1887

Chapter 8 : Polar Microorganisms and Biotechnology

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

Polar Microorganisms and Biotechnology, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817183/9781555816049_Chap08-1.gif /docserver/preview/fulltext/10.1128/9781555817183/9781555816049_Chap08-2.gif

Abstract:

The various organisms thriving in extreme environments on Earth, psychrophiles (cold-loving organisms) are the most abundant in terms of biomass, diversity, and distribution. The chapter presents an overview of the biotechnological uses of psychrophiles and of their biomolecules using selected examples. Site-specific mutants of psychrophiles are a useful tool to study cold adaptation and expression of cold-active enzymes at low temperature. At the industrial level, the best-known representative of polar microorganisms is certainly the yeast Candida antarctica, as its species name unambiguously refers to the sampling origin. Antarcticine-NF3 is a glycoprotein with antifreeze properties produced by the bacterium Pseudoalteromonas antarctica, which has been patented by Spanish researchers. It was found that Antarcticine is effective for scar treatment and re-epithelialization of wounds. Most studies on hydrocarbon bioremediation in polar regions have focused on the treatment of petroleum hydrocarbons, since increased petroleum exploration increases the risk of accidental oil release. Polar plants and animals have also found diverse applications and are worth citing in the context of the present survey. Recent developments based on cold-adapted organisms and their biomolecules have clearly demonstrated the huge potential of psychrophiles.

Citation: Feller G, Margesin R. 2012. Polar Microorganisms and Biotechnology, p 166-180. In Miller R, Whyte L (ed), Polar Microbiology: Life in a Deep Freeze. ASM Press, Washington, DC. doi: 10.1128/9781555817183.ch8
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Temperature dependence of growth (expressed by the generation time) of and of representative psychrophilic gram-negative bacteria (data from various Antarctic isolates of ), displaying high growth rates at low temperatures for the latter.

Citation: Feller G, Margesin R. 2012. Polar Microorganisms and Biotechnology, p 166-180. In Miller R, Whyte L (ed), Polar Microbiology: Life in a Deep Freeze. ASM Press, Washington, DC. doi: 10.1128/9781555817183.ch8
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

Temperature dependence of the activity of psychrophilic (○) and mesophilic (●) enzymes recorded at various temperatures illustrates the main properties of cold-adapted enzymes: cold activity and heat lability (data for cellulases from the Antarctic bacterium and from the mesophile ). (Adapted from with permission of the publisher.)

Citation: Feller G, Margesin R. 2012. Polar Microorganisms and Biotechnology, p 166-180. In Miller R, Whyte L (ed), Polar Microbiology: Life in a Deep Freeze. ASM Press, Washington, DC. doi: 10.1128/9781555817183.ch8
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555817183.chap8
1. Aislabie, J.,, and J. M. Foght,. 2008. Hydrocarbon-degrading bacteria in contaminated soils, p. 69 83. In D. M. Filler,, I. Snape,, and D. L. Barnes (ed.), Bioremediation of Petroleum Hydrocarbons in Cold Regions. Cambridge University Press, Cambridge, Cambridge, United Kingdom.
2. Aislabie, J.,, D. J. Saul,, and J. M. Foght. 2006. Bioremediation of hydrocarbon-contaminated polar soils. Extremophiles 10: 171 179.
3. Allen, D.,, A. L. Huston,, L. E. Weels,, and J. W. Deming,. 2002. Biotechnological use of psychrophiles, p. 1 17. In G. Bitton (ed.), Encyclopedia of Environmental Microbiology. John Wiley and Sons, New York, NY.
4. Atlas, R. M., 2010. Microbial bioremediation in polar environments: current status and future directions, p. 255 275. In A. K. Bej,, J. Aislabie,, and R. M. Atlas (ed.), Polar Microbiology: the Ecology, Biodiversity and Bioremediation Potential of Microorganisms in Extremely Cold Environments. CRC Press, Boca Raton, FL.
5. Babu, J.,, P. W. Ramteke,, and G. Thomas. 2008. Cold active microbial lipases: some hot issues and recent developments. Biotechnol. Adv. 26: 457 470.
6. Bakermans, C.,, R. E. Sloup,, D. G. Zarka,, J. M. Tiedje,, and M. F. Thomashow. 2009. Development and use of genetic system to identify genes required for efficient low-temperature growth of Psychrobacter arcticus 273-4. Extremophiles 13: 21 30.
7. Barnes, D. L.,, and E. Chuvilin,. 2009. Migration of petroleum in permafrost-affected regions, p. 263 278. In R. Margesin (ed.), Permafrost Soils. Springer, Berlin, Germany.
8. Bej, A. K.,, J. Aislabie,, and R. M. Atlas (ed.). 2010. Polar Microbiology: the Ecology, Biodiversity and Bioremediation Potential of Microorganisms in Extremely Cold Environments. CRC Press, Boca Raton, FL.
9. Biondi, N.,, M. R. Tredici,, A. Taton,, A. Wilmotte,, D. A. Hodgson,, D. Losi,, and F. Marinelli. 2008. Cyanobacteria from benthic mats of Antarctic lakes as a source of new bioactivities. J. Appl. Microbiol. 105: 105 115.
10. Brakstad, O. G., 2008. Natural and stimulated biodegradation of petroleum in permafrost-affected regions, p. 389 407. In R. Margesin,, F. Schinner,, J.-C. Marx,, and C. Gerday (ed.), Psychrophiles: from Biodiversity to Biotechnology. Springer, Berlin, Germany.
11. Cavicchioli, R.,, K. S. Siddiqui,, D. Andrews,, and K. R. Sowers. 2002. Low-temperature extremophiles and their applications. Curr. Opin. Biotechnol. 13: 253 261.
12. Chevalier, P.,, D. Proulx,, P. Lessard,, W. F. Vincent,, and J. de la Noue. 2000. Nitrogen and phosphorus removal by high latitude mat-forming cyanobacteria for potential use in tertiary wastewater treatment. J. Appl. Phycol. 12: 105 112.
13. Collins, T.,, D. De Vos,, A. Hoyoux,, S. N. Savvides,, C. Gerday,, J. Van Beeumen,, and G. Feller. 2005. Study of the active site residues of a glycoside hydrolase family 8 xylanase. J. Mol. Biol. 354: 425 435.
14. Collins, T.,, A. Hoyoux,, A. Dutron,, J. Georis,, B. Genot,, T. Dauvrin,, F. Arnaut,, C. Gerday,, and G. Feller. 2006. Use of glycoside hydrolase family 8 xylanases in baking. J. Cereal Sci. 43: 79 84.
15. Collins, T.,, M. A. Meuwis,, C. Gerday,, and G. Feller. 2003. Activity, stability and flexibility in glycosidases adapted to extreme thermal environments. J. Mol. Biol. 328: 419 428.
16. Collins, T.,, M. A. Meuwis,, I. Stals,, M. Claeyssens,, G. Feller,, and C. Gerday. 2002. A novel family 8 xylanase, functional and physicochemical characterization. J. Biol. Chem. 277: 35133 35139.
17. Cusano, A. M.,, E. Parrilli,, A. Duilio,, G. Sannia,, G. Marino,, and M. L. Tutino. 2006. Secretion of psychrophilic α-amylase deletion mutants in Pseudoalteromonas haloplanktis TAC125. FEMS Microbiol. Lett. 258: 67 71.
18. D'Amico, S.,, T. Collins,, J. C. Marx,, G. Feller,, and C. Gerday. 2006. Psychrophilic microorganisms: challenges for life. EMBO Rep. 7: 385 389.
19. D'Amico, S.,, C. Gerday,, and G. Feller. 2001. Structural determinants of cold adaptation and stability in a large protein. J. Biol. Chem. 276: 25791 25796.
20. D'Amico, S.,, C. Gerday,, and G. Feller. 2003a. Temperature adaptation of proteins: engineering mesophilic-like activity and stability in a cold-adapted α-amylase. J. Mol. Biol. 332: 981 988.
21. D'Amico, S.,, J.-C. Marx,, C. Gerday,, and G. Feller. 2003b. Activity-stability relationships in extremophilic enzymes. J. Biol. Chem. 278: 7891 7896.
22. Davail, S.,, G. Feller,, E. Narinx,, and C. Gerday. 1994. Cold adaptation of proteins. Purification, characterization, and sequence of the heat-labile subtilisin from the Antarctic psychrophile Bacillus TA41. J. Biol. Chem. 269: 17448 17453.
23. De Vos, D.,, T. Collins,, W. Nerinckx,, S. N. Savvides,, M. Claeyssens,, C. Gerday,, G. Feller,, and J. Van Beeumen. 2006. Oligosaccharide binding in family 8 glycosidases: crystal structures of active-site mutants of the β-1,4-xylanase pXyl from Pseudoaltermonas haloplanktis TAH3a in complex with substrate and product. Biochemistry 45: 4797 4807.
24. Deming, J. W. 2002. Psychrophiles and polar regions. Curr. Opin. Microbiol. 5: 301 309.
25. Feller, G.,, and C. Gerday. 2003. Psychrophilic enzymes: hot topics in cold adaptation. Nat. Rev. Microbiol. 1: 200 208.
26. Ferrer, M.,, T. N. Chernikova,, M. M. Yakimov,, P. N. Golyshin,, and K. N. Timmis. 2003. Chaperonins govern growth of Escherichia coli at low temperatures. Nat. Biotechnol. 21: 1266 1267.
27. Filler, D. M.,, C. M. Reynolds,, I. Snape,, A. J. Daugulis,, D. L. Barnes,, and P. J. Williams. 2006. Advances in engineered remediation methods for use in the Arctic and Antarctica. Polar Rec. 42: 111 120.
28. Filler, D. M.,, I. Snape,, and D. L. Barnes (ed.). 2008. Bioremediation of Petroleum Hydrocarbons in Cold Regions. Cambridge University Press, Cambridge, United Kingdom.
29. Filler, D. M.,, D. R. van Stempvoort,, and M. B. Leigh,. 2009. Remediation of frozen ground contaminants with petroleum hydrocarbons: feasibility and limits, p. 279 301. In R. Margesin (ed.), Permafrost Soils. Springer, Berlin, Germany.
30. Fletcher, G. L.,, C. L. Hew,, and P. L. Davies. 2001. Antifreeze proteins of teleost fishes. Annu. Rev. Physiol. 63: 359 390.
31. Gerday, C.,, M. Aittaleb,, M. Bentahier,, J. P. Chessa,, P. Claverie,, T. Collins,, S. D'Amico,, J. Dumont,, G. Garsoux,, D. Georlette,, A. Hoyoux,, T. Lonhienne,, M.-A. Meuwis,, and G. Feller. 2000. Cold-adapted enzymes: from fundamentals to biotechnology. Trends Biotechnol. 18: 103 107.
32. Gerday, C.,, and N. Glansdorff. 2007. Physiology and Biochemistry of Extremophiles. ASM Press, Washington, DC.
33. Gilichinsky, D.,, E. Rivkina,, C. Bakermans,, V. Shcherbakova,, L. Petrovskaya,, S. Ozerskaya,, N. Ivanushkina,, G. Kochkina,, K. Laurinavichuis,, S. Pecheritsina,, R. Fattakhova,, and J. M. Tiedje. 2005. Biodiversity of cryopegs in permafrost. FEMS Microbiol. Ecol. 53: 117 128.
34. Gratia, E.,, F. Weekers,, R. Margesin,, S. D'Amico,, P. Thonart,, and G. Feller. 2009. Selection of a cold-adapted bacterium for bioremediation of wastewater at low temperatures. Extremophiles 13: 763 768.
35. Hoag, H. 2008. Polar biotech. Nat. Biotechnol. 26: 1204.
36. Hoyoux, A.,, I. Jennes,, P. Dubois,, S. Genicot,, F. Dubail,, J. M. Francois,, E. Baise,, G. Feller,, and C. Gerday. 2001. Cold-adapted β-galactosidase from the Antarctic psychrophile Pseudoalteromonas haloplanktis. Appl. Environ. Microbiol. 67: 1529 1535.
37. Kobori, H.,, C. W. Sullivan,, and H. Shizuya. 1984. Heat-labile alkaline phosphatase from Antarctic bacteria: rapid 5′ end labelling of nucleic acids. Proc. Natl. Acad. Sci. USA 81: 6691 6695.
38. Kolenc, R. J.,, W. E. Inniss,, B. R. Glick,, C. W. Robinson,, and C. I. Mayfield. 1988. Transfer and expression of mesophilic plasmid-mediated degradative capacity in a psychrotrophic bacterium. Appl. Environ. Microbiol. 54: 638 641.
39. Koutsioulis, D.,, E. Wang,, M. Tzanodaskalaki,, D. Nikiforaki,, A. Deli,, G. Feller,, P. Heikinheimo,, and V. Bouriotis. 2008. Directed evolution on the cold adapted properties of TAB5 alkaline phosphatase. Protein Eng. Des. Sel. 21: 319 327.
40. Krallish, I.,, S. Gonta,, L. Savenkova,, P. Bergauer,, and R. Margesin. 2006. Phenol degradation by immobilized cold-adapted yeast strains of Cryptococcus terreus and Rhodotorula creatinivora. Extremophiles 10: 441 449.
41. Leary, D. 2008. Bioprospecting in the Arctic. UNU-IAS report. United Nations University Institute of Advanced Studies, Yokohama, Japan.
42. Leigh Mascarelli, A. 2009. Geomicrobiology: low life. Nature 459: 770 773.
43. Leiros, I.,, E. Moe,, O. Lanes,, A. O. Smalås,, and N. P. Willassen. 2003. The structure of uracil-DNA glycosylase from Atlantic cod ( Gadus morhua) reveals cold-adaptation features. Acta Crystallogr. D Biol. Crystallogr. 59: 1357 1365.
44. Lo Giudice, A.,, V. Bruni,, and L. Michaud,. 2010. Potential for microbial biodegradation of polychlorinated biphenyls in polar environments, p. 373 391. In A. K. Bej,, J. Aislabie,, and R. M. Atlas (ed.), Polar Microbiology: the Ecology, Biodiversity and Bioremediation Potential of Microorganisms in Extremely Cold Environments. CRC Press, Boca Raton, FL.
45. Lohan, D.,, and S. Johnston. 2005. Bioprospecting in Antarctica. UNU-IAS report. United Nations University Institute of Advanced Studies, Yokohama, Japan.
46. Margesin, R., 2004. Bioremediation of petroleum hydrocarbon-polluted soils in extreme temperature environments, p. 215 234. In A. Singh, and O. P. Ward (ed.), Applied Bioremediation and Phytoremediation. Springer, Berlin, Germany.
47. Margesin, R. 2007. Alpine microorganisms: useful tools for low-temperature bioremediation. J. Microbiol. 45: 281 285.
48. Margesin, R.,, and G. Feller. 2010. Biotechnological applications of psychrophiles. Environ. Technol. 31: 835 844.
49. Margesin, R.,, G. Feller,, C. Gerday,, and N. J. Russell,. 2002. Cold-adapted microorganisms: adaptation strategies and biotechnological potential, p. 871 885. In G. Bitton (ed.), Encyclopedia of Environmental Microbiology. John Wiley and Sons, New York, NY.
50. Margesin, R.,, P. A. Fonteyne,, and B. Redl. 2005. Low-temperature biodegradation of high amounts of phenol by Rhodococcus spp. and basidiomycetous yeasts. Res. Microbiol. 156: 68 75.
51. Margesin, R.,, G. Neuner,, and K. B. Storey. 2007. Cold-loving microbes, plants, and animals—fundamental and applied aspects. Naturwissenschaften 94: 77 99.
52. Margesin, R.,, and F. Schinner (ed.). 1999a. Biotechnological Applications of Cold-Adapted Organisms. Springer, Berlin, Germany.
53. Margesin, R.,, and F. Schinner (ed.). 1999b. Cold-Adapted Organisms: Ecology, Physiology, Enzymology and Molecular Biology. Springer, Berlin, Germany.
54. Margesin, R.,, F. Schinner,, J.-C. Marx,, and C. Gerday (ed.). 2008. Psychrophiles: from Biodiversity to Biotechnology. Springer, Berlin, Germany.
55. Marx, J.-C.,, T. Collins,, S. D'Amico,, G. Feller,, and C. Gerday. 2007. Cold-adapted enzymes from marine Antarctic microorganisms. Mar. Biotechnol. (NY) 9: 293 304.
56. Miteva, V.,, S. Lantz,, and J. Brenchley. 2008. Characterization of a cryptic plasmid from a Greenland ice core Arthrobacter isolate and construction of a shuttle vector that replicates in psychrophilic high G+C Gram-positive recipients. Extremophiles 12: 441 449.
57. Miyake, R.,, J. Kawamoto,, Y. L. Wei,, M. Kitagawa,, I. Kato,, T. Kurihara,, and N. Esaki. 2007. Construction of a low-temperature protein expression system using a cold-adapted bacterium, Shewanella sp. strain Ac10, as the host. Appl. Environ. Microbiol. 73: 4849 4856.
58. Narinx, E.,, E. Baise,, and C. Gerday. 1997. Subtilisin from psychrophilic Antarctic bacteria: characterization and site-directed mutagenesis of residues possibly involved in the adaptation to cold. Protein Eng. 10: 1271 1279.
59. Panicker, G.,, N. Mojib,, J. Aislabie,, and A. K. Bej. 2010. Detection, expression and quantitation of the biodegradative genes in Antarctic microorganisms using PCR. Antonie van Leeuwenhoek 97: 275 287.
60. Papa, R.,, V. Rippa,, G. Sannia,, G. Marino,, and A. Duilio. 2007. An effective cold inducible expression system developed in Pseudoalteromonas haloplanktis TAC125. J. Biotechnol. 127: 199 210.
61. Parente Duena, A.,, J. Garces Garces,, J. Guinea Sanchez,, J. M. Garcia Anton,, R. Casaroli Marano,, M. Reina Del Pozo,, and S. Vilaro Coma. April 2006. Use of a glycoprotein for the treatment and re-epithelialisation of wounds. U.S. patent 7, 022,668.
62. Parrilli, E.,, D. De Vizio,, C. Cirulli,, and M. L. Tutino. 2008. Development of an improved Pseudoalteromonas haloplanktis TAC125 strain for recombinant protein secretion at low temperature. Microb. Cell Fact. 7: 2.
63. Paudyn, K.,, A. Rutter,, R. K. Rowe,, and J. S. Poland. 2008. Remediation of hydrocarbon contaminated soils in the Canadian Arctic by landfarming. Cold Reg. Sci. Technol. 53: 102 114.
64. Rina, M.,, C. Pozidis,, K. Mavromatis,, M. Tzanodaskalaki,, M. Kokkinidis,, and V. Bouriotis. 2000. Alkaline phosphatase from the Antarctic strain TAB5. Properties and psychrophilic adaptations. Eur. J. Biochem. 267: 1230 1238.
65. Russell, N. J. 1998. Molecular adaptations in psychrophilic bacteria: potential for biotechnological applications. Adv. Biochem. Eng. Biotechnol. 61: 1 21.
66. Siani, L.,, R. Papa,, A. Di Donato,, and G. Sannia. 2006. Recombinant expression of toluene o-xylene monooxygenase (ToMO) from Pseudomonas stutzeri OX1 in the marine Antarctic bacterium Pseudoalteromonas haloplanktis TAC125. J. Biotechnol. 126: 334 341.
67. Siddiqui, K. S.,, and R. Cavicchioli. 2006. Cold-adapted enzymes. Annu. Rev. Biochem. 75: 403 433.
68. Smalås, A. O.,, H. K. Leiros,, V. Os,, and N. P. Willassen. 2000. Cold adapted enzymes. Biotechnol. Annu. Rev. 6: 1 57.
69. Strocchi, M.,, M. Ferrer,, K. N. Timmis,, and P. N. Golyshin. 2006. Low temperature-induced systems failure in Escherichia coli: insights from rescue by cold-adapted chaperones. Proteomics 6: 193 206.
70. Tehei, M.,, B. Franzetti,, D. Madern,, M. Ginzburg,, B. Z. Ginzburg,, M. T. Giudici-Orticoni,, M. Bruschi,, and G. Zaccai. 2004. Adaptation to extreme environments: macromolecular dynamics in bacteria compared in vivo by neutron scattering. EMBO Rep. 5: 66 70.
71. Thomassin-Lacroix, E. J.,, M. Eriksson,, K. J. Reimer,, and W. W. Mohn. 2002. Biostimulation and bioaugmentation for on-site treatment of weathered diesel fuel in Arctic soil. Appl. Microbiol. Biotechnol. 59: 551 556.
72. Tutino, M. L.,, A. Duilio,, R. Parrilli,, E. Remaut,, G. Sannia,, and G. Marino. 2001. A novel replication element from an Antarctic plasmid as a tool for the expression of proteins at low temperature. Extremophiles 5: 257 264.
73. Van Petegem, F.,, T. Collins,, M. A. Meuwis,, C. Gerday,, G. Feller,, and J. Van Beeumen. 2003. The structure of a cold-adapted family 8 xylanase at 1.3 Å resolution. Structural adaptations to cold and investigation of the active site. J. Biol. Chem. 278: 7531 7539.
74. Walworth, J. L.,, and S. Ferguson,. 2008. Landfarming, p. 170 189. In D. M. Filler,, I. Snape,, and D. L. Barnes (ed.), Bioremediation of Petroleum Hydrocarbons in Cold Regions. Cambridge University Press, Cambridge, United Kingdom.
75. Walworth, J. L.,, A. Pond,, I. Snape,, J. Rayner,, S. Ferguson,, and P. Harvey. 2007. Nitrogen requirements for maximizing petroleum bioremediation in a sub-Antarctic soil. Cold Reg. Sci. Technol. 48: 84 91.
76. Wang, E.,, D. Koutsioulis,, H. K. Leiros,, O. A. Andersen,, V. Bouriotis,, E. Hough,, and P. Heikinheimo. 2007. Crystal structure of alkaline phosphatase from the Antarctic bacterium TAB5. J. Mol. Biol. 366: 1318 1331.
77. Williams, N. 2004. Chill wind over Antarctic biodiversity. Curr. Biol. 14: R169 R170.
78. Yergeau, E.,, M. Arbour,, R. Brousseau,, D. Juck,, J. R. Lawrence,, L. Masson,, L. G. Whyte,, and C. W. Greer. 2009. Microarray and real-time PCR analyses of the responses of high Arctic soil bacteria to hydrocarbon pollution and bioremediation treatments. Appl. Environ. Microbiol. 75: 6258 6267.
79. Zaitsev, G. M.,, J. S. Uotila,, and M. M. Häggblom. 2007. Biodegradation of methyl tert-butyl ether by cold-adapted mixed and pure bacterial cultures. Appl. Microbiol. Biotechnol. 74: 1092 1102.
80. Zilouei, H.,, A. Soares,, M. Murto,, B. Guieysse,, and B. Mattiasson. 2006. Influence of temperature on process efficiency and microbial community response during the biological removal of chlorophenols in a packed-bed bioreactor. Appl. Microbiol. Biotechnol. 72: 591 599.
81. Zobell, C. E. 1946. Action of microorganisms on hydrocarbons. Bacteriol. Rev. 10: 1 49.

Tables

Generic image for table
TABLE 1

Selected applications of cold-active biomolecules in biotechnology

Adapted from with permission of the publisher.

Citation: Feller G, Margesin R. 2012. Polar Microorganisms and Biotechnology, p 166-180. In Miller R, Whyte L (ed), Polar Microbiology: Life in a Deep Freeze. ASM Press, Washington, DC. doi: 10.1128/9781555817183.ch8

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error