Chapter 3 : Hyperthermophile-Metal Interactions in Hydrothermal Environments

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

Hyperthermophile-Metal Interactions in Hydrothermal Environments, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817190/9781555815363_Chap03-1.gif /docserver/preview/fulltext/10.1128/9781555817190/9781555815363_Chap03-2.gif


This chapter explores the metal chemistry of different types of marine hydrothermal environments, the metal requirements of hyperthermophiles, the nature and constraints of their interactions with metals, and the biogeochemical implications of hyperthermophile-metal interactions. Metalloenzymes form a major part of metalloproteomes and reflect the bioavailability of metals within a given environment that are (or were at some point during their evolution) the most accessible. Dissimilatory iron reduction has been studied extensively in just four groups of hyperthermophilic archaea and one hyperthermophilic bacterium. The reduction potential and pH of an environment also appear to affect the growth rates of hyperthermophiles on iron. It is clear that there is extensive interaction between metals and hyperthermophilic microbes from hydrothermal environments, and yet the study of the nature of these interactions is in its infancy. Dissimilatory metal reduction may be limited by the organism’s ability to transfer electrons from its cytoplasm to the typically insoluble metal acceptor. Therefore, it is necessary to determine the respiratory mechanisms and how they lead to energy conservation, especially because the physiological mechanisms for metal reduction in hyperthermophiles differ from those found in mesophilic bacteria based on the lack of polyheme c-type cytochromes, a periplasm, and an outer cell wall membrane. Further study of hyperthermophilemetal interactions in hydrothermal environments will create a new understanding of the basic principles that govern a broad array of metabolic processes and a significant portion of the Earth’s biosphere.

Citation: Holden J, Lal Menon A, Adams M. 2011. Hyperthermophile-Metal Interactions in Hydrothermal Environments, p 39-63. In Stolz J, Oremland R (ed), Microbial Metal and Metalloid Metabolism. ASM Press, Washington, DC. doi: 10.1128/9781555817190.ch3
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of FIGURE 1

Models for the mechanisms of dissimilatory iron reduction. 10.1128/9781555817190.ch3.f1

Citation: Holden J, Lal Menon A, Adams M. 2011. Hyperthermophile-Metal Interactions in Hydrothermal Environments, p 39-63. In Stolz J, Oremland R (ed), Microbial Metal and Metalloid Metabolism. ASM Press, Washington, DC. doi: 10.1128/9781555817190.ch3
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Afshar, S.,, E. Johnson,, S. de Vries, and, I. Schröder. 2001. Properties of a thermostable nitrate reductase from the hyperthermophilic archaeon Pyrobaculum aerophilum. J. Bacteriol. 183: 54915495.
2. Amend, J. P.,, and E. L. Shock. 2001. Energetics of overall metabolic reactions of thermophilic and hyperthermophilic Archaea and Bacteria. FEMS Microbiol. Rev. 25: 175243.
3. Amo, T.,, H. Atomi, and, T. Imanaka. 2002. Unique presence of a manganese catalase in a hyperthermophilic archaeon, Pyrobaculum calidifontis VA1. J. Bacteriol. 184: 33053312.
4. Amo, T.,, H. Atomi, and, T. Imanaka. 2003. Biochemical properties and regulated gene expression of the superoxide dismutase from the facultatively aerobic hyperthermophile Pyrobaculum calidifontis. J. Bacteriol. 185: 63406347.
5. Andreini, C.,, L. Banci,, I. Bertini,, S. Elmi, and, A. Rosato. 2007. Non-heme iron through the three domains of life. Proteins 67: 317324.
6. Andreini, C.,, I. Bertini,, G. Cavallaro,, G. L. Holliday, and, J. M. Thornton. 2008. Metal ions in biological catalysis: from enzyme databases to general principles. J. Biol. Inorg. Chem. 13: 12051218.
7. Andreini, C.,, I. Bertini, and, A. Rosato. 2009. Metalloproteomes: a bioinformatic approach. Acc. Chem. Res. 42: 14711479.
8. Banerjee, R.,, and S. W. Ragsdale. 2003. The many faces of vitamin B 12: catalysis by cobalamin-dependent enzymes. Annu. Rev. Biochem. 72: 209247.
9. Beh, M.,, G. Strauss,, R. Huber,, K. O. Stetter, and, G. Fuchs. 1993. Enzymes of the reductive citric acid cycle in the autotrophic eubacterium Aquifex pyrophilus and in the archaebacterium Thermoproteus neutrophilus. Arch. Microbiol. 160: 306311.
10. Beliaev, A. S.,, D. A. Saffarini,, J. L. McLaughlin, and, D. Hunnicutt. 2001. MtrC, and outer membrane decahaem c cytochrome required for metal reduction in Shewanella putrefaciens MR-1. Mol. Microbiol. 39: 722730.
11. Bell, S. D.,, S. S. Cairns,, R. L. Robson, and, S. P. Jackson. 1999. Transcriptional regulation of an archaeal operon in vivo and in vitro. Mol. Cell 4: 971982.
12. Bevers, L. E.,, P. L. Hagedoorn,, G. C. Krijger, and, W. R. Hagen. 2006. Tungsten transport protein A (WtpA) in Pyrococcus furiosus:the first member of a new class of tungstate and molybdate transporters. J. Bacteriol. 188: 64986505.
13. Bevers, L. E.,, P. L. Hagedoorn, and, W. R. Hagen. 2009. The bioinorganic chemistry of tungsten. Coordination Chem. Rev. 253: 269290.
14. Blamey, J. M.,, and M. W. W. Adams. 1993. Purification and characterization of pyruvate ferredoxin oxidoreductase from the hyperthermophilic archaeon Pyrococcus furiosus. Biochim. Biophys. Acta 1161: 1927.
15. Blöchl, E.,, R. Rachel,, S. Burggraf,, D. Hafenbradl,, H. W. Jannasch, and, K. O. Stetter. 1997. Pyrolobus fumarii, gen. and sp. nov., represents a novel group of archaea, extending the upper temperature limit for life to 113°C. Extremophiles 1: 1421.
16. Borths, E. L.,, K. P. Locher,, A. T. Lee, and, D. C. Rees. 2002. The structure of Escherichia coli BtuF and binding to its cognate ATP binding cassette transporter. Proc. Natl. Acad. Sci. USA 99: 1664216647.
17. Bryant, F. O.,, and M. W. W. Adams. 1989. Characterization of hydrogenase from the hyperthermophilic archaebacterium, Pyrococcus furiosus. J. Biol. Chem. 264: 50705079.
18. Butler, J. E.,, F. Kaufmann,, M. V. Coppi,, C. Núñez, and, D. R. Lovley. 2004. MacA, a diheme c-type cytochrome involved in Fe(III) reduction by Geobacter sulfurreducens. J. Bacteriol. 186: 40424045.
19. Butterfield, D. A.,, I. R. Jonasson,, G. J. Massoth,, R. A. Feely,, K. K. Roe,, R. E. Embley,, J. F. Holden,, R. E. McDuff,, M. D. Lilley, and, J. R. Delaney. 1997. Seafloor eruptions and evolution of hydrothermal fluid chemistry. Phil. Trans. R. Soc. Lond. A 355: 369386.
20. Butterfield, D. A.,, and G. J. Massoth. 1994. Geochemistry of north Cleft segment vent fluids: temporal changes in chlorinity and their possible relation to recent volcanism. J. Geophys. Res. 99: 49514968.
21. Butterfield, D. A.,, G. J. Massoth,, R. E. McDuff,, J. E. Lupton, and, M. D. Lilley. 1990. Geochemistry of hydrothermal fluids from Axial Sea-mount Hydrothermal Emissions Study vent field, Juan de Fuca Ridge: subseafloor boiling and subsequent fluid-rock interaction. J. Geophys. Res. 95: 1289512921.
22. Butterfield, D. A.,, R. E. McDuff,, M. J. Mottl,, M. D. Lilley,, J. E. Lupton, and, G. J. Massoth. 1994. Gradients in the composition of hydrothermal fluids from the Endeavour segment vent field: phase separation and brine loss. J. Geophys. Res. 99: 95619583.
23. Caldon, C. E.,, and P. E. March. 2003. Function of the universally conserved bacterial GTPases. Curr. Opin. Microbiol. 6: 135139.
24. Calugay, R. J.,, H. Miyashita,, Y. Okamura, and, T. Matsunaga. 2003. Siderophore production by the magnetic bacterium Magnetospirillum magneticum AMB-1. FEMS Microbiol. Lett. 218: 371375.
25. Cameron, V.,, D. Vance,, C. Archer, and, C. H. House. 2009. A biomarker based on the stable isotopes of nickel. Proc. Natl. Acad. Sci. USA 106: 1094410948.
26. Cartron, M. L.,, S. Maddocks,, P. Gillingham,, C. J. Craven, and, S. C. Andrews. 2006. Feo-transport of ferrous iron into bacteria. Biometals 19: 143157.
27. Chang, S. R.,, and J. L. Kirschvink. 1989. Magnetofossils, the magnetization of sediments, and the evolution of magnetite biomineralization. Ann. Rev. Earth Planet. Sci. 17: 169195.
28. Charlou, J. L.,, J. P. Donval,, Y. Fouquet,, P. Jean-Baptiste, and, N. Holm. 2002. Geochemistry of high H 2 and CH 4 vent fluids issuing from ultramafic rocks at the Rainbow hydrothermal field (36°14’N, MAR). Chem. Geol. 191: 345359.
29. Charlou, J. L.,, Y. Fouquet,, H. Bougault,, J. P. Donval,, J. Etoubleau,, P. Jean-Baptiste,, A. Dapoigny,, P. Appriou, and, P. A. Rona. 1998. Intense CH 4 plumes generated by serpentinization of ultramafic rocks at the intersection of the 15° 20’N fracture zone and the Mid-Atlantic Ridge. Geochim. Cosmochim. Acta 62: 23232333.
30. Childers, S. E.,, S. Ciufo, and, D. R. Lovley. 2002. Geobacter metallireducens accesses insoluble Fe(III) oxide by chemotaxis. Nature 416: 767769.
31. Childress, J. J.,, and C. R. Fisher. 1992. The biology of hydrothermal vent animals: physiology, biochemistry, and autotrophic symbioses. Oceanogr. Mar. Biol. Annu. Rev. 30: 337441.
32. Chiu, H. J.,, E. Johnson,, I. Schröder, and, D. C. Rees. 2001. Crystal structures of a novel ferric reductase from the hyperthermophilic archaeon Archaeoglobus fulgidus and its complex with NADP +. Structure 9: 311319.
33. Chivers, P. T.,, and T. H. Tahirov. 2005. Structure of Pyrococcus horikoshii NikR: nickel sensing and implications for the regulation of DNA recognition. J. Mol. Biol. 348: 597607.
34. Cozen, A. E.,, M. T. Weirauch,, K. S. Pollard,, D. L. Bernick,, J. M. Stuart, and, T. M. Lowe. 2009. Transcriptional map of respiratory versatility in the hyperthermophilic crenarchaeon Pyrobaculum aerophilum. J. Bacteriol. 191: 782794.
35. Crosby, H. A.,, E. E. Roden,, C. M. Johnson, and, B. L. Beard. 2007. The mechanisms of iron isotope fractionation produced during dissimilatory Fe(III) reduction by Shewanella putrefaciens and Geobacter sulfurreducens. Geobiology 5: 169189.
36. Dahl, C.,, N. M. Kredich,, R. Deutzmann, and, H. G. Trüper. 1993. Dissimilatory sulfite reductase from Archaeoglobus fulgidus: physicochemical properties of the enzyme and cloning, sequencing and analysis of the reductase genes. J. Gen. Microbiol. 139: 18171828.
37. de Vries, S.,, and I. Schröder. 2002. Comparison between the nitric oxide reductase family and its aerobic relatives, the cytochrome oxidases. Biochem. Soc. Trans. 30: 662667.
38. de Vries, S.,, M. J. F. Strampraad,, S. Lu,, P. Moënne-Loccoz, and, I. Schröder. 2003. Purification and characterization of the MQH 2: NO oxidoreductase from the hyperthermophilic archaeon Pyrobaculum aerophilum. J. Biol. Chem. 278: 3586135868.
39. Dirmeier, R.,, M. Keller,, G. Frey,, H. Huber, and, K. O. Stetter. 1998. Purification and properties of an extremely thermostable membrane-bound sulfur-reducing complex from the hyperthermophilic Pyrodictium abyssi. Eur. J. Biochem. 252: 486491.
40. Dosanjh, N. S.,, and S. L. J. Michel. 2006. Microbial nickel metalloregulation: NikRs for nickel ions. Curr. Opin. Chem. Biol. 10: 123130.
41. Douville, É.,, J.-L. Charlou,, J.-P. Donval,, D. Hureau, and, P. Appriou. 1999. As and Sb behavior in fluids from various deep-sea hydrothermal systems. Earth Planet. Sci. 328: 97104.
42. Douville, É.,, J. L. Charlou,, E. H. Oelkers,, P. Bienvenu,, C. F. Jove Colon,, J. P. Donval,, Y. Fouquet,, D. Prieur, and, P. Appriou. 2002. Trace metals in hot acidic fluids from a deep-sea hydrothermal system in an ultra-mafic environment: rainbow vent field (36°14’N MAR). Chem. Geol. 184: 3748.
43. Dupont, C. L.,, S. Yang,, B. Palenik, and, P. E. Bourne. 2006. Modern proteomes contain putative imprints of ancient shifts in trace metal geochemistry. Proc. Natl. Acad. Sci. USA 103: 1782217827.
44. Eitinger, T.,, J. Suhr,, J. Moore, and, J. A. C. Smith. 2005. Secondary transporters for nickel and cobalt ions: theme and variations. BioMetals 18: 399405.
45. Escalante-Semerena, J. C. 2007. Conversion of cobamide into adenosylcobamide in bacteria and archaea. J. Bacteriol. 189: 45554560.
46. Feinberg, L. F.,, and J. F. Holden. 2006. Characterization of dissimilatory Fe(III) versus NO 3 reduction in the hyperthermophilic archaeon Pyrobaculum aerophilum. J. Bacteriol. 188: 525531.
47. Feinberg, L. F.,, R. Srikanth,, R. W. Vachet, and, J. F. Holden. 2008. Constraints on anaerobic respiration in the hyperthermophilic archaea Pyrobaculum islandicum and Pyrobaculum aerophilum. Appl. Environ. Microbiol. 74: 396402.
48. Ferry, J. G. 1999. Enzymology of one-carbon metabolism in methanogenic pathways. FEMS Microbiol. Rev. 23: 1338.
49. Fontecilla-Camps, J. C.,, P. Amara,, C. Cavazza,, Y. Nicolet, and, A. Volbeda. 2009. Structure-function relationships of anaerobic gas-processing metalloenzymes. Nature 460: 814822.
50. Fouquet, Y.,, U. von Stackelberg,, J. L. Charlou,, J. P. Donval,, J. P. Foucher,, J. Erzinger,, P. Herzig,, R. Mühe,, M. Wiedicke,, S. Soakai, and, H. Whitechurch. 1991. Hydrothermal activity in the Lau back-arc basin: sulfides and water chemistry. Geology 19: 303306.
51. Gallant, R. M.,, and K. L. Von Damm. 2006. Geochemical controls on hydrothermal fluids from the Kairei and Edmond Vent Fields, 23°-25°S, Central Indian Ridge. Geochem. Geophys. Geosyst. 7: Q06018.
52. Gamo, T.,, H. Chiba,, T. Yamanaka,, T. Okudaira,, J. Hashimoto,, S. Tsuchida,, J. Ishibashi,, S. Kataoka,, U. Tsunogai,, K. Okamura,, Y. Sano, and, R. Shinjo. 2001. Chemical characteristics of newly discovered black smoker fluids and associated hydrothermal plumes at the Rodriquez Triple Junction, Central Indian Ridge. Earth Planet. Sci. Lett. 193: 371379.
53. Gamo, T.,, H. Masuda,, T. Yamanaka,, K. Okamura,, J. Ishibashi,, E. Nakayama,, H. Obata,, K. Shitashima,, Y. Nishio,, H. Hasumoto,, M. Watanabe,, K. Mitsuzawa,, N. Seama,, U. Tsunogai,, F. Kouzuma, and, Y. Sano. 2004. Discovery of a new hydrothermal venting site in the southernmost Mariana Arc: Al-rich hydrothermal plumes and white smoker activity associated with biogenic methane. Geochem. J. 38: 527534.
54. Gamo, T.,, K. Okamura,, J. L. Charlou,, T. Urabe,, J. M. Auzende,, J. Ishibashi,, K. Shitashima,, H. Chiba, and shipboard scientific party of the ManusFlux cruise. 1997. Acidic and sulfate-rich hydrothermal fluids from the Manus back-arc basin, Papua New Guinea. Geology 25: 139142.
55. Ghosh, M.,, A. M. Grunden,, D. M. Dunn,, R. Weiss, and, M. W. W. Adams. 1998. Characterization of native and recombinant forms of an unusual cobalt-dependent proline dipeptidase (prolidase) from the hyperthermophilic archaeon Pyrococcus furiosus. J. Bacteriol. 180: 47814789.
56. Gold, T. 1992. The deep, hot biosphere. Proc. Natl. Acad. Sci. USA 89: 60456049.
57. Golden, D. C.,, D. W. Ming,, R. V. Morris,, A. Brearley,, H. V. Lauer,, A. H. Treiman,, M. E. Zolensky,, C. S. Schwandt,, G. E. Lofgren, and, G. A. McKay. 2004. Evidence for exclusively inorganic formation of magnetite in Martian meteorite ALH84001. Amer. Mineral. 89: 681695.
58. Gong, W.,, B. Hao,, Z. Wei,, D. J. Ferguson,, T. Tallant,, J. A. Krzycki, and, M. K. Chan. 2008. Structure of the α 2ε 2 Ni-dependent CO dehydrogenase component of the Methanosarcina barkeri acetyl-CoA decarbonylase/synthase complex. Proc. Natl. Acad. Sci. USA 105: 95589563.
59. Gorby, Y. A.,, S. Yanina,, J. S. McLean,, K. M. Rosso,, D. Moyles,, A. Dohnalkova,, T. J. Beveridge,, I. S. Chang,, B. H. Kim,, K. S. Kim,, D. E. Culley,, S. B. Reed,, M. F. Romine,, D. A. Saffarini,, E. A. Hill,, L. Shi,, D. A. Elias,, D. W. Kennedy,, G. Pinchuk,, K. Watanabe,, S. Ishii,, B. Logan,, K. H. Nealson, and, J. K. Fredrickson. 2006. Electrically conductive bacterial nanowires produced by Shewanella oneidensis strain MR-1 and other microorganisms. Proc. Natl. Acad. Sci. USA 103: 1135811363.
60. Greenwood, N. N.,, and A. Earnshaw. 1984. Chemistry of the Elements, p. 1167–1168. Pergamon Press, Oxford, United Kingdom.
61. Hafenbradl, D.,, M. Keller,, R. Dirmeier,, R. Rachel,, P. Roßnagel,, S. Burggraf,, H. Huber, and, K. O. Stetter. 1996. Ferroglobus placidus gen. nov., sp. nov., a novel hyperthermophilic archaeum that oxidizes Fe 2+ at neutral pH under anoxic conditions. Arch. Microbiol. 166: 308314.
62. Hansel, C. M.,, S. G. Benner,, J. Neiss,, A. Dohnalkova,, R. K. Kukkadapu, and, S. Fendorf. 2003. Secondary mineralization pathways induced by dissimilatory iron reduction of ferrihydrite under advective flow. Geochim. Cosmochim. Acta 67: 29772992.
63. Hattori, M.,, Y. Jin,, H. Nishimasu,, Y. Tanaka,, M. Mochizuki,, T. Uchiumi,, R. Ishitani,, K. Ito, and, O. Nureki. 2009. Structural basis of novel interactions between the small-GTPase and GDI-like domains in prokaryotic FeoB iron transporter. Structure 17: 13451355.
64. Haymon, R. M. 1983. Growth history of hydrothermal black smoker chimneys. Nature 301: 695698.
65. Heider, J.,, X. Mai, and, M. W. W. Adams. 1996. Characterization of 2-ketoisovalerate ferredoxin oxidoreductase, a new and reversible coenzyme A-dependent enzyme involved in peptide fermentation by hyperthermophilic archaea. J. Bacteriol. 178: 780787.
66. Henninger, T.,, S. Anemüller,, S. Fitz-Gibbon,, J. H. Miller,, G. Schäfer, and, C. L. Schmidt. 1999. A novel Rieske iron-sulfur protein from the hyperthermophilic crenarchaeon Pyrobaculum aerophilum: sequencing of the gene, expression in E. coli and characterization of the protein. J. Bioenerg. Biomembr. 31: 119128.
67. Hernandez, M. E.,, A. Kappler, and, D. K. Newman. 2004. Phenazines and other redox-active antibiotics promote microbial mineral reduction. Appl. Environ. Microbiol. 70: 921928.
68. Hernandez, M. E.,, and D. K. Newman. 2001. Extracellular electron transfer. Cell. Mol. Life Sci. 58: 15621571.
69. Hille, R. 2002. Molybdenum and tungsten in biology. Trends Biochem. Sci. 27: 360367.
70. Holden, J. F. 2009. Extremophiles: hot environments, p. 127–146. In M. Schaechter (ed.), Encyclopedia of Microbiology. Elsevier Press, Oxford, United Kingdom.
71. Hollenstein, K.,, M. Comellas-Bigler,, L. E. Bevers,, M. C. Feiters,, W. Meyer-Klaucke,, P. L. Hagedoorn, and, K. P. Locher. 2009. Distorted octahedral coordination of tungstate in a subfamily of specific binding proteins. J. Biol. Inorg. Chem. 14: 663672.
72. Huang, S.,, G. Romanchuk,, K. Pattridge,, S. A. Lesley,, I. A. Wilson,, R. G. Matthews, and, M. Ludwig. 2007. Reactivation of methionine synthase from Thermotoga maritima (TM0268) requires the downstream gene product TM0269. Protein Sci. 16: 15881595.
73. Huber, H.,, M. Gallenberger,, U. Jahn,, E. Eylert,, I. A. Berg,, D. Kockelkorn,, W. Eisenreich, and, G. Fuchs. 2008. A dicarboxylate/4-hydroxybutyrate autotrophic carbon assimilation cycle in the hyperthermophilic Archaeum Ignicoccus hospitalis. Proc. Natl. Acad. Sci. USA 105: 78517856.
74. Huber, J. A.,, and J. F. Holden. 2008. Modeling the impact of diffuse vent microorganisms along mid-ocean ridges and flanks, p. 215–231. In R. P. Lowell,, J. S. Seewald,, A. Metaxas, and, M. R. Perfit (ed.), Magma to Microbe: Modeling Hydrothermal Processes at Ocean Spreading Centers. Geophysical Monograph 178. AGU Press, Washington, DC.
75. Johnson, C. M.,, B. L. Beard, and, E. E. Roden. 2008. The iron isotope fingerprints of redox and biogeochemical cycling in modern and ancient Earth. Annu. Rev. Earth Planet. Sci. 36: 457493.
76. Johnson, C. M.,, E. E. Roden,, S. A. Welch, and, B. L. Beard. 2005. Experimental constraints on Fe isotope fractionation during magnetite and Fe carbonate formation coupled to dissimilatory hydrous ferric oxide reduction. Geochim. Cosmochim. Acta 69: 963993.
77. Johnson, M. K.,, D. C. Rees, and, M. W. W. Adams. 1996. Tungstoenzymes. Chem. Rev. 96: 28172840.
78. Kashefi, K.,, D. E. Holmes,, A.-L. Reysenbach, and, D. R. Lovley. 2002a. Use of Fe(III) as an electron acceptor to recover previously uncultured hyperthermophiles: isolation and characterization of Geothermobacterium ferrireducens gen. nov., sp. nov. Appl. Environ. Microbiol. 68: 17351742.
79. Kashefi, K.,, and D. R. Lovley. 2000. Reduction of Fe(III), Mn(IV), and toxic metals at 100°C by Pyrobaculum islandicum. Appl. Environ. Microbiol. 66: 10501056.
80. Kashefi, K.,, and D. R. Lovley. 2003. Extending the upper temperature limit for life. Science 301: 934.
81. Kashefi, K.,, B. M. Moskowitz, and, D. R. Lovley. 2008. Characterization of extracellular minerals produced during dissimilatory Fe(III) and U(VI) reduction at 100°C by Pyrobaculum islandicum. Geobiology 6: 147154.
82. Kashefi, K.,, J. M. Tor,, D. E. Holmes,, C. V. Gaw Van Praagh,, A.-L. Reysenbach, and, D. R. Lovley. 2002b. Geoglobus ahangari gen. nov., sp. nov., a novel hyperthermophilic archaeon capable of oxidizing organic acids and growing autotrophically on hydrogen with Fe(III) serving as the sole electron acceptor. Int. J. Syst. Evol. Microbiol. 52: 719728.
83. Kengen, S. W. M.,, P. J. H. Daas,, E. F. G. Duits,, J. T. Keltjens,, C. Vanderdrift, and, G. D. Vogels. 1992. Isolation of a 5-hydroxybenzimidazolyl cobamide-containing enzyme involved in the methyltetrahydromethanopterin-coenzyme M methyltransferase reaction in Methanobacterium thermoautotrophicum. Biochim. Biophys. Acta 1118: 249260.
84. Kengen, S. W. M.,, F. A. M. de Bok,, N. D. Vanloo,, C. Dijkema,, A. J. M. Stams, and, W. M. de Vos. 1994. Evidence for the operation of a novel Embden-Meyerhof pathway that involves ADP-dependent kinases during sugar fermentation by Pyrococcus furiosus. J. Biol. Chem. 269: 1753717541.
85. Kirschvink, J. L. 1982. Paleomagnetic evidence for fossil biogenic magnetite in western Crete. Earth Planet. Sci. Lett. 59: 388392.
86. Kishida, K.,, Y. Sohrin,, K. Okamura, and, J. Ishibachi. 2004. Tungsten enriched in submarine hydrothermal fluids. Earth Planet. Sci. Lett. 222: 819827.
87. Klenk, H.-P.,, R. A. Clayton,, J.-F. Tomb,, O. White,, K. E. Nelson,, K. A. Ketchum,, R. J. Dodson,, M. Gwinn,, E. K. Hickey,, J. D. Peterson,, D. L. Richardson,, A. R. Kerlavage,, D. E. Graham,, N. C. Kyrpides,, R. D. Fleischmann,, J. Quackenbush,, N. H. Lee,, G. G. Sutton,, S. Gill,, E. F. Kirkness,, B. A. Dougherty,, K. McKenney,, M. D. Adams,, B. Loftus,, S. Peterson,, C. I. Reich,, L. K. McNeil,, J. H. Badger,, A. Glodek,, L. Zhou,, R. Overbeek,, J. D. Gocayne,, J. F. Weidman,, L. McDonald,, T. Utterback,, M. D. Cotton,, T. Spriggs,, P. Artiach,, B. P. Kaine,, S. M. Sykes,, P. W. Sadow,, K. P. D’Andrea,, C. Bowman,, C. Fujii,, S. A. Garland,, T. M. Mason,, G. J. Olsen,, C. M. Fraser,, H. O. Smith,, C. R. Woese, and, J. C. Venter. 1997. The complete genome sequence of the hyperthermophilic, sulphate-reducing archaeon Archaeoglobus fulgidus. Nature 390: 364370.
88. Köster, S.,, M. Wehner,, C. Herrmann,, W. Kühl-brandt, and, O. Yildiz. 2009. Structure and function of the FeoB G-domain from Methanococcus jannaschii. J. Mol. Biol. 392: 405419.
89. Kristall, B.,, D. S. Kelley,, M. D. Hannington, and, J. R. Delaney. 2006. Growth history of a diffusely venting sulfide structure from the Juan de Fuca Ridge: a petrological and geochemical study. Geochem. Geophys. Geosyst. 7: Q07001.
90. Leang, C.,, M. V. Coppi, and, D. R. Lovley. 2003. OmcB, a c-type polyheme cytochrome, involved in Fe(III) reduction in Geobacter sulfurreducens. J. Bacteriol. 185: 20962103.
91. Lies, D. P.,, M. E. Hernandez,, A. Kappler,, R. E. Mielke,, J. A. Gralnick, and, D. K. Newman. 2005. Shewanella oneidensis MR-1 uses overlapping pathways for iron reduction at a distance and by direct contact under conditions relevant for biofilms. Appl. Environ. Microbiol. 71: 44144426.
92. Lilley, M. D.,, D. A. Butterfield,, E. J. Olson,, J. E. Lupton,, S. A. Macko, and, R. E. McDuff. 1993. Anomalous CH 4 and NH 4 + concentrations at an unsedimented mid-ocean-ridge hydrothermal system. Nature 364: 4547.
93. Lloyd, J. R.,, C. Leang,, A. L. Hodges-Myersen,, M. V. Coppi,, S. Cuifo,, B. Methé,, S. J. Sandler, and, D. R. Lovley. 2003. Biochemical and genetic characterization of PpcA, a periplasmic c-type cytochrome in Geobacter sulfurreducens. Biochem. J. 369: 153161
94. Louvel, H.,, T. Kanai,, H. Atomi, and, J. N. Reeve. 2009. The Fur iron regulator-like protein is cryptic in the hyperthermophilic archaeon Thermococcus kodakaraensis. FEMS Microbiol. Lett. 295: 117128.
95. Lovley, D. R. 1991. Dissimilatory Fe(III) and Mn(IV) reduction. Microbiol. Rev. 55: 259287.
96. Lovley, D. R.,, J. F. Stolz,, G. L. Nord, Jr., and, E. J. P. Phillips. 1987. Anaerobic production of magnetite by a dissimilatory iron-reducing microorganism. Nature 330: 252254.
97. Ma, K.,, R. Weiss, and, M. W. W. Adams. 2000. Characterization of hydrogenase II from the hyperthermophilic archaeon Pyrococcus furiosus and assessment of its role in sulfur reduction. J. Bacteriol. 182: 18641871.
98. Mai, X.,, and M. W. W. Adams. 1994. Indolepyruvate ferredoxin oxidoreductase from the hyperthermophilic archaeon Pyrococcus furiosus. J. Biol. Chem. 269: 1672616732.
99. Mai, X.,, and M. W. W. Adams. 1996a. Purification and characterization of two reversible acyl-CoA synthetases (ADP-forming) from the hyperthermophilic archaeon Pyrococcus furiosus. J. Bacteriol. 178: 58975903.
100. Mai, X.,, and M. W. W. Adams. 1996b. Characterization of a fourth type of 2-keto acid-oxidizing enzyme from a hyperthermophilic archaeon: 2-ketoglutarate ferredoxin oxidoreductase from Thermococcus litoralis. J. Bacteriol. 178: 58905896.
101. Makdessi, K.,, J. R. Andreesen, and, A. Pich. 2001. Tungstate uptake by a highly specific ABC transporter in Eubacterium acidaminophilum. J. Biol. Chem. 276: 2455724564.
102. Makdessi, K.,, K. Fritsche,, A. Pich, and, J. R. Andreesen. 2004. Identification and characterization of the cytoplasmic tungstate/molybdate-binding protein (Mop) from Eubacterium acidaminophilum. Arch. Microbiol. 181: 4551.
103. Marguet, E.,, and P. Forterre. 1994. DNA stability at temperatures typical for hyperthermophiles. Nucleic Acids Res. 22: 16811686.
104. Marsili, E.,, D. B. Baron,, I. D. Shikhare,, D. Coursolle,, J. A. Gralnick, and, D. R. Bond. 2008. Shewanella secretes flavins that mediate extracellular electron transfer. Proc. Natl. Acad. Sci. USA 105: 39683973.
105. McCollom, T. M.,, and W. Bach. 2009. Thermodynamic constraints on hydrogen generation during serpentinization of ultramafic rocks. Geochim. Cosmochim. Acta 73: 856875.
106. McKay, D. S.,, E. K. Gibson,, K. L. Thomas-Keprta,, H. Vali,, C. S. Romanek,, S. J. Clemett,, X. D. F. Chillier,, C. R. Maechling, and, R. N. Zare. 1996. Search for past life on Mars: possible relic biogenic activity in Martian meteorite ALH84001. Science 273: 924930.
107. Metz, S.,, and J. H. Trefry. 2000. Chemical and mineralogical influences on concentrations of trace metals in hydrothermal fluids. Geochim. Cosmochim. Acta 64: 22672279.
108. Mukund, S.,, and M. W. W. Adams. 1991. The novel tungsten-iron-sulfur protein of the hyperthermophilic archaebacterium, Pyrococcus furiosus, is an aldehyde ferredoxin oxidoreductase: evidence for its participation in a unique glycolytic pathway. J. Biol. Chem. 266: 1420814216.
109. Mukund, S.,, and M. W. W. Adams. 1995. Glyceraldehyde-3-phosphate ferredoxin oxidoreductase, a novel tungsten-containing enzyme with a potential glycolytic role in the hyperthermophilic archaeon Pyrococcus furiosus. J. Biol. Chem. 270: 83898392.
110. Mukund, S.,, and M. W. W. Adams. 1996. Molybdenum and vanadium do not replace tungsten in the catalytically active forms of the three tungstoenzymes in the hyperthermophilic archaeon Pyrococcus furiosus. J. Bacteriol. 178: 163167.
111. Myers, C. R.,, and J. M. Myers. 1997. Cloning and sequencing of cymA, a gene encoding a tetraheme cytochrome c required for reduction of iron(III), fumarate, and nitrate by Shewanella putrefaciens strain MR-1. J. Bacteriol. 179: 11431152.
112. Myers, J. M.,, and C. R. Myers. 2000. Role of the tetraheme cytochrome CymA in anaerobic electron transport in cells of Shewanella putrefaciens MR-1 with normal levels of menaquinone. J. Bacteriol. 182: 6775.
113. Nakagawa, T.,, K. Takai,, Y. Suzuki,, H. Hirayama,, U. Konno,, U. Tsunogai, and, K. Horikoshi. 2006. Geomicrobiological exploration and characterization of a novel deep-sea hydrothermal system at the TOTO caldera in the Mariana Volcanic Arc. Environ. Microbiol. 8: 3749.
114. Nevin, K. P.,, and D. R. Lovley. 2000. Lack of production of electron-shuttling compounds or solubilization of Fe(III) during reduction of insoluble Fe(III) oxide by Geobacter metallireducens. Appl. Environ. Microbiol. 6: 22482251.
115. Nevin, K. P.,, and D. R. Lovley. 2002a. Mechanisms for accessing insoluble Fe(III) oxide during dissimilatory Fe(III) reduction by Geothrix fermentans. Appl. Environ. Microbiol. 68: 22942299.
116. Nevin, K. P.,, and D. R. Lovley. 2002b. Mechanisms for Fe(III) oxide reduction in sedimentary environments. Geomicrobiol. J. 19: 141159.
117. Ntarlagiannis, D.,, E. A. Atekwana,, E. A. Hill, and, Y. Gorby. 2007. Microbial nanowires: is the subsurface “hardwired”? Geophys. Res. Lett. 34: L17305.
118. Nunoura, T.,, Y. Sako,, T. Wakagi, and, A. Uchida. 2005. Cytochrome aa 3 in facultatively aerobic and hyperthermophilic archaeon Pyrobaculum oguniense. Can. J. Microbiol. 51: 621627.
119. Pitts, K. E.,, P. S. Dobbin,, F. Reyes-Ramirez,, A. J. Thomson,, D. J. Richardson, and, H. E. Seward. 2003. Characterization of the Shewanella oneidensis MR-1 decaheme cytochrome MtrA. J. Biol. Chem. 278: 2775827765.
120. Ragsdale, S. W. 2009. Nickel-based enzyme systems. J. Biol. Chem. 284: 1857118575.
121. Rech, S.,, C. Wolin, and, R. P. Gunsalus. 1996. Properties of the periplasmic ModA molybdate-binding protein of Escherichia coli. J. Biol. Chem. 271: 25572562.
122. Reguera, G.,, K. D. McCarthy,, T. Mehta,, J. S. Nicoll,, M. T. Tuominen, and, D. R. Lovley. 2005. Extracellular electron transfer via microbial nanowires. Nature 435: 10981101.
123. Reguera, G.,, K. P. Nevin,, J. S. Nicoll,, S. F. Covalla,, T. L. Woodard, and, D. R. Lovley. 2006. Biofilm and nanowire production leads to increased current in Geobacter sulfurreducens fuel cells. Appl. Environ. Microbiol. 72: 73457348.
124. Reguera, G.,, R. B. Pollina,, J. S. Nicoll, and, D. R. Lovley. 2007. Possible nonconductive role of Geobacter sulfurreducens pilus nanowires in biofilm formation. J. Bacteriol. 189: 21252127.
125. Riera, J.,, F. T. Robb,, R. Weiss, and, M. Fonte-cave. 1997. Ribonucleotide reductase in the archaeon Pyrococcus furiosus: a critical enzyme in the evolution of DNA genomes? Proc. Natl. Acad. Sci. USA 94: 7578.
126. Robb, F. T.,, J.-B. Park, and, M. W. W. Adams. 1992. Characterization of an extremely thermostable glutamate dehydrogenase: a key enzyme in the primary metabolism of the hyperthermophilic archaebacterium, Pyrococcus furiosus. Biochim. Biophys. Acta 1120: 267272.
127. Robb, F. T.,, D. L. Maeder,, J. R. Brown,, J. DiRuggiero,, M. D. Stump,, R. K. Yeh,, R. B. Weiss, and, D. M. Dunn. 2001. Genomic sequence of hyperthermophile, Pyrococcus furiosus: implications for physiology and enzymology. Methods Enzymol. 330: 134157.
128. Rodionov, D. A.,, P. Hebbeln,, A. Eudes,, J. ter Beek,, I. A. Rodionova,, G. B. Erkens,, D. J. Slotboom,, M. S. Gelfand,, A. L. Osterman,, A. D. Hanson, and, T. Eitinger. 2009. A novel class of modular transporters for vitamins in prokaryotes. J. Bacteriol. 191: 4251.
129. Rodionov, D. A.,, P. Hebbeln,, M. S. Gelfand, and, T. Eitinger. 2006. Comparative and functional genomic analysis of prokaryotic nickel and cobalt uptake transporters: evidence for a novel group of ATP-binding cassette transporters. J. Bacteriol. 188: 317327.
130. Rodionov, D. A.,, A. G. Vitreschak,, A. A. Mironov, and, M. S. Gelfand. 2003. Comparative genomics of the vitamin B12 metabolism and regulation in prokaryotes. J. Biol. Chem. 278: 4114841159.
131. Rospert, S.,, J. Breitung,, K. Ma,, B. Schworer,, C. Zirnbibl,, R. K. Thauer,, D. Linder,, R. Huber, and, K. O. Stetter. 1991. Methyl-coenzyme M reductase and other enzymes involved in methanogenesis from CO 2 and H 2 in the extreme thermophile Methanopyrus kandleri. Arch. Microbiol. 156: 4955.
132. Roy, R.,, S. Mukund,, G. J. Schut,, D. M. Dunn,, R. Weiss, and, M. W. W. Adams. 1999. Purification and molecular characterization of the tungsten-containing formaldehyde ferredoxin oxidoreductase from the hyperthermophilic archaeon Pyrococcus furiosus: the third of a putative five-member tungstoenzyme family. J. Bacteriol. 181: 11711180.
133. Sapra, R.,, K. Bagramyan, and, M. W. W. Adams. 2003. A simple energy-conserving system: proton reduction coupled to proton translocation. Proc. Natl. Acad. Sci. USA 100: 75457550.
134. Schiffer, A.,, K. Parey,, E. Warkentin,, K. Diederichs,, H. Huber,, K. O. Stetter,, P. M. H. Kroneck, and, U. Ermler. 2008. Structure of the dissimilatory sulfite reductase from the hyperthermophilic archaeon Archaeoglobus fulgidus. J. Mol. Biol. 379: 10631074.
135. Schmidt, K.,, A. Koschinsky,, D. Garbe-Schönberg,, L. M. de Carvalho, and, R. Seifert. 2007. Geochemistry of hydrothermal fluids from the ultramafic-hosted Logatchev hydrothermal field, 15°N on the Mid-Atlantic Ridge: temporal and spatial investigation. Chem. Geol. 242: 121.
136. Schreiter, E. R.,, M. D. Sintchak,, Y. Guo,, P. T. Chivers,, R. T. Sauer, and, C. L. Drennan. 2003. Crystal structure of the nickel-responsive transcription factor NikR. Nat. Struct. Biol. 10: 794799.
137. Schrenk, M. O.,, J. F. Holden, and, J. A. Baross. 2008. Magma-to-microbe networks in the context of sulfide hosted microbial ecosystems, p. 233–258. In R. P. Lowell,, J. S. Seewald,, A. Metaxas, and, M. R. Perfit (ed.), Magma to Microbe: Modeling Hydrothermal Processes at Ocean Spreading Centers. Geophysical Monograph 178. AGU Press, Washington, DC.
138. Schröder, I.,, E. Johnson, and, S. de Vries. 2003. Microbial ferric iron reductases. FEMS Microbiol. Rev. 27: 427447.
139. Schut, G. J.,, S. L. Bridger, and, M. W. W. Adams. 2007. Insights into the metabolism of elemental sulfur by the hyperthermophilic archaeon Pyrococcus furiosus: characterization of a coenzyme A-dependent NAD(P)H sulfur oxidoreductase. J. Bacteriol. 189: 44314441.
140. Schwarz, G.,, R. R. Mendel, and, M. W. Ribbe. 2009. Molybdenum cofactors, enzymes and pathways. Nature 460: 839847.
141. Schwertmann, U.,, and R. M. Cornell. 2000. Iron Oxides in the Laboratory: Preparation and Characterization, 2nd ed. Wiley-VCH Verlag, Weinheim, Germany.
142. Sevcenco, A. M.,, M. W. H. Pinkse,, E. Bol,, G. C. Krijger,, H. T. Wolterbeek,, P. D. E. M. Verhaert,, P. L. Hagedoorn, and, W. R. Hagen. 2009. The tungsten metallome of Pyrococcus furiosus. Metallomics 1: 395402.
143. Seyfried, W. E., Jr.,, and K. Ding. 1993. The effect of redox on the relative solubilities of copper and iron in Cl-bearing aqueous fluids at elevated temperatures and pressures: an experimental study with application to subseafloor hydrothermal systems. Geochim. Cosmochim. Acta 57: 19051917.
144. Seyfried, W. E., Jr.,, and K. Ding. 1995. Phase equilibria in subseafloor hydrothermal systems: a review of the role of redox, temperature, pH and dissolved Cl on the chemistry of hot springs at mid-ocean ridges, p. 248–272. In S. E. Humphris,, R. A. Zierenberg,, L. S. Mullineaux, and, R. E. Thomson (ed.), Seafloor Hydrothermal Systems: Physical, Chemical, Biological, and Geological Interactions. Geophysical Monograph 91. AGU Press, Washington, DC.
145. Speich, N.,, C. Dahl,, P. Heisig,, A. Klein,, F. Lottspeich,, K. O. Stetter, and, H. G. Trüper. 1994. Adenylsulfate reductase from the sulfate-reducing archaeon Archaeoglobus fulgidus: cloning and characterization of the genes and comparison of the enzyme with other iron-sulfur flavoproteins. Microbiology-UK 140: 12731284.
146. Sperling, D.,, U. Kappler,, A. Wynen,, C. Dahl, and, H. G. Trüper. 1998. Dissimilatory ATP sulfurylase from the hyperthermophilic sulfate reducer Archaeoglobus fulgidus belongs to the group of homo-oligomeric ATP sulfurylases. FEMS Microbiol. Lett. 162: 257264.
147. Steinberger, R. E.,, and P. A. Holden. 2005. Extracellular DNA in single-and multiple-species unsaturated biofilms. Appl. Environ. Microbiol. 71: 54045410.
148. Stetter, K. O. 1999. Extremophiles and their adaptation to hot environments. FEBS Lett. 452: 2225.
149. Straub, K. L.,, M. Benz, and, B. Schink. 2001. Iron metabolism in anoxic environments at near neutral pH. FEMS Microbiol. Ecol. 34: 181186.
150. Takai, K.,, T. Gamo,, U. Tsunogai,, N. Nakayama,, H. Hirayama,, K. H. Nealson, and, K. Horikoshi. 2004. Geochemical and microbiological evidence for a hydrogen-based, hyperthermophilic subsurface lithoautotrophic microbial ecosystem (HyperSLiME) beneath an active deep-sea hydrothermal field. Extremophiles 8: 269282.
151. Takai, K.,, T. Nunoura,, J. Ishibashi,, J. Lupton,, R. Suzuki,, H. Hamasaki,, Y. Ueno,, S. Kawagucci,, T. Gamo,, Y. Suzuki,, H. Hirayama, and, K. Horikoshi. 2008. Variability in the microbial communities and hydrothermal fluid chemistry at the newly discovered Mariner hydrothermal field, southern Lau Basin. J. Geophys. Res. 113: G02031.
152. Tao, X.,, N. Schiering,, H. Y. Zeng,, D. Ringe, and, J. R. Murphy. 1994. Iron, DtxR, and the regulation of diphtheria toxin expression. Mol. Microbiol. 14: 191197.
153. Theriot, C. M.,, S. R. Tove, and, A. M. Grunden. 2009. Characterization of two proline dipeptidases (prolidases) from the hyperthermophilic archaeon Pyrococcus horikoshii. Appl. Microbiol. Biotechnol. doi:10.1007/s00253-009-2235-x.
154. Thomas-Keprta, K. L.,, S. J. Clemett,, D. A. Bazylinski,, J. L. Kirschvink,, D. S. McKay,, S. J. Wentworth,, H. Vali,, E. K. Gibson, Jr.,, M. F. McKay, and, C. S. Romanek. 2001. Truncated hexa-octahedral magnetite crystals in ALH84001: presumptive biosignatures. Proc. Natl. Acad. Sci. USA 98: 21642169.
155. Tor, J. M.,, K. Kashefi, and, D. R. Lovley. 2001. Acetate oxidation coupled to Fe(III) reduction in hyperthermophilic microorganisms. Appl. Environ. Microbiol. 67: 13631365.
156. Tsunasawa, S.,, Y. Izu,, M. Miyagi, and, I. Kato. 1997. Methionine aminopeptidase from the hyperthermophilic archaeon Pyrococcus furiosus: molecular cloning and overexpression in Escherichia coli of the gene, and characteristics of the enzyme. J. Biochem. 122: 843850.
157. Turekian, K. K. 1968. Oceans. Prentice-Hall, Englewood
158. Cliffs, NJ. Vadas,, A., H. G. Monbouquette,, E. Johnson, and, I. Schröder. 1999. Identification and characterization of a novel ferric reductase from the hyperthermophilic archaeon Archaeoglobus fulgidus. J. Biol. Chem. 274: 3671536721.
159. Vali, H.,, B. Weiss,, Y.-L. Li,, S. K. Sears,, S. S. Kim,, J. L. Kirschvink, and, C. L. Zhang. 2004. Formation of tabular single-domain magnetite induced by Geobacter metallireducens GS-15. Proc. Natl. Acad. Sci. USA 101: 1612116126.
160. Vargas, M.,, K. Kashefi,, E. L. Blunt-Harris, and, D. R. Lovley. 1998. Microbiological evidence for Fe(III) reduction on early Earth. Nature 395: 6567.
161. Vartivarian, S. E.,, and R. E. Cowart. 1999. Extracellular iron reductases: identification of a new class of enzymes by siderophore-producing microorganisms. Arch. Biochem. Biophys. 364: 7582.
162. Ver Eecke, H. C.,, D. S. Kelley, and, J. F. Holden. 2009. Abundances of hyperthermophilic autotrophic Fe(III) oxide reducers and heterotrophs in hydrothermal sulfide chimneys of the northeastern Pacific Ocean. Appl. Environ. Microbiol. 75: 242245.
163. Vignais, P. M.,, B. Billoud, and, J. Meyer. 2001. Classification and phylogeny of hydrogenases. FEMS Microbiol. Rev. 25: 455501.
164. Völkl, P.,, R. Huber,, E. Drobner,, R. Rachel,, S. Burggraf,, A. Trincone, and, K. O. Stetter. 1993. Pyrobaculum aerophilum sp. nov., a novel nitrate-reducing hyperthermophilic archaeum. Appl. Environ. Microbiol. 59: 29182926.
165. von Canstein, H.,, J. Ogawa,, S. Shimizu, and, J. R. Lloyd. 2008. Secretion of flavins by Shewanella species and their role in extracellular electron transfer. Appl. Environ. Microbiol. 74: 615623.
166. Von Damm, K. L. 1995. Controls in the chemistry and temporal variability of seafloor hydrothermal fluids, p. 222-247. In S. E. Humphris,, R. A. Zierenberg,, L. S. Mullineaux, and, R. E. Thomson (ed.), Seafloor Hydrothermal Systems: Physical, Chemical, Biological, and Geological Interactions. Geophysical Monograph 91. American Geophysical Union, Washington, DC.
167. Vorholt, J.,, J. Kunow,, K. O. Stetter, and, R. K. Thauer. 1995. Enzymes and coenzymes of the carbon monoxide dehydrogenase pathway for autotrophic CO 2 fixation in Archaeoglobus lithotrophicus and the lack of carbon monoxide dehydrogenase in the heterotrophic A. profundus. Arch. Microbiol. 163: 112118.
168. Vorholt, J. A.,, D. Hafenbradl,, K. O. Stetter, and, R. K. Thauer. 1997a. Pathways of autotrophic CO 2 fixation and of dissimilatory nitrate reduction to N 2O in Ferroglobus placidus. Arch. Microbiol. 167: 1923.
169. Vorholt, J. A.,, M. Vaupel, and, R. K. Thauer. 1997b. A selenium-dependent and a selenium-independent formylmethanofuran dehydrogenase and their transcriptional regulation in the hyperthermophilic Methanopyrus kandleri. Mol. Microbiol. 23: 10331042.
170. Waldron, K. J.,, J. C. Rutherford,, D. Ford, and, N. J. Robinson. 2009. Metalloproteins and metal sensing. Nature 460: 823830.
171. Wang, Y.,, and D. K. Newman. 2008. Redox reactions of phenazine antibiotics with ferric (hydr)oxides and molecular oxygen. Environ. Sci. Technol. 42: 23802386.
172. Whitchurch, C. B.,, T. Tolker-Nielsen,, P. C. Ragas, and, J. S. Mattick. 2002. Extracellular DNA required for bacterial biofilm formation. Science 295: 1487.
173. Whittaker, M. M.,, and J. W. Whittaker. 2000. Recombinant superoxide dismutase from a hyperthermophilic archaeon, Pyrobaculum aerophilum. J. Biol. Inorg. Chem. 5: 402408.
174. Zachara, J. M.,, R. K. Kukkadapu,, J. K. Fredrickson,, Y. A. Gorby, and, S. C. Smith. 2002. Biomineralization of poorly crystalline Fe(III) oxides by dissimilatory metal reducing bacteria (DMRB). Geomicrobiol. J. 19: 179207.
175. Zhang, Y.,, and V. N. Gladyshev. 2008. Molybdoproteomes and evolution of molybdenum utilization. J. Mol. Biol. 379: 881899.
176. Zhang, Y.,, D. A. Rodionov,, M. S. Gelfand, and, V. N. Gladyshev. 2009. Comparative genomic analyses of nickel, cobalt and vitamin B 12 utilization. BMC Genomics 10: 78103.
177. Zhu, X. K.,, Y. Guo,, R. J. P. Williams,, R. K. O’Nions,, A. Matthews,, N. S. Belshaw,, G. W. Canters,, E. C. de Waal,, U. Weser,, B. K. Burgess, and, B. Salvato. 2002. Mass fractionation processes of transition metal isotopes. Earth Planet. Sci. Lett. 200: 4762.


Generic image for table

Chemistry of hydrothermal fluids from various sites and host-rock environments

Citation: Holden J, Lal Menon A, Adams M. 2011. Hyperthermophile-Metal Interactions in Hydrothermal Environments, p 39-63. In Stolz J, Oremland R (ed), Microbial Metal and Metalloid Metabolism. ASM Press, Washington, DC. doi: 10.1128/9781555817190.ch3
Generic image for table

Genera of hyperthermophiles found in marine hydrothermal environments

Citation: Holden J, Lal Menon A, Adams M. 2011. Hyperthermophile-Metal Interactions in Hydrothermal Environments, p 39-63. In Stolz J, Oremland R (ed), Microbial Metal and Metalloid Metabolism. ASM Press, Washington, DC. doi: 10.1128/9781555817190.ch3
Generic image for table

Values of Δ° (kJ per mol H) for various chemolithoautotrophic reactions using 1 mol of H as the electron donor at 100°C and saturation pressures for HO (calculated from )

Citation: Holden J, Lal Menon A, Adams M. 2011. Hyperthermophile-Metal Interactions in Hydrothermal Environments, p 39-63. In Stolz J, Oremland R (ed), Microbial Metal and Metalloid Metabolism. ASM Press, Washington, DC. doi: 10.1128/9781555817190.ch3

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error