1887

Chapter 9 : Microbial Carbon Cycling in Permafrost

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

Microbial Carbon Cycling in Permafrost, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817183/9781555816049_Chap09-1.gif /docserver/preview/fulltext/10.1128/9781555817183/9781555816049_Chap09-2.gif

Abstract:

Terrestrial and submarine permafrost is identified as one of the most vulnerable carbon pools on Earth. In some areas, permafrost comprises upwards of 80% ice in the form of large features, such as massive ice sheets many kilometers in length; or on smaller scales, such as ice wedges and ice lenses, and as ice that fills soil pore space. Residual pockets of seawater, from the subsidence of the polar ocean, exist as saturated, salt-rich permafrost environments known as salt lenses or cryopegs. All of these permafrost features sustain microbial communities that contribute to carbon cycling in polar regions. The way in which gas is released from permafrost, i.e., the rate and pathway, determines the ratio of methane and carbon dioxide emitted to the atmosphere. This chapter describes the different carbon pools, carbon fluxes, and freeze-thaw stresses related to microbial activities. It then examines methane-cycling communities in Arctic active-layer and permafrost environments. The fast recovery of the microbial activity during spring suggests that carbon mineralization in thawing Arctic sediment may rapidly respond to warming, resulting in substantial changes in microbial carbon cycling and growth of microbial populations. Environmental sequences from the Laptev Sea coast consist of four specific permafrost clusters. It was hypothesized that these clusters comprise methanogenic with a specific physiological potential to survive under harsh environmental conditions. A first study on submarine permafrost of the Laptev Sea shelf demonstrated that intact DNA was extractable from late Pleistocene permafrost deposits with an age of up to 111,000 years.

Citation: Vishnivetskaya T, Liebner S, Wilhelm R, Wagner D. 2012. Microbial Carbon Cycling in Permafrost, p 183-200. In Miller R, Whyte L (ed), Polar Microbiology: Life in a Deep Freeze. ASM Press, Washington, DC. doi: 10.1128/9781555817183.ch9
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

References

/content/book/10.1128/9781555817183.chap9
1. Anisimov, O.,, and S. Reneva. 2006. Permafrost and changing climate: the Russian perspective. Ambio 35: 169 175.
2. Aselmann, I.,, and J. Crutzen. 1989. Global distribution of natural freshwater wetlands and rice paddies, their net primary productivity, seasonality and possible methane emissions. J. Atmos. Chem. 8: 307 358.
3. Belova, S. E.,, T. A. Pankratov,, and S. N. Dedysh. 2006. Bacteria of the genus Burkholderia as a typical component of the microbial community of sphagnum peat bogs. Microbiology 75: 90 96.
4. Berestovskaia, I.,, A. M. Lysenko,, T. P. Turova,, and L. V. Vasil’eva. 2006. A psychrotolerant Caulobacter sp. from Russian polar tundra soil. Mikrobiologiia 75: 377 382. (In Russian.)
5. Berestovskaya, Y. Y.,, L. V. Vasil’eva,, O. V. Chestnykh,, and G. A. Zavarzin. 2002. Methanotrophs of the psychrophilic microbial community of the Russian Arctic tundra. Microbiology 71: 460 466.
6. Biasi, C.,, O. Rusalimova,, H. Meyer,, C. Kaiser,, W. Wanek,, P. Barsukov,, H. Junger,, and A. Richter. 2005. Temperature-dependent shift from labile to recalcitrant carbon sources of arctic heterotrophs. Rapid Commun. Mass Spectrom. 19: 1401 1408.
7. Boetius, A.,, K. Ravenschlag,, C. J. Schubert,, D. Rickert,, F. Widdel,, A. Gieseke,, R. Amann,, B. B. Jørgensen,, U. Witte,, and O. Pfannkuche. 2000. A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature 407: 623 626.
8. Bölter, M.,, N. Soethe,, R. Horn,, and C. Uhlig. 2005. Seasonal development of microbial activity in soils of northern Norway. Pedosphere 15: 716 727.
9. Bowman, J. P., 1999. The methanotrophs—the families Methylococcaceae and Methylocystaceae . In M. Dworkin (ed.), The Prokaryotes. Springer-Verlag, New York, NY.
10. Buckeridge, K. M.,, Y. P. Cen,, D. B. Layzell,, and P. Grogan. 2010. Soil biogeochemistry during the early spring in low arctic mesic tundra and the impacts of deepened snow and enhanced nitrogen availability. Biogeochemistry 99: 127 141.
11. Camill, P. 1999. Patterns of boreal permafrost peatland vegetation across environmental gradients sensitive to climate warming. Can. J. Bot. 77: 721 733.
12. Chan, O. C.,, P. Claus,, P. Casper,, A. Ulrich,, T. Lueders,, and R. Conrad. 2005. Vertical distribution of the methanogenic archaeal community in Lake Dagow sediment. Environ. Microbiol. 7: 1139 1149.
13. Clemmensen, K. E.,, P. L. Sorensen,, A. Michelsen,, S. Jonasson,, and L. Ström. 2008. Site-dependent N uptake from N-form mixtures by arctic plants, soil microbes and ectomycorrhizal fungi. Oecologia 155: 771 783.
14. Conrad, R. 2005. Quantification of methanogenic pathways using stable carbonisotopic signatures: a review and a proposal. Organ. Geochem. 36: 739 752.
15. D'Amico, S.,, T. Collins,, J.-C. Marx,, G. Feller,, and C. Gerday. 2006. Psychrophilic microorganisms: challenges for life. EMBO Rep. 7: 385 389.
16. Dedysh, S. N.,, Y. Y. Berestovskaya,, L. V. Vasylieva,, S. E. Belova,, V. N. Khmelenina,, N. E. Suzina,, Y. A. Trotsenko,, W. Liesack,, and G. A. Zavarzin. 2004. Methylocella tundrae sp nov., a novel methanotrophic bacterium from acidic tundra peatlands. Int. J. Syst. Evol. Microbiol. 54: 151 156.
17. Denman, K. L.,, G. Brasseur,, A. Chidthaisong,, P. Ciais,, P. M. Cox,, R. E. Dickinson,, D. Hauglustaine,, C. Heinze,, E. Holland,, D. Jacob,, U. Lohmann,, S. Ramachandran,, P. L. Da Silva Dias,, S. C. Wofsy,, and X. Zhang. 2007. Couplings between changes in the climate system and biogeochemistry. In IPCC, Climate Change 2007: the Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change . Cambridge University Press, Cambridge, United Kingdom, and New York, NY.
18. Dobrovolskaya, T. G.,, L. V. Lysak,, and D. G. Zvyagintsev. 1996. Soils and microbial diversity. Euras. Soil Sci. 29: 630 634.
19. Dunfield, P. F.,, A. Yuryev,, P. Senin,, A. V. Smirnova,, M. S. Stott,, S. Hou,, B. Ly,, J. H. Saw,, Z. Zhou,, Y. Ren,, J. Wang,, B. W. Mountain,, M. A. Crowe,, T. M. Weatherby,, P. L. E. Bodelier,, W. Liesack,, L. Feng,, L. Wang,, and M. Alam. 2007. Methane oxidation by an extremely acidophilic bacterium of the phylum Verrucomicrobia. Nature 450: 879 882.
20. Eskelinen, A.,, S. Stark,, and M. Männistö. 2009. Links between plant community composition, soil organic matter quality and microbial communities in contrasting tundra habitats. Oecologia 161: 113 123.
21. Eugster, W.,, W. R. Rouse,, R. A. Pielke,, J. P. McFadden,, D. D. Baldocchi,, T. G. F. Kittel,, F. S. Chapin III,, G. Liston,, P. L. Vidale,, E. Vaganov,, and S. Chambers. 2000. Land-atmosphere energy exchange in Arctic tundra and boreal forest: available data and feedbacks to climate. Global Change Biol. 6: 84 115.
22. Eugster, W.,, J. P. McFadden,, and F. S. Chapin. 2005. Differences in surface roughness, energy, and CO 2 fluxes in two moist tundra vegetation types, Kuparuk watershed, Alaska, USA. Arct. Antarct. Alpine Res. 37: 61 67.
23. Franzmann, P. D.,, N. Springer,, W. Ludwig,, E. Conway de Macario,, and M. Rohde. 1992. A methanogenic archaeon from Ace Lake, Antarctica: Methanococcoides burtonii sp. nov. Syst. Appl. Microbiol. 15: 573 581.
24. Franzmann, P. D.,, Y. Liu,, D. L. Balkwill,, H. C. Aldrich,, E. Conway de Macario,, and D. R. Boone. 1997. Methanogenium frigidium sp. nov., a psychrophilic, H 2-using methanogen from Ace Lake, Antarctica. Int. J. Sys. Bacteriol. 47: 1068 1072.
25. Ganzert, L.,, G. Jurgens,, U. Münster,, and D. Wagner. 2007. Methanogenic communities in permafrost-affected soils of the Laptev Sea coast, Siberian Arctic, characterized by 16S rRNA gene fingerprints. FEMS Microbiol. Ecol. 59: 476 488.
26. Gilichinsky, D. A., 2002. Permafrost, p. 2367 2385. In G. Bitton (ed.) Encyclopedia of Environmental Microbiology . John Wiley and Sons, New York, NY.
27. Gilichinsky, D. A.,, V. S. Soina,, and M. A. Petrova. 1993. Cryoprotective properties of water in the Earth cryollitosphere and its role in exobiology. Orig. Life Evol. Biosph. 23: 65 75.
28. Gilichinsky, D.,, T. Vishnivetskaya,, M. Petrova,, E. Spirina,, V. Mamykin,, and E. Rivkina,. 2008. Bacteria in permafrost, p. 83 102. In R. Margesin,, F. Schinner,, J.-C. Marx,, and C. Gerday (ed.), Psychrophiles: from Biodiversity to Biotechnology . Springer, Berlin, Germany.
29. Gorham, E. 1991. Northern peatlands: role in the carbon cycle and probable responses to climatic warming. Ecol. Appl. 1: 182 195.
30. Gough, L.,, G. R. Shaver,, J. Carroll,, D. L. Royer,, and J. A. Laundre. 2000. Vascular plant species richness in Alaskan arctic tundra: the importance of soil pH. J. Ecol. 88: 54 66.
31. Graef, C.,, A. G. Hestnes,, M. M. Svenning,, and P. Frenzel. 2011. The active methanotrophic community in a wetland from the High Arctic. Environ. Microbiol. Rep. 3: 466 472.
32. Grosse, G.,, L. Schirrmeister,, and T. J. Malthus. 2006. Application of Landsat-7 satellite data and a DEM for the quantification of thermokarst-affected terrain types in the periglacial Lena-Anabar coastal lowland. Polar Res. 25: 51 67.
33. Grosskopf, R.,, S. Stubner,, and W. Liesack. 1998. Novel euryarchaeotal lineages detected on rice roots and in the anoxic bulk soil of flooded rice microcosms. Appl. Environ. Microbiol. 64: 4983 4989.
34. Guggenberger, G.,, W. Zech,, and H.-R. Schulten. 1994. Formation and mobilization pathways of dissolved organic matter: evidence from chemical structural studies of organic matter fractions in acid forest floor solutions. Org. Geochem. 21: 51 66.
35. Hales, B. A.,, C. Edwards,, D. A. Ritchie,, G. Hall,, R. W. Pickup,, and J. R. Saunders. 1996. Isolation and identification of methanogen-specific DNA from blanket bog peat by PCR amplification and sequence analysis. Appl. Environ. Microbiol. 62: 668 675.
36. Hansen, A. A.,, R. A. Herbert,, K. Mikkelsen,, L. L. Jensen,, T. Kristoffersen,, J. M. Tiedje,, B. A. Lomstein,, and K. W. Finster. 2007. Viability, diversity and composition of the bacterial community in a high Arctic permafrost soil from Spitsbergen, Northern Norway. Environ. Microbiol. 9: 2870 2884.
37. Hedderich, R.,, and W. Whitman,. 2006. Physiology and biochemistry of the methane-producing archaea, p. 1050 1079. In M. Dworkin,, S. Falkow,, E. Rosenberg,, K.-H. Schleifer,, and E. Stackebrandt (ed.), The Prokaryotes: a Handbook on the Biology of Bacteria , 3rd ed., vol. 2. Springer, New York, NY.
38. Hobbie, S. E.,, and L. Gough. 2004. Litter decomposition in moist acidic and non-acidic tundra with different glacial histories. Oecologia 140: 113 124.
39. Hobbie, J. E.,, E. A. Hobbie,, H. Drossman,, M. Conte,, J. C. Weber,, J. Shamhart,, and M. Weinrobe. 2009. Mycorrhizal fungi supply nitrogen to host plants in Arctic tundra and boreal forests: 15N is the key signal. Can. J. Microbiol. 55: 84 94.
40. Høj, L.,, R. A. Olsen,, and V. L. Torsvik. 2005. Archaeal communities in High Arctic wetlands at Spitsbergen, Norway (78°N) as characterised by 16S rRNA gene fingerprinting. FEMS Microbiol. Ecol. 53: 89 101.
41. Høj, L.,, M. Rusten,, L. E. Haugen,, R. A. Olsen,, and V. L. Torsvik. 2006. Effects of water regime on archaeal community composition in Arctic soils. Environ. Microbiol. 8: 984 996.
42. IPCC. 2007. Climate Change 2007: the Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change . Cambridge University Press, Cambridge, United Kingdom, and New York, NY.
43. Jeanthon, C.,, S. L’Haridon,, N. Pradel,, and D. Prieur. 1999. Rapid identification of hyperthermophilic methanococci isolated from deep-sea hydrothermal vents. Int. J. Syst. Bacteriol. 49: 591 594.
44. Jonasson, S.,, J. Castro,, and A. Michelsen. 2004. Litter, warming and plants affect respiration and allocation of soil microbial and plant C, N and P in arctic mesocosms. Soil Biol. Biochem. 36: 1129 1139.
45. Jones, A.,, V. Stolbovoy,, C. Tarnocai,, G. Broll,, O. Spaargaren,, and L. Montanarella (ed.). 2010. Soil Atlas of the Northern Circumpolar Region . European Commission, Publications Office of the European Communities, Luxembourg.
46. Jurgens, G.,, F. O. Glöckner,, R. Amann,, A. Saano,, L. Montonen,, M. Likolammi,, and U. Münster. 2000. Identification of novel Archaea in bacterioplankton of a boreal forest lake by phylogenetic analysis and fluorescent in situ hybridization. FEMS Microbiol. Ecol. 34: 45 56.
47. Kaiser, K.,, G. Guggenberger,, L. Haumeier,, and W. Zech. 2001. Seasonal variations in the chemical composition of dissolved organic matter in organic forest floor layer leachates of old-growth Scots pine ( Pinus sylvestris L.) and European beech ( Fagus sylvatica L.) stand in northeastern Bavaria, Germany. Biogeochemistry 55: 103 143.
48. Kaluzhnaya, M. G.,, V. A. Makutina,, T. G. Rusakova,, D. V. Nikitin,, V. N. Khmelenina,, V. V. Dmitriev,, and Y. A. Trotsenko. 2002. Methanotrophic communities in the soils of the Russian northern taiga and subarctic tundra. Microbiology 71: 223 227.
49. Keough, B. P.,, T. M. Schmidt,, and R. E. Hicks. 2003. Archaeal nucleic acids in picoplankton from great lakes on three continents. Microb. Ecol. 46: 238 248.
50. Khmelenina, V. N.,, V. A. Makutina,, M. G. Kaluzhnaya,, E. M. Rivkina,, D. A. Gilichinsky,, and Y. A. Trotsenko. 2002. Discovery of viable methanotrophic bacteria in permafrost sediments of northeast Siberia. Dokl. Biol. Sci. 384: 235 237.
51. Knorr, W.,, I. C. Prentice,, J. I. House,, and E. A. Holland. 2005. Long-term sensitivity of soil carbon turnover to warming. Nature 433: 298 301.
52. Kobabe, S.,, D. Wagner,, and E. M. Pfeiffer. 2004. Characterisation of microbial community composition of a Siberian tundra soil by fluorescence in situ hybridisation. FEMS Microbiol. Ecol. 50: 13 23.
53. Koch, K.,, C. Knoblauch,, and D. Wagner. 2009. Methanogenic community composition and anaerobic carbon turnover in submarine permafrost sediments of the Siberian Laptev Sea. Environ. Microbiol. 11: 657 668.
54. Kotelnikova, S.,, A. J. L. Macario,, and K. Pedersen. 1998. Methanobacterium subterraneum sp. nov., a new alkaliphilic, eurythermic and halotolerant methanogen isolated from deep granitic groundwater. Int. J. Syst. Bacteriol. 48: 357 367.
55. Kreyling, J.,, C. Beierkuhnlein,, and A. Jentsch. 2010. Effects of soil freeze-thaw cycles differ between experimental plant communities. Basic Appl. Ecol. 11: 65 75.
56. Krivushin, K. V.,, V. A. Shcherbakova,, L. E. Petrovskaya,, and E. M. Rivkina. 2010. Methanobacterium veterum sp. nov., from ancient Siberian permafrost. Int. J. Sys. Evol. Microbiol. 60: 455 459.
57. Lee, H.,, E. A. G. Schuur,, and J. G. Vogel. 2010. Soil CO 2 production in upland tundra where permafrost is thawing. J. Geophys. Res. 115: G01009.
58. Liebner, S.,, K. Rublack,, T. Stuehrmann,, and D. Wagner. 2008. Diversity of aerobic methanotrophic bacteria in a permafrost soil of the Lena Delta, Siberia. Microb. Ecol. 57: 25 35.
59. Liebner, S.,, and D. Wagner. 2007. Abundance, distribution and potential activity of methane oxidizing bacteria in permafrost soils from the Lena Delta, Siberia. Environ. Microbiol. 9: 107 117.
60. Liebner, S.,, J. Zeyer,, D. Wagner,, C. Schubert,, E.-M. Pfeiffer,, and C. Knoblauch. 2011. Methane oxidation associated with submerged brown mosses reduces methane emissions from Siberian polygonal tundra. J. Ecol. 99: 914 922.
61. Lin, C.,, L. Raskin,, and D. A. Stahl. 1997. Microbial community structure in gastrointestinal tracts of domestic animals: comparative analyses using rRNA-targeted oligonucleotide probes. FEMS Microbiol. Ecol. 22: 281 294.
62. Lomans, B. P.,, R. Maas,, R. Luderer,, H. J. M. Op den Camp,, A. Pol,, C. van der Drift,, and G. D. Vogels. 1999. Isolation and characterization of Methanomethylovorans hollandica gen. nov., sp. nov., isolated from freshwater sediment, a methylotrophic methanogen able to grow on dimethyl sulfide and methanethiol. Appl. Environ. Microbiol. 65: 3641 3650.
63. Mangelsdorf, K.,, E. Finsel,, S. Liebner,, and D. Wagner. 2009. Temperature adaptation of microbial communities in different horizons of Siberian permafrost-affected soils from the Lena Delta. Chem. Erde 69: 169 182.
64. Männistö, M. K.,, and M. M. Häggblom. 2006. Characterization of psychrotolerant heterotrophic bacteria from Finnish Lapland. Syst. Appl. Microbiol. 29: 229 243.
65. Männistö, M. K.,, M. Tiirola,, and M. M. Häggblom. 2009. Effect of freeze-thaw cycles on bacterial communities of Arctic tundra soil. Microb. Ecol. 58: 621 631.
66. Martineau, C.,, L. G. Whyte,, and C. W. Greer. 2010. Stable isotope analysis of the diversity and activity of methanotrophic bacteria in soils from the Canadian high Arctic. Appl. Environ. Microbiol. 76: 5773 5784.
67. Mathrani, I. M.,, and D. R. Boone. 1985. Isolation and characterization of a moderately halophilic methanogen from a solar saltern. Appl. Environ. Microbiol. 50: 140 143.
68. Metje, M.,, and P. Frenzel. 2007. Methanogenesis and methanogenic pathways in a peat from subarctic permafrost. Environ. Microbiol. 9: 954 964.
69. Morozova, D.,, D. Möhlmann,, and D. Wagner. 2007. Survival of methanogenic archaea from Siberian permafrost under simulated Martian thermal conditions. Orig. Life Evol. Biosph. 37: 189 200.
70. Morozova, D.,, and D. Wagner. 2007. Stress response of methanogenic archaea from Siberian permafrost compared to methanogens from nonpermafrost habitats. FEMS Microbiol. Ecol. 61: 16 25.
71. Muhr, J.,, W. Borken,, and E. Matzner. 2009. Effects of soil frost on soil respiration and its radiocarbon signature in a Norway spruce forest soil. Glob. Change Biol. 15: 782 793.
72. Nelson, D. M.,, A. J. Glawe,, D. P. Labeda,, I. K. Cann,, and R. I. Mackie. 2009. Paenibacillus tundrae sp. nov. and Paenibacillus xylanexedens sp. nov., psychrotolerant, xylan-degrading bacteria from Alaskan tundra. Int. J. Syst. Evol. Microbiol. 59: 1708 1714.
73. Neufeld, J. D.,, and W. W. Mohn. 2005. Unexpectedly high bacterial diversity in Arctic tundra relative to boreal forest soils, revealed by serial analysis of ribosomal sequence tags. Appl. Environ. Microbiol. 71: 5710 5718.
74. Ochsenreiter, T.,, D. Selezi,, A. Quaiser,, L. Bonch-Osmolovskaya,, and C. Schleper. 2003. Diversity and abundance of Crenarchaeota in terrestrial habitats studied by 16S RNA surveys and real time PCR. Environ. Microbiol. 5: 787 797.
75. Oechel, W. C.,, S. J. Hastings,, M. Jenkins,, G. Riechers,, N. E. Grulke,, and G. L. Vourlitis. 1993. Recent change of arctic tundra ecosystems from a net carbon sink to a source. Nature 361: 520 526.
76. Oechel, W. C.,, and G. L. Vourlitis. 1994. The effects of climate charge on land-atmosphere feedbacks in arctic tundra regions. Trends Ecol. Evol. 9: 324 329.
77. Oechel, W. C.,, G. L. Vourlitis,, S. J. Hastings,, R. C. Zulueta,, L. Hinzman,, and D. Kane. 2000. Acclimation of ecosystem CO 2 exchange in the Alaskan Arctic in response to decadal climate warming. Nature 406: 978 981.
78. Oelbermann, M.,, M. English,, and S. L. Schiff. 2008. Evaluating carbon dynamics and microbial activity in arctic soils under warmer temperatures. Can. J. Soil Sci. 88: 31 44.
79. Omelchenko, M. B.,, L. V. Vasieleva,, G. A. Zavarzin,, N. D. Savelieva,, A. M. Lysenko,, L. L. Mityushina,, V. N. Khmelenina,, and Y. A. Trotsenko. 1996. A novel psychrophilic methanotroph of the genus Methylobacter . Microbiology 65: 339 343.
80. Osterkamp, T. E., 2001. Subsea permafrost, p. 2902 2912. In J. H. Steele,, S. A. Thorpe,, and K. K. Turekian (ed.), Encyclopedia of Ocean Sciences . Academic Press, San Diego, CA.
81. Parinkina, O. M. 1989. Microflora of tundra soils: ecological geographical features and productivity. Nauka, Leningrad, Russia.
82. Pol, A.,, K. Heijmans,, H. R. Harhangi,, D. Tedesco,, M. S. M. Jetten,, and H. J. M. Op den Camp. 2007. Methanotrophy below pH 1 by a new Verrucomicrobia species. Nature 450: 874 878.
83. Post, W. M.,, W. R. Emanuel,, P. J. Zinke,, and A. G. Stangenberger. 1982. Soil carbon pools and world life zones. Nature 298: 156 159.
84. Raghoebarsing, A. A.,, A. Pol,, K. T. van de Pas-Schoonen,, A. J. P. Smolders,, K. F. Ettwig,, W. I. C. Rijpstra,, S. Schouten,, J. S. Sinninghe Damsté,, H. J. M. Op den Camp,, M. S. M. Jetten,, and M. Strous. 2006. A microbialconsortium couples anaerobic methane oxidation to dentrification. Nature 440: 918 921.
85. Ramakrishnan, B.,, T. Lueders,, P. F. Dunfield,, R. Conrad,, and M. W. Friedrich. 2001. Archaeal community structures in rice soils from different geographical regions before and after initiation of methane production. FEMS Microbiol. Ecol. 37: 175 186.
86. Rinnan, R.,, A. Michelsen,, E. Bååth,, and S. Jonasson. 2007. Fifteen years of climate change manipulations alter soil microbial communities in a subarctic heath ecosystem. Glob. Change Biol. 13: 28 39.
87. Rinnan, R.,, S. Stark,, and A. Tolvanen. 2009. Response of vegetation and soil microbial communities to warming and simulated herbivory in a subarctic heath. J. Ecol. 97: 788 800.
88. Rivkina, E. M.,, D. Gilichinsky,, S. Wagener,, J. Tiedje,, and J. McGrath. 1998. Biochemical activity of anaerobic microorganisms from buried permafrost sediments. Geomicrobiology 15: 187 193.
89. Russell, N. J. 2000. Cold shock and cold acclimation in cold-adapted bacteria. Mol. Integr. Physiol. 126: 130 134.
90. Sawicka, J. E.,, A. Robador,, C. Hubert,, B. B. Jorgensen,, and V. Bruchert. 2010. Effects of freeze-thaw cycles on anaerobic microbial processes in an Arctic intertidal mud flat. ISME J. 4: 585 594.
91. Schink, B.,, and A. J. M. Stams,. 2006. Syntrophism among prokaryotes, p. 309 335. In M. Dworkin,, S. Falkow,, E. Rosenberg,, K.-H. Schleifer,, and E. Stackebrandt (ed.), The Prokaryotes: a Handbook on the Biology of Bacteria , 3rd ed., vol. 2. Springer, New York, NY.
92. Schuur, E. A. G.,, J. Bockheim,, J. C. Canadell,, E. Euskirchen,, C. B. Field,, S. V. Goryachkin,, S. Hagemann,, P. Kuhry,, P. M. Lafleur,, H. Lee,, G. Mazhitova,, F. E. Nelson,, A. Rinke,, V. E. Romanovsky,, N. Shiklomanov,, C. Tarnocai,, S. Venevsky,, J. G. Vogel,, and S. A. Zimov. 2008. Vulnerability of permafrost carbon to climate change: implications for the global carbon cycle. BioScience 58: 701 714.
93. Shlimon, A. G.,, M. W. Friedrich,, H. Niemann,, N. B. Ramsing,, and K. Finster. 2004. Methanobacterium aarhusense sp. nov., a novel methanogen isolated from a marine sediment (Aarhus Bay, Denmark). Int. J. Syst. Evol. Microbiol. 54: 759 763.
94. Sjögersten, S.,, and P. A. Wookey. 2009. The impact of climate change on ecosystem carbon dynamics at the Scandinavian mountain birch forest-tundra heath ecotone. Ambio 38: 2 10.
95. Steven, B.,, G. Briggs,, C. P. McKay,, W. H. Pollard,, C. W. Greer,, and L. G. Whyte. 2007. Characterization of the microbial diversity in a permafrost sample from the Canadian high Arctic using culture-dependent and culture-independent methods. FEMS Microbiol. Ecol. 59: 513 523.
96. Steven, B.,, R. Léveillé,, W. H. Pollard,, and L. G. Whyte. 2006. Microbial ecology and biodiversity in permafrost. Extremophiles 10: 259 267.
97. Steven, B.,, W. H. Pollard,, C. W. Greer,, and L. G. Whyte. 2008. Microbial diversity and activity through a permafrost/ground ice core profile from the Canadian high Arctic. Environ. Microbiol. 10: 3388 3403.
98. Ström, L.,, and T. R. Christensen. 2007. Below ground carbon turnover and greenhouse gas exchanges in a sub-arctic wetland. Soil Biol. Biochem. 39: 1689 1698.
99. Tarnocai, C. 2006. The effect of climate change on carbon in Canadian peatlands. Glob. Planet. Change 53: 222 232.
100. Tarnocai, C.,, J. G. Canadell,, E. A. G. Schuur,, P. Kuhry,, G. Mazhitova,, and S. Zimov. 2009. Soil organic carbon pools in the northern circumpolar permafrost region. Glob. Biogeochem. Cycles 23: GB2023.
101. Trotsenko, Y. A.,, and V. N. Khmelenina. 2005. Aerobic methanotrophic bacteria of cold ecosystems. FEMS Microbiol. Ecol. 53: 15 26.
102. Trumbore, S. E.,, O. A. Chadwick,, and R. Amundson. 1996. Rapid exchange between soil carbon and atmospheric carbon dioxide driven by temperature change. Science 272: 393 396.
103. Vasilyeva, L. V.,, M. V. Omelchenko,, Y. Y. Berestovskaya,, A. M. Lysenko,, W. R. Abraham,, S. N. Dedysh,, and G. A. Zavarzin. 2006. Asticcacaulis benevestitus sp. nov., a psychrotolerant, dimorphic, prosthecate bacterium from tundra wetland soil. Int. J. Syst. Evol. Microbiol. 56: 2083 2088.
104. Vishnivetskaya, T.,, S. Kathariou,, J. McGrath,, D. Gilichinsky,, and J. M. Tiedje. 2000. Low-temperature recovery strategies for the isolation of bacteria from ancient permafrost sediments. Extremophiles 4: 165 173.
105. Vorobyova, E.,, V. Soina,, M. Gorlenko,, N. Minkovskaya,, N. Zalinova,, A. Mamukelashvili,, D. Gilichinsky,, E. Rivkina,, and T. Vishnivetskaya. 1997. The deep cold biosphere: facts and hypothesis. FEMS Microbiol. Rev. 20: 277 290.
106. Wagner, D., 2008. Microbial communities and processes in Arctic permafrost environments, p. 133 154. In P. Dion, and C. S. Nautiyal (ed.) Microbiology of Extreme Soils . Springer, Berlin, Germany.
107. Wagner, D.,, A. Gattinger,, A. Embacher,, E. M. Pfeiffer,, M. Schloter,, and A. Lipski. 2007. Methanogenic activity and biomass in Holocene permafrost deposits of the Lena Delta, Siberian Arctic and its implication for the global methane budget. Glob. Change Biol. 13: 1089 1099.
108. Wagner, D.,, S. Kobabe,, and S. Liebner. 2009. Bacterial community structure and carbon turnover in permafrost-affected soils of the Lena Delta, northeastern Siberia. Can. J. Microbiol. 55: 73 83.
109. Wagner, D.,, S. Kobabe,, E. M. Pfeiffer,, and H.-W. Hubberten. 2003. Microbial controls on methane fluxes from a polygonal tundra of the Lena Delta, Siberia. Permafrost Periglacial Processes 14: 173 185.
110. Wagner, D.,, and S. Liebner,. 2009. Global warming and carbon dynamics in permafrost soils: methane production and oxidation, p. 219 236. In R. Margesin (ed.), Permafrost Soils . Springer, Berlin, Germany.
111. Wagner, D.,, A. Lipski,, A. Embacher,, and A. Gattinger. 2005. Methane fluxes in extreme permafrost habitats of the Lena Delta: effects of microbial community structure and organic matter quality. Environ. Microbiol. 7: 1582 1592.
112. Walker, M. D.,, C. H. Wahren,, R. D. Hollister,, G. H. Henry,, L. E. Ahlquist,, J. M. Alatalo,, M. S. Bret-Harte,, M. P. Calef,, T. V. Callaghan,, A. B. Carroll,, H. E. Epstein,, I. S. Jonsdottir,, J. A. Klein,, B. Magnusson,, U. Molau,, S. F. Oberbauer,, S. P. Rewa,, C. H. Robinson,, G. R. Shaver,, K. N. Suding,, C. C. Thompson,, A. Tolvanen,, O. Totland,, P. L. Turner,, C. E. Tweedie,, P. J. Webber,, and P. A. Wookey. 2006a. Plant community responses to experimental warming across the tundra biome. Proc. Natl. Acad. Sci. USA 103: 1342 1346.
113. Walker, V. K.,, G. R. Palmer,, and G. Voordouw. 2006b. Freeze-thaw tolerance and clues to the winter survival of a soil community. Appl. Environ. Microbiol. 72: 1784 1792.
114. Wartiainen, I.,, A. G. Hestnes,, I. R. McDonald,, and M. M. Svenning. 2006a. Methylobacter tundripaludum sp. nov., a novel methanotrophic bacterium from Arctic wetland soil, Svalbard, Norway (78° N). Int. J. Syst. Evol. Microbiol. 56: 109 113.
115. Wartiainen, I.,, A. G. Hestnes,, I. R. McDonald,, and M. M. Svenning. 2006b. Methylocystis rosea sp. nov., a novel methanotrophic bacterium from Arctic wetland soil, Svalbard, Norway (78° N). Int. J. Syst. Evol. Microbiol. 56: 541 547.
116. Wartiainen, I.,, A. G. Hestnes,, and M. M. Svenning. 2003. Methanotrophic diversity in high arctic wetlands on the islands of Svalbard (Norway)—denaturing gradient gel electrophoresis analysis of soil DNA and enrichment cultures. Can. J. Microbiol. 49: 602 612.
117. Whitman, W. B.,, D. C. Coleman,, and W. J. Wiebe. 1998. Prokaryotes: the unseen majority. Proc. Natl. Acad. Sci. USA 95: 6578 6583.
118. Wuebbles, J.,, and K. Hayhoe. 2002. Atmospheric methane and global change. Earth Sci. Rev. 57: 177 210.
119. Yergeau, E.,, H. Hogues,, L. G. Whyte,, and C. W. Greer. 2010. The functional potential of highArctic permafrost revealed by metagenomic sequencing, qPCR, and microarray analyses. ISME J. 4: 1206 1214.
120. Zak, D. R.,, and G. W. Kling. 2006. Microbial community composition and function across an arctic tundra landscape. Ecology 87: 1659 1670.
121. Zhang, T.,, R. G. Barry,, K. Knowles,, J. A. Heginbotton,, and J. Brown. 1999. Statistics and characteristics of permafrost and ground-ice distribution in the Northern Hemisphere. Polar Geogr. 23: 132 154.
122. Zhou, J.,, M. E. Davey,, J. B. Figueras,, E. Rivkina,, D. Gilichinsky,, and J. M. Tiedje. 1997. Phylogenetic diversity of a bacterial community determined from Siberian tundra soil DNA. Microbiology 143: 3913 3919.
123. Zimov, S. A.,, E. A. G. Schuur,, and F. S. Chapin III. 2006. Permafrost and the global carbon budget. Science 312: 1612 1613.

Tables

Generic image for table
TABLE 1

Taxonomy of all previously described methanogenic

The references cited in the table may be found in the (http://www.bacterio.cict.fr/index.html).

Citation: Vishnivetskaya T, Liebner S, Wilhelm R, Wagner D. 2012. Microbial Carbon Cycling in Permafrost, p 183-200. In Miller R, Whyte L (ed), Polar Microbiology: Life in a Deep Freeze. ASM Press, Washington, DC. doi: 10.1128/9781555817183.ch9
Generic image for table
TABLE 2

Taxonomy of methane-oxidizing

The references cited in the table may be found in the ( http://www.bacterio.cict.fr/index.html).

Citation: Vishnivetskaya T, Liebner S, Wilhelm R, Wagner D. 2012. Microbial Carbon Cycling in Permafrost, p 183-200. In Miller R, Whyte L (ed), Polar Microbiology: Life in a Deep Freeze. ASM Press, Washington, DC. doi: 10.1128/9781555817183.ch9

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error