake. This study revealed that a large proportion of the viral sequences retrieved from the lake were from eukaryotic viruses and not from bacteriophages. Emerging technologies could also be interesting to apply to polar environments. For instance, bioremediation studies could benefit from metabolomics, proteomics, and newly developed reactome arrays.

Citation: Yergeau E, Greer C. 2012. Metagenomic Analysis of Polar Ecosystems, p 156-165. In Miller R, Whyte L (ed), Polar Microbiology: Life in a Deep Freeze. ASM Press, Washington, DC. doi: 10.1128/9781555817183.ch7
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


1. Allen, H. K.,, L. A. Moe,, J. Rodbumrer,, A. Gaarder,, and J. Handelsman. 2009. Functional metagenomics reveals diverse β-lactamases in a remote Alaskan soil. ISME J. 3: 243 251.
2. Angly, F. E.,, B. Felts,, M. Breitbart,, P. Salamon,, R. A. Edwards,, C. Carlson,, A. M. Chan,, M. Haynes,, S. Kelley,, H. Liu,, J. M. Mahaffy,, J. E. Mueller,, J. Nulton,, R. Olson,, R. Parsons,, S. Rayhawk,, C. A. Suttle,, and F. Rohwer. 2006. The marine viromes of four oceanic regions. PLoS Biol. 4: e368.
3. Beloqui, A.,, M. E. Guazzaroni,, F. Pazos,, J. M. Vieites,, M. Godoy,, O. V. Golyshina,, T. N. Chernikova,, A. Waliczek,, R. Silva-Rocha,, Y. Al-Ramahi,, V. La Cono,, C. Mendez,, J. A. Salas,, R. Solano,, M. M. Yakimov,, K. N. Timmis,, P. N. Golyshin,, and M. Ferrer. 2009. Reactome array: forging a link between metabolome and genome. Science 326: 252 257.
4. Berlemont, R.,, M. Delsaute,, D. Pipers,, S. D'Amico,, G. Feller,, M. Galleni,, and P. Power. 2009. Insights into bacterial cellulose biosynthesis by functional metagenomics on Antarctic soil samples. ISME J. 3: 1070 1081.
5. Bidle, K. D.,, S. Lee,, D. R. Marchant,, and P. G. Falkowski. 2007. Fossil genes and microbes in the oldest ice on Earth. Proc. Natl. Acad. Sci. USA 104: 13455 13460.
6. Bodelier, P. L. E.,, M. Kamst,, M. Meima-Franke,, N. Stralis-Pavese,, and L. Bodrossy. 2009. Whole-community genome amplification (WCGA) leads to compositional bias in methane-oxidizing communities as assessed by pmoA-based microarray analyses and QPCR. Environ. Microbiol. Rep. 1: 434 441.
7. Branton, D.,, D. W. Deamer,, A. Marziali,, H. Bayley,, S. A. Benner,, T. Butler,, M. Di Ventra,, S. Garaj,, A. Hibbs,, X. Huang,, S. B. Jovanovich,, P. S. Krstic,, S. Lindsay,, X. S. Ling,, C. H. Mastrangelo,, A. Meller,, J. S. Oliver,, Y. V. Pershin,, J. M. Ramsey,, R. Riehn,, G. V. Soni,, V. Tabard-Cossa,, M. Wanunu,, M. Wiggin,, and J. A. Schloss. 2008. The potentialand challenges of nanopore sequencing. Nat. Biotechnol. 26: 1146 1153.
8. Brodie, E. L.,, T. Z. DeSantis,, D. C. Joyner,, S. M. Baek,, J. T. Larsen,, G. L. Andersen,, T. C. Hazen,, P. M. Richardson,, D. J. Herman,, T. K. Tokunaga,, J. M. M. Wan,, and M. K. Firestone. 2006. Application of a high-density oligonucleotide microarray approach to study bacterial population dynamics during uranium reduction and reoxidation. Appl. Environ. Microbiol. 72: 6288 6298.
9. Cieslinski, H.,, A. Bialkowska,, K. Tkaczuk,, A. Dlugolecka,, J. Kur,, and M. Turkiewicz. 2009a. Identification and molecular modeling of a novel lipase from an Antarctic soil metagenomic library. Pol. J. Microbiol. 58: 199 204.
10. Cieslinski, H.,, A. Dlugolecka,, J. Kur,, and M. Turkiewicz. 2009b. An MTA phosphorylase gene discovered in the metagenomic library derived from Antarctic top soil during screening for lipolytic active clones confers strong pink fluorescence in the presence of rhodamine B. FEMS Microbiol. Lett. 299: 232 240.
11. Convey, P., 2001. Antarctic ecosystems, p. 171 184. In S. A. Levin (ed.), Encyclopedia of Biodiversity. Academic Press, San Diego, CA.
12. Dalevi, D.,, N. N. Ivanova,, K. Mavromatis,, S. D. Hooper,, E. Szeto,, P. Hugenholtz,, N. C. Kyrpides,, and V. M. Markowitz. 2008. Annotation of metagenome short reads using proxygenes. Bioinformatics 24: I7 I13.
13. DeSantis, T. Z.,, E. L. Brodie,, J. P. Moberg,, I. X. Zubieta,, Y. M. Piceno,, and G. L. Andersen. 2007. High-density universal 16S rRNA microarray analysis reveals broader diversity than typical clone library when sampling the environment. Microb. Ecol. 53: 371 383.
14. Eid, J.,, A. Fehr,, J. Gray,, K. Luong,, J. Lyle,, G. Otto, et al. 2009. Real-time DNA sequencing from single polymerase molecules. Science 323: 133 138.
15. Ferrer, M.,, O. Golyshina,, A. Beloqui,, and P. N. Golyshin. 2007. Mining enzymes from extreme environments. Curr. Opin. Microbiol. 10: 207 214.
16. Galand, P. E.,, E. O. Casamayor,, D. L. Kirchman,, and C. Lovejoy. 2009a. Ecology of the rare microbial biosphere of the Arctic Ocean. Proc. Natl. Acad. Sci. USA 106: 22427 22432.
17. Galand, P. E.,, E. O. Casamayor,, D. L. Kirchman,, M. Potvin,, and C. Lovejoy. 2009b. Unique archaeal assemblages in the Arctic Ocean unveiled by massively parallel tag sequencing. ISME J. 3: 860 869.
18. Galand, P. E.,, M. Potvin,, E. O. Casamayor,, and C. Lovejoy. 2010. Hydrography shapes bacterial biogeography of the deep Arctic Ocean. ISME J. 4: 564 576.
19. Handelsman, J.,, M. R. Rondon,, S. F. Brady,, J. Clardy,, and R. M. Goodman. 1998. Molecular biological access to the chemistry of unknown soil microbes: a new frontier for natural products. Chem. Biol. 5: R245 R249.
20. He, Z.,, Y. Deng,, J. D. Van Nostrand,, Q. Tu,, M. Xu,, C. L. Hemme,, X. Li,, L. Wu,, T. J. Gentry,, Y. Yin,, J. Liebich,, T. C. Hazen,, and J. Zhou. 2010. GeoChip 3.0 as a high-throughput tool for analyzing microbial community composition, structure and functional activity. ISME J. 4: 1167 1179.
21. He, Z. L.,, T. J. Gentry,, C. W. Schadt,, L. Wu,, J. Liebich,, S. C. Chong,, W. Wu,, P. Jardine,, C. Criddle,, and J. Z. Zhou. 2007. GeoChip: a comprehensive microarray for investigating biogeochemical, ecological and environmental processes. ISME J. 1: 67 77.
22. Heath, C.,, X. P. Hu,, S. C. Cary,, and D. Cowan. 2009. Identification of a novel alkaliphilic esterase active at low temperatures by screening a metagenomic library from Antarctic desert soil. Appl. Environ. Microbiol. 75: 4657 4659.
23. IPCC. 2007. Climate Change 2007: the Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY.
24. Jeon, J. H.,, J. T. Kim,, S. G. Kang,, J. H. Lee,, and S. J. Kim. 2009. Characterization and its potential application of two esterases derived from the Arctic sediment metagenome. Mar. Biotechnol. 11: 307 316.
25. Kirchman, D. L.,, M. T. Cottrell,, and C. Lovejoy. 2010. The structure of bacterial communities in the western Arctic Ocean as revealed by pyrosequencing of 16S rRNA genes. Environ. Microbiol. 12: 1132 1143.
26. Krause, L.,, N. N. Diaz,, A. Goesmann,, S. Kelley,, T. W. Nattkemper,, F. Rohwer,, R. A. Edwards,, and J. Stoye. 2008. Phylogenetic classification of short environmental DNA fragments. Nucleic Acids Res. 36: 2230 2239.
27. Lazarevic, V.,, K. Whiteson,, S. Huse,, D. Hernandez,, L. Farinelli,, M. Osteras,, J. Schrenzel,, and P. Francois. 2009. Metagenomic study of the oral microbiota by Illumina high-throughput sequencing. J. Microbiol. Methods 79: 266 271.
28. Liu, Z.,, T. Z. DeSantis,, G. L. Andersen,, and R. Knight. 2008. Accurate taxonomy assignments from 16S rRNA sequences produced by highly parallel pyrosequencers. Nucleic Acids Res. 36: e120.
29. Liu, Z.,, C. Lozupone,, M. Hamady,, F. D. Bushman,, and R. Knight. 2007. Short pyrosequencing reads suffice for accurate microbial community analysis. Nucleic Acids Res. 35: e120.
30. López-Bueno, A.,, J. Tamames,, D. Velázquez,, A. Moya,, A. Quesada,, and A. Alcamí. 2009. High diversity of the viral community from an Antarctic lake. Science 326: 858 861.
31. Margulies, M.,, M. Egholm,, W. E. Altman,, S. Attiya,, J. S. Bader,, L. A. Bemben, et al. 2005. Genome sequencing in microfabricated high-density picolitre reactors. Nature 437: 376 380.
32. Martin-Cuadrado, A. B.,, F. Rodríguez-Valera,, D. Moreira,, J. C. Alba,, E. Ivars-Martínez,, M. R. Henn,, E. Talla,, and P. López-García. 2008. Hindsight in the relative abundance, metabolic potential and genome dynamics of uncultivated marine archaea from comparative metagenomic analyses of bathypelagic plankton of different oceanic regions. ISME J. 2: 865 886.
33. Moreira, D.,, F. Rodríguez-Valera,, and P. López-García. 2004. Analysis of a genome fragment of a deep-sea uncultivated Group II euryarchaeote containing 16S rDNA, a spectinomycin-like operon and several energy metabolism genes. Environ. Microbiol. 6: 959 969.
34. Moreira, D.,, F. Rodríguez-Valera,, and P. López-García. 2006. Metagenomic analysis of mesopelagic Antarctic plankton reveals a novel deltaproteobacterial group. Microbiology 152: 505 517.
35. Pace, N. R.,, D. A. Stahl,, D. J. Lane,, and G. J. Olsen. 1985. The analysis of natural microbial populations by ribosomal RNA sequences. ASM News 51: 4 12.
36. Qin, J.,, R. Li,, J. Raes,, M. Arumugam,, K. S. Burgdorf,, C. Manichanh,, T. Nielsen,, N. Pons,, F. Levenez,, T. Yamada,, D. R. Mende,, J. Li,, J. Xu,, S. Li,, D. Li,, J. Cao,, B. Wang,, H. Liang,, H. Zheng,, Y. Xie,, J. Tap,, P. Lepage,, M. Bertalan,, J. M. Batto,, T. Hansen,, D. Le Paslier,, A. Linneberg,, H. B. Nielsen,, E. Pelletier,, P. Renault,, T. Sicheritz-Ponten,, K. Turner,, H. Zhu,, C. Yu,, S. Li,, M. Jian,, Y. Zhou,, Y. Li,, X. Zhang,, S. Li,, N. Qin,, H. Yang,, J. Wang,, S. Brunak,, J. Doré,, F. Guarner,, K. Kristiansen,, O. Pedersen,, J. Parkhill,, J. Weissenbach,, MetaHIT Consortium,, P. Bork,, S. D. Ehrlich,, and J. Wang. 2010. A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464: 59 65.
37. Rothberg, J. M.,, and J. H. Leamon. 2008. The development and impact of 454 sequencing. Nat. Biotechnol. 26: 1117 1124.
38. Schellenberg, J.,, M. G. Links,, J. E. Hill,, T. J. Dumonceaux,, G. A. Peters,, S. Tyler,, T. B. Ball,, A. Severini,, and F. A. Plummer. 2009. Pyrosequencing of the chaperonin-60 universal target as a tool for determining microbial community composition. Appl. Environ. Microbiol. 75: 2889 2898.
39. Schmidt, T. M.,, E. F. DeLong,, and N. R. Pace. 1991. Analysis of a marine picoplankton community by 16S rRNA gene cloning and sequencing. J. Bacteriol. 173: 4371 4378.
40. Shendure, J.,, and H. Ji. 2008. Next-generation DNA sequencing. Nat. Biotechnol. 26: 1135 1145.
41. Stewart, F. J.,, E. A. Ottesen,, and E. F. DeLong. 2010. Development and quantitative analyses of a universal rRNA-subtraction protocol for microbial metatranscriptomics. ISME J. 4: 896 907.
42. Teixeira, L. C.,, R. S. Peixoto,, J. C. Cury,, W. J. Sul,, V. H. Pellizari,, J. M. Tiedje,, and A. S. Rosado. 2010. Bacterial diversity in rhizosphere soil from Antarctic vascular plants of Admiralty Bay, maritime Antarctica. ISME J. 4: 989 1001.
43. Tringe, S. G.,, and P. Hugenholtz. 2008. A renaissance for the pioneering 16S rRNA gene. Curr. Opin. Microbiol. 11: 442 446.
44. Turnbaugh, P. J.,, and J. I. Gordon. 2008. An invitation to the marriage of metagenomics and metabolomics. Cell 134: 708 713.
45. Tyson, G. W.,, J. Chapman,, P. Hugenholtz,, E. E. Allen,, R. J. Ram,, P. M. Richardson,, V. V. Solovyev,, E. M. Rubin,, D. S. Rokhsar,, and J. F. Banfield. 2004. Community structure and metabolism through reconstruction of microbial genomes from the environment. Nature 428: 37 43.
46. Venter, J. C.,, K. Remington,, J. F. Heidelberg,, A. L. Halpern,, D. Rusch,, J. A. Eisen,, D. Y. Wu,, I. Paulsen,, K. E. Nelson,, W. Nelson,, D. E. Fouts,, S. Levy,, A. H. Knap,, M. W. Lomas,, K. Nealson,, O. White,, J. Peterson,, J. Hoffman,, R. Parsons,, H. Baden-Tillson,, C. Pfannkoch,, Y. H. Rogers,, and H. O. Smith. 2004. Environmental genome shotgun sequencing of the Sargasso Sea. Science 304: 66 74.
47. Verberkmoes, N. C.,, A. L. Russell,, M. Shah,, A. Godzik,, M. Rosenquist,, J. Halfvarson,, M. G. Lefsrud,, J. Apajalahti,, C. Tysk,, R. L. Hettich,, and J. K. Jansson. 2009. Shotgun metaproteomics of the human distal gut microbiota. ISME J. 3: 179 189.
48. Warnecke, F.,, and P. Hugenholtz. 2007. Building on basic metagenomics with complementary technologies. Genome Biol. 8: 231.
49. Yergeau, E.,, M. Arbour,, R. Brousseau,, D. Juck,, J. R. Lawrence,, L. Masson,, L. G. Whyte,, and C. W. Greer. 2009a. Microarray and real-time PCR analyses of the responses of high Arctic soil bacteria to hydrocarbon pollution and bioremediation treatments. Appl. Environ. Microbiol. 75: 6258 6267.
50. Yergeau, E.,, S. Bokhorst,, S. Kang,, J. Zhou,, C. W. Greer,, R. Aerts,, and G. A. Kowalchuk. 2011. Shifts in soil microorganisms in response to warming are consistent across a range of Antarctic environments. ISME J. doi:10.1038/ismej.2011.124.
51. Yergeau, E.,, H. Hogues,, L. G. Whyte,, and C. W. Greer. 2010a. The functional potential of high Arctic permafrost revealed by metagenomic sequencing, qPCR, and microarray analyses. ISME J. 4: 1206 1214.
52. Yergeau, E.,, S. Kang,, Z. He,, J. Zhou,, and G. A. Kowalchuk. 2007a. Functional microarray analysis of nitrogen and carbon cycling genes across an Antarctic latitudinal transect. ISMEJ. 1: 163 179.
53. Yergeau, E.,, and G. A. Kowalchuk. 2008. Responses of Antarctic soil microbial communities and associated functions to temperature and freeze-thaw cycle frequency. Environ. Microbiol. 10: 2223 2235.
54. Yergeau, E.,, J. R. Lawrence,, D. R. Korber,, M. J. Waiser,, and C. W. Greer. 2010b. Meta-transcriptomic analysis of the response of river biofilms to pharmaceutical products using anonymous DNA microarrays. Appl. Environ. Microbiol. 76: 5432 5439.
55. Yergeau, E.,, K. K. Newsham,, D. A. Pearce,, and G. A. Kowalchuk. 2007b. Patterns of bacterial diversity across a range of Antarctic terrestrial habitats. Environ. Microbiol. 9: 2670 2682.
56. Yergeau, E.,, S. A. Schoondermark-Stolk,, E. L. Brodie,, S. Déjean,, T. Z. DeSantis,, O. Gonçalves,, Y. M. Piceno,, G. L. Andersen,, and G. A. Kowalchuk. 2009b. Environmental microarray analyses of Antarctic soil microbial communities. ISMEJ. 3: 340 351.


Generic image for table

Summary of Arctic metagenomic studies

Citation: Yergeau E, Greer C. 2012. Metagenomic Analysis of Polar Ecosystems, p 156-165. In Miller R, Whyte L (ed), Polar Microbiology: Life in a Deep Freeze. ASM Press, Washington, DC. doi: 10.1128/9781555817183.ch7
Generic image for table

Summary of Antarctic metagenomic studies

Citation: Yergeau E, Greer C. 2012. Metagenomic Analysis of Polar Ecosystems, p 156-165. In Miller R, Whyte L (ed), Polar Microbiology: Life in a Deep Freeze. ASM Press, Washington, DC. doi: 10.1128/9781555817183.ch7

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error