Chapter 6 : Mineralogical Controls on Microbial Reduction of Fe(III) (Hydr)oxides

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

Mineralogical Controls on Microbial Reduction of Fe(III) (Hydr)oxides, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817190/9781555815363_Chap06-1.gif /docserver/preview/fulltext/10.1128/9781555817190/9781555815363_Chap06-2.gif


This chapter discusses the current state of knowledge regarding the geochemical controls on the initial and sustained reduction of Fe(III) minerals. It introduces the major controlling factors for microbial Fe(III) reduction. Cultured model dissimilatory metalreducing bacteria (DMRB) show diminished abilities to reduce the more crystalline phases, only reducing a small fraction of the potentially available Fe(III). The chapter summarizes the current understanding of the geochemical and mineralogical constraints on microbial Fe(III) (hydr)oxides reduction with the realization that the field is far from a resolution or consensus on what factors ultimately control the transfer of electrons to Fe(III) mineral surfaces. Recent investigations have clearly illustrated differential expression of proteins involved in metal respiration in the common DMRB . More sophisticated techniques and experimental approaches, including surface-sensitive and time-resolved spectroscopy need to be used to accurately interrogate the molecular environment. The use of poised anodes as surrogate minerals holds promise in addressing the role of reduction potential in electron transfer processes. Ultimately, unraveling the enigma of the microbe- mineral interface will require a multidisciplinary approach requiring an appreciation of the physics and chemistry of mineral surfaces, the enzymatic and nonenzymatic pathways responsible for electron transfer, and the ecology of metal-reducing microbes within a complex mineral framework.

Citation: Hansel C, Lentini C. 2011. Mineralogical Controls on Microbial Reduction of Fe(III) (Hydr)oxides, p 93-115. In Stolz J, Oremland R (ed), Microbial Metal and Metalloid Metabolism. ASM Press, Washington, DC. doi: 10.1128/9781555817190.ch6
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of FIGURE 1

Structures of Fe(III) (hydr)oxides commonly used in microbial reduction experiments. (A) Goethite structure composed of octahedral double chains linked through corners. H atoms not shown. (B) Lepidocrocite structure composed of octahedral double chains in corrugated layers. The layers are cross-linked through edges. H atoms not shown. (C) Hematite structure composed of octahedra linked through edge- and corner-sharing as well as face-sharing along the axis. Unit cell outlined in dashed black line. 10.1128/9781555817190.ch6.f1

Citation: Hansel C, Lentini C. 2011. Mineralogical Controls on Microbial Reduction of Fe(III) (Hydr)oxides, p 93-115. In Stolz J, Oremland R (ed), Microbial Metal and Metalloid Metabolism. ASM Press, Washington, DC. doi: 10.1128/9781555817190.ch6
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2

Redox potentials of various Fe couples compared with other couples of relevance in groundwater and contaminated systems (modified from and ). A variety of U species are included to illustrate the role of complexation on reduction potential of soluble complexes. Temperature = 25°C, pH = 7, [Fe] = [Mn] = [NO ] = 10 μM, [U(VI)] = 50 μM, [Ca] = 5 mM, [HCO ] = 28.1 to 28.7 mM, [SO ] = 10 mM, [HS] = 1 μM, P = 1 atm. Fe(III) clay potentials presented for SWa-1 with [Na] = 100 μM and either m = 0.02 (E = 420 mV) or m = 0.70 (E = 110 mV) ( ). NTA, nitrilotriacetic acid. 10.1128/9781555817190.ch6.f2

Citation: Hansel C, Lentini C. 2011. Mineralogical Controls on Microbial Reduction of Fe(III) (Hydr)oxides, p 93-115. In Stolz J, Oremland R (ed), Microbial Metal and Metalloid Metabolism. ASM Press, Washington, DC. doi: 10.1128/9781555817190.ch6
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3

Surface area-normalized reduction rates (mol liter m min) for various Fe(III) (hydr)oxides by ( ). Hematite (H), goethite (G), lepidocrocite (L), feroxyhyte (Fh), akaganeite (Ak), Schwertmannite (S), and two-line ferrihydrite (Fer2) were formed using different synthesis procedures to generate phases varying in size, morphology, surface area, and crystallinity. Reprinted from with permission from Elsevier. 10.1128/9781555817190.ch6.f3

Citation: Hansel C, Lentini C. 2011. Mineralogical Controls on Microbial Reduction of Fe(III) (Hydr)oxides, p 93-115. In Stolz J, Oremland R (ed), Microbial Metal and Metalloid Metabolism. ASM Press, Washington, DC. doi: 10.1128/9781555817190.ch6
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 4

Relationship between the solubility product (K) of various Fe(III) (hydr)oxides and the maximum initial Fe(III) reduction rate per cell (ν) of strain 200R ( ). The solubility products were measured for each phase using a dialysis bag technique under acidic conditions (pH 1 to 2.5) at 25°C and defined as *K = · . Reprinted from with permission from Elsevier. 10.1128/9781555817190.ch6.f4

Citation: Hansel C, Lentini C. 2011. Mineralogical Controls on Microbial Reduction of Fe(III) (Hydr)oxides, p 93-115. In Stolz J, Oremland R (ed), Microbial Metal and Metalloid Metabolism. ASM Press, Washington, DC. doi: 10.1128/9781555817190.ch6
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 5

Mean force adhesion upon retraction of MR-1 embedded on cantilevers and Fe(III) oxide single crystal faces ( ). Pairwise comparisons between the means across the three cantilevers indicated significant differences between the two magnetite faces and between the magnetite and hematite faces. Figure reprinted from under the open access license agreement. 10.1128/9781555817190.ch6.f5

Citation: Hansel C, Lentini C. 2011. Mineralogical Controls on Microbial Reduction of Fe(III) (Hydr)oxides, p 93-115. In Stolz J, Oremland R (ed), Microbial Metal and Metalloid Metabolism. ASM Press, Washington, DC. doi: 10.1128/9781555817190.ch6
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 6

Maximum initial Fe(III) reduction rate (mmol liter day) as a function of Al substitution. Trend lines extended to project Fe(III) reduction rates at higher Al levels. Equivalent Fe(III) reduction trends and crossover point were obtained when Fe(III) (hydr)oxides were provided as a slurry or precipitated onto quartz sand. Modified from . 10.1128/9781555817190.ch6.f6

Citation: Hansel C, Lentini C. 2011. Mineralogical Controls on Microbial Reduction of Fe(III) (Hydr)oxides, p 93-115. In Stolz J, Oremland R (ed), Microbial Metal and Metalloid Metabolism. ASM Press, Washington, DC. doi: 10.1128/9781555817190.ch6
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Anderson, R. T.,, and D. R. Lovley. 2000. Anaerobic bioremediation of benzene under sulfate-reducing conditions in a petroleum-contaminated aquifer. Environ. Sci. Technol. 34: 22612266.
2. Arnseth, R. W.,, and R. S. Turner. 1988. Sequential extraction of iron, manganese, aluminum, and silicaon in soils from 2 contrasting watersheds. Soil Sci. Soc. Am. J. 52: 18011807.
3. Baes, C. F.,, and R. E. Mesmer. 1976. The Hydrolysis of Cations. Wiley, New York, NY.
4. Benner, S. G.,, C. M. Hansel,, B. W. Wielinga,, T. M. Barber, and, S. Fendorf. 2002. Reductive dissolution and biomineralization of iron hydroxide under dynamic flow conditions. Environ. Sci. Technol. 36: 17051711.
5. Bonneville, S.,, T. Behrends, and, P. Van Cappellen. 2009. Solubility and dissimilatory reduction kinetics of iron(III) oxyhydroxides: a linear free energy relationship. Geochim. Cosmochim. Acta 17: 52735282.
6. Bonneville, S.,, T. Behrends,, P. Van Cappellen,, C. Hyacinthe, and, W. F. M. Roling. 2006. Reduction of Fe(III) colloids by Shewanella putrefaciens: a kinetic model. Geochim. Cosmochim. Acta 70: 58425854.
7. Bonneville, S.,, P. Van Cappellen, and, T. Behrends. 2004. Microbial reduction of iron(III) oxyhydroxides: effects of mineral solubility and availability. Chem. Geol. 212: 255268.
8. Borch, T.,, Y. Masue,, R. K. Kukkadapu, and, S. Fendorf. 2006. Phosphate imposed limitations on biological reduction and alteration of ferrihydrite. Environ. Sci. Technol. 41: 166172.
9. Bose, S.,, M. F. Hochella, Jr.,, Y. A. Gorby,, D. W. Kennedy,, D. E. McCready,, A. S. Madden, and, B. H. Lower. 2009. Bioreduction of hematite nanoparticles by the dissimilatory iron reducing bacterium Shewanella oneidensis MR-1. Geochim. Cosmochim. Acta 73: 962976.
10. Bousserrhine, N.,, U. G. Gasser,, E. Jeanroy, and, J. Berthelin. 1998. Effect of aluminum substitution on ferri-reducing bacterial activity and dissolution of goethites. C. R. Acad. Sci. 326: 617624.
11. Bousserrhine, N.,, U. G. Gasser,, E. Jeanroy, and, J. Berthelin. 1999. Bacterial and chemical reductive dissolution of Mn-, Co-, Cr-, and Al-substituted goethites. Geomicrob. J. 16: 245258.
12. Bromfield, S. M. 1954a. The reduction of iron oxide by bacteria. J. Soil. Sci. 5: 129139.
13. Bromfield, S. M. 1954b. Reduction of ferric compounds by soil bacteria. J. Gen. Microbiol. 11: 16.
14. Brooks, S. C.,, J. K. Fredrickson,, S. L. Carroll,, D. W. Kennedy,, J. M. Zachara,, A. E. Plymale,, S. D. Kelly,, K. M. Kemner, and, S. Fendorf. 2003. Inhibition of bacterial U(VI) reduction by calcium. Environ. Sci. Technol. 37: 18501858.
15. Brown, G. E., Jr.,, V. E. Henrich,, W. H. Casey,, D. L. Clark,, C. Eggleston,, A. Felmy,, D. W. Goodman,, M. Gratzel,, G. Maciel,, M. I. McCarthy,, K. H. Nealson,, D. A. Sverjensky,, M. F. Toney, and, J. M. Zachara. 1999. Metal oxide surfaces and their interactions with aqueous solutions and microbial organisms. Chem. Rev. 99: 77174.
16. Busalmen, J. P.,, A. Esteve-Nunez, and, J. M. Feliu. 2008. Whole cell electrochemistry of electricity-producing microorganisms evidence an adaptation for optimal exocellular electron transport. Environ. Sci. Technol. 42: 24452450.
17. Caccavo, F., Jr.,, R. P. Blakemore, and, D. R. Lovley. 1992. A hydrogen-oxidizing, Fe(III)-reducing microorganism from the Great Bay Estuary, New Hampshire. Appl. Environ. Microbiol. 58: 32113216.
18. Chow, S. S.,, and M. Taillefert. 2009. Effect of arsenic concentration on microbial iron reduction and arsenic speciation in an iron-rich freshwater sediment. Geochim. Cosmochim. Acta 73: 60086021.
19. Coby, A. J.,, and F. W. Picardal. 2006. Influence of sediment components on the immobilization of Zn during microbial Fe-(hydr)oxide reduction. Environ. Sci. Technol. 40: 38133818.
20. Coker, V. S.,, A. G. Gault,, C. I. Pearce,, G. Van der Laan,, N. D. Telling,, J. M. Charnock,, D. A. Polya, and, J. R. Lloyd. 2006. XAS and XMCD evidence for species-dependent partitioning of arsenic during microbial reduction of ferrihydrite to magnetite. Environ. Sci. Technol. 40: 77457750.
21. Cooper, D. C.,, F. Picardal,, J. Rivera, and, C. Talbot. 2000. Zinc immobilization and magnetite formation via ferric oxide reduction by Shewanella putrefaciens 200. Environ. Sci. Technol. 34: 100106.
22. Cornell, R. M.,, W. Schneider, and, R. Giovanoli. 1991. Phase transformations in the ferrihydrite/cysteine system. Polyhedron 8: 28292834.
23. Cornell, R. M.,, and U. Schwertmann. 2003. The Iron Oxides: Structure, Properties, Reactions, Occurrence and Uses, 2nd ed. VCH, Weinheim, Germany.
24. Crowe, S. A.,, J. A. Roberts,, C. G. Weisener, and, D. A. Fowle. 2007. Alteration of iron-rich lacustrine sediments by dissimilatory iron-reducing bacteria. Geobiology 5: 6373.
25. Cummings, D. E.,, F. Caccavo, Jr.,, S. Fendorf, and, R. F. Rosenzweig. 1999. Arsenic mobilization by the dissimilatory Fe(III)-reducing bacterium Shewanella alga BrY. Environ. Sci. Technol. 33: 723729.
26. Cutting, R. S.,, V. S. Coker,, J. W. Fellowes,, J. R. Lloyd, and, D. J. Vaughan. 2009. Mineralogical and morphological constraints on the reduction of Fe(III) minerals by Geobacter sulfurreducens. Geochim. Cosmochim. Acta 73: 40044022.
27. Dale, J. R.,, R. Wade, Jr., and, T. J. DiChristina. 2007. A conserved histidine in cytochrome c maturation permease CcmB of Shewanella putrefaciens is required for anaerobic growth below a threshold standard redox potential. J. Bacteriol. 189: 10361043.
28. DiChristina, T. J.,, J. K. Fredrickson, and, J. M. Zachara. 2005. Enzymology of electron transport: energy generation with geochemical consequences. Rev. Mineral. Geochem. 59: 2752.
29. Ding, Y.-H. R.,, K. K. Hixson,, M. A. Aklujkar,, M. S. Lipton,, R. D. Smith,, D. R. Lovley, and, T. Mester. 2008. Proteome of Geobacter sulfurreducens grown with Fe(III) oxide or Fe(III) citrate as the electron acceptor. Biochim. Biophys. Acta 1784: 19351941.
30. Ding, Y.-H. R.,, K. K. Hixson,, C. S. Giometti,, A. Stanley,, A. Esteve-Nunez,, T. Khare,, S. L. Tollaksen,, W. Zhu,, J. N. Adkins,, M. S. Lipton,, R. D. Smith,, T. Mester, and, D. R. Lovley. 2006. The proteome of dissimilatory metal-reducing microorganism Geobacter sulfurreducens under various growth conditions. Biochim. Biophys. Acta 1764: 11981206.
31. Dobbin, P. S.,, J. P. Carter,, C. Garciasalamanca San Juan,, M. von Hobe,, A. K. Powell, and, D. J. Richardson. 1999. Dissimilatory Fe(III) reduction by Clostridium beijerinckii isolated from freshwater sediment using Fe(III) maltol enrichment. FEMS Microbiol. Lett. 176: 131138.
32. Eary, L. E.,, and D. Rai. 1989. Kinetics of chromate reduction by ferrous-ions derived from hematite and biotite at 25-degrees-C. Am. J. Sci. 289: 180213.
33. Ehrlich, H. L.,, and D. K. Newman. 2009. Geomicrobiology, 5th ed. CRC Press, Boca Raton, FL.
34. Ekstrom, E. B.,, D. R. Learman,, A. S. Madden, and, C. M. Hansel. 2010. Contrasting effects of Al substitution on microbial reduction of Fe(III) (hydr)oxides. Geochim. Cosmochim. Acta 74: 70867099.
35. El-Naggar, M. Y.,, Y. A. Gorby,, W. Xia, and, K. H. Nealson. 2008. The molecular density of states in bacterial nanowires. Biophys. J. 95: L10L12.
36. Favre, F.,, J. W. Stucki, and, P. Boivin. 2006. Redox properties of structural Fe in ferruginous smectite. A discussion of the standard potential and its environmental implications. Clays Clay Miner. 54: 466472.
37. Fendorf, S.,, B. W. Wielinga, and, C. M. Hansel. 2000. Chromium transformations in natural environments: the role of biological and abiological processes in chromium(VI) reduction. Int. Geol. 42: 691701.
38. Fennessey, C. M.,, M. E. Jones,, M. Taillefert, and, T. J. DiChristina. 2010. Siderophores are not involved in Fe(III) solubilization during anaerobic Fe(III) respiration by Shewanella oneidensis MR-1. Appl. Environ. Microbiol. 76: 24252432.
39. Fredrickson, J. K.,, R. K. Kukkadapu,, C. K. Liu, and, J. M. Zachara. 2003. Influence of electron donor/acceptor concentrations on hydrous ferric oxide (HFO) bioreduction. Biodegradation 14: 91103.
40. Fredrickson, J. K.,, J. M. Zachara,, D. W. Kennedy,, H. Dong,, T. C. Onstott,, N. W. Hinman, and, S.-M. Li. 1998. Biogenic iron mineralization accompanying the dissimilatory reduction of hydrous ferric oxide by a groundwater bacterium. Geochim. Cosmochim. Acta 62: 32393257.
41. Fredrickson, J. K.,, J. M. Zachara,, D. W. Kennedy,, M. C. Duff,, Y. A. Gorby,, S.-M. W. Li, and, K. M. Krupka. 2000. Reduction of U(VI) in goethite (a-FeOOH) suspension by a dissimilatory metal-reducing bacterium. Geochim. Cosmochim. Acta 64: 30853098.
42. Fredrickson, J. K.,, J. M. Zachara,, D. W. Kennedy,, R. Kukkadapu,, J. P. McKinley,, S. M. Heald,, C. Liu, and, A. E. Plymale. 2004. Reduction of TcO4-by sediment-associated biogenic Fe(II). Geochim. Cosmochim. Acta 68: 31713187.
43. Fredrickson, J. K.,, J. M. Zachara,, R. K. Kukkadapu,, Y. A. Gorby,, S. C. Smith, and, C. F. Brown. 2001. Biotransformation of Ni-substituted hydrous ferric oxide by an Fe(III)-reducing bacterium. Environ. Sci. Technol. 35: 703712.
44. Froelich, P. N.,, G. P. Klinkhammer,, M. L. Bender,, N. A. Luedtke,, G. R. Heath,, D. Cullen,, P. Dauphin,, D. Hammond,, B. Hartman, and, V. Maynard. 1979. Early oxidation of organic matter in pelagic sediments of the eastern equatorial Atlantic: suboxic diagenesis. Geochim. Cosmochim. Acta 43: 10751090.
45. Gorby, Y. A.,, S. Yanina,, J. S. McLean,, K. M. Rosso,, D. Moyles,, A. Dohnalkova,, T. J. Beveridge,, I. S. Chang,, B.-H. Kim,, K. S. Kim,, D. E. Culley,, S. B. Reed,, M. F. Romine,, D. Saffarini,, E. A. Hill,, L. Shi,, D. Elias,, D. W. Kennedy,, G. Pinchuk,, K. Watanabe,, S. I. Ishii,, B. Logan,, K. H. Nealson, and, J. K. Fredrickson. 2006. Electrically conductive bacterial nanowires produced by Shewanella oneidensis strain MR-1 and other microorganisms. Proc. Natl. Acad. Sci. USA 103: 1135811363.
46. Gralnick, J. A.,, and D. K. Newman. 2007. Extra-cellular respiration. Mol. Microbiol. 65: 111.
47. Grantham, M. C.,, P. M. Dove, and, T. J. DiChristina. 1997. Microbially catalyzed dissolution of iron and aluminum oxyhydroxide mineral surface coatings. Geochim. Cosmochim. Acta 61: 44674477.
48. Hansel, C. M.,, S. G. Benner, and, S. Fendorf. 2005. Competing Fe(II)-induced mineralization pathways of ferrihydrite. Environ. Sci. Technol. 39: 71477153.
49. Hansel, C. M.,, S. G. Benner,, J. Neiss,, A. Dohnalkova,, R. K. Kukkadapu, and, S. Fendorf. 2003a. Secondary mineralization pathways induced by dissimilatory iron reduction of ferrihydrite under advective flow. Geochim. Cosmochim. Acta 67: 29772992.
50. Hansel, C. M.,, S. G. Benner,, P. Nico, and, S. Fendorf. 2004. Structural constraints of ferric (hydr)oxides on dissimilatory iron reduction and the fate of Fe(II). Geochim. Cosmochim. Acta 68: 32173229.
51. Hansel, C. M.,, S. Fendorf,, P. M. Jardine, and, C. A. Francis. 2008. Changes in bacterial and archaeal community structure and functional diversity along a geochemically variable soil profile. Appl. Environ. Microbiol. 74: 16201633.
52. Hansel, C. M.,, B. W. Wielinga, and, S. Fendorf. 2003b. Structural and compositional evolution of Cr/Fe solids after indirect chromate reduction by dissimilatory iron-reducing bacteria. Geochim. Cosmochim. Acta 67: 401412.
53. Haveman, S. A.,, R. J. DiDonato,, L. Villanueva,, E. S. Shelobolina,, B. L. Postier,, B. Xu,, A. Liu, and, D. R. Lovley. 2008. Genome-wide gene expression patterns and growth requirements suggest that Pelobacter carbinolicus reduces Fe(III) indirectly via sulfide production. Appl. Environ. Microbiol. 74: 42774284.
54. Hernandez, M. E.,, and D. Newman. 2001. Extracellular electron transfer: review. Cell. Mol. Life Sci. 58: 15621571.
55. Hernandez, M. E.,, A. Kappler, and, D. K. Newman. 2004. Phenazines and other redox active antibiotics promote microbial mineral reduction. Appl. Environ. Microbiol. 70: 921928.
56. Hofstetter, T. B.,, C. G. Heijman,, S. B. Haderlein,, C. Holliger, and, R. P. Schwarzenbach. 1999. Complete reduction of TNT and other (poly)nitroaromatic compounds under iron-reducing subsurface conditions. Environ. Sci. Technol. 33: 14791487.
57. Holmes, D. E.,, R. A. O’Neil,, M. A. Chavan,, L. A. N’Guessan,, H. A. Vrionis,, L. A. Perpetua,, M. J. Larrahondo,, R. DiDonato,, A. Liu, and, D. R. Lovley. 2009. Transcriptome of Geobacter uraniireducens growing in uranium-contaminated subsurface sediments. ISME J. 3: 216230.
58. Hori, T.,, A. Muller,, Y. Igarashi,, R. Conrad, and, M. W. Friedrich. 2010. Identification of iron-reducing microorganisms in anoxic rice paddy soil by 13C-acetate probing. ISME J. 4: 267278.
59. Islam, F. S.,, R. L. Pederick,, A. G. Gault,, L. K. Adams,, D. A. Polya,, J. M. Charnock, and, J. R. Lloyd. 2005. Interactions between the Fe(III)-reducing bacterium Geobacter sulfurreducens and arsenate, and capture of the metalloid by biogenic Fe(II). Appl. Environ. Microbiol. 71: 86428648.
60. Jakobsen, R.,, and D. Postma. 1999. Redox zoning, rates of sulfate reduction and interactions with Fe-reduction and methanogenesis in a shallow sandy aquifer, Romo, Denmark. Geochim. Cosmochim. Acta 63: 137151.
61. Jang, J.-H.,, B. A. Dempsey,, G. L. Catchen, and, W. D. Burgos. 2003. Effects of Zn(II), Cu(II), Mn(II), Fe(II), NO 3 , or SO 4 2– at pH 6.5 and 8.5 on transformations of hydrous ferric oxide (HFO) as evidenced by Mossbauer spectroscopy. Colloids Surfaces A Physicochem. Eng. Aspects 221: 5568.
62. Jones, J.,, S. Gardener, and, B. M. Simon. 1984. Reduction of ferric iron by heterotrophic bacteria in lake sediments. J. Gen. Microbiol. 130: 4551.
63. Jones, M. E.,, C. M. Fennessey,, T. J. Dichristina, and, M. Taillefert. 2010. Shewanella oneidensis MR-1 mutants selected for their inability to produce soluble organic-Fe(III) complexes are unable to respire Fe(III) as an electron acceptor. Environ. Microbiol. 12: 938950.
64. Kappler, A.,, and K. L. Straub. 2005. Geomicrobiological cycling of iron. Rev. Mineral. Geochem. 59: 85108.
65. Kerisit, S.,, and K. M. Rosso. 2006. Computer simulation of electron transfer at hematite surfaces. Geochim. Cosmochim. Acta 70: 18881903.
66. Kocar, B. D.,, M. J. Herbel,, K. J. Tufano, and, S. Fendorf. 2006. Contrasting effects of dissimilatory iron(III) and arsenic(V) reduction on arsenic retention and transport. Environ. Sci. Technol. 40: 67156721.
67. Kostka, J. E.,, and K. H. Nealson. 1995. Dissolution and reduction of magnetite by bacteria. Environ. Sci. Technol. 29: 25352540.
68. Kostka, J. E.,, J. W. Stucki,, K. H. Nealson, and, J. Wu. 1996. Reduction of structural Fe(III) in smectite by a pure culture of Shewanella putrefaciens strain MR-1. Clays Clay Miner. 44: 522529.
69. Kostka, J. E.,, J. Wu,, K. H. Nealson, and, J. W. Stucki. 1999. The impact of structural Fe(III) reduction by bacteria on the surface chemistry of smectite clay minerals. Geochim. Cosmochim. Acta 63: 37053713.
70. Kukkadapu, R.,, J. M. Zachara,, J. K. Fredrickson, and, D. W. Kennedy. 2004. Biotransformation of two-line silica-ferrihydrite by a dissimilatory Fe(III)-reducing bacterium: formation of carbonate green rust in the presence of phosphate. Geochim. Cosmochim. Acta 68: 27992814.
71. Kukkadapu, R. K.,, J. M. Zachara,, S. C. Smith,, J. K. Fredrickson, and, C. Liu. 2001. Dissimilatory bacterial reduction of Al-substituted goethite in subsurface sediments. Geochim. Cosmochim. Acta 65: 29132924.
72. Landa, E. R.,, E. J. P. Phillips, and, D. R. Lovley. 1991. Release of Ra-226 from uranium mill tailings by microbial Fe(III) reduction. Appl. Geochem. 6: 647652.
73. Langmuir, D. 1969. The Gibbs free energies of substrates in the system Fe-O 2-H 2O-CO 2 at 25C, p. B180–B184. U.S. Geol. Surv. Prof. Paper 650-B. U.S. Geological Survey, Reston, VA.
74. Larese-Casanova, P.,, and M. M. Scherer. 2007. Fe(II) sorption on hematite: new insights based on spectroscopic measurements. Environ. Sci. Technol. 41: 471477.
75. Lehours, A.-C.,, I. Batisson,, A. Guedon,, G. Mailhot, and, G. Fonty. 2009. Diversity of culturable bacteria from the anaerobic zone of the meromictic Lake Pavin, able to perform dissimilatory-iron reduction in different in vitro conditions. Geomicrobiol. J. 26: 212223.
76. Lies, D. P.,, M. E. Hernandez,, A. Kappler,, R. E. Mielke,, J. A. Gralnick, and, D. K. Newman. 2005. Shewanella oneidensis MR-1 uses overlapping pathways for iron reduction at a distance and by direct contact under conditions relevant for biofilms. Appl. Environ. Microbiol. 71: 44144426.
77. Liger, E.,, L. Charlet, and, P. Van Cappellen. 1999. Surface catalysis of uranium(VI) reduction by iron(II). Geochim. Cosmochim. Acta 63: 29392955.
78. Lin, B.,, C. Hyacinthe,, S. Bonneville,, M. Braster,, P. Van Cappellen, and, W. F. M. Roling. 2007. Phylogenetic and physiological diversity of dissimilatory ferric iron reducers in sediments of the polluted Scheldt estuary, Northwest Europe. Environ. Microbiol. 9: 19561968.
79. Liu, C. X.,, S. Kota,, J. M. Zachara,, J. K. Fredrickson, and, C. K. Brinkman. 2001. Kinetic analysis of the bacterial reduction of goethite. Environ. Sci. Technol. 35: 24822490.
80. Lloyd, J. R.,, J. Chesnes,, S. Glasauer,, D. J. Bunker,, F. R. Livens, and, D. R. Lovley. 2002. Reduction of actinides and fission products by Fe(III)-reducing bacteria. Geomicrobiol. J. 19: 103120.
81. Lloyd, J. R.,, V. A. Sole,, C. V. G. Van Praagh, and, D. R. Lovley. 2000. Direct and Fe(II)-mediated reduction of technetium by Fe(III)-reducing bacteria. Appl. Environ. Microbiol. 66: 37433749.
82. Lovley, D. R. 1987. Organic matter mineralization with the reduction of ferric iron: a review. Geomicrobiol. J. 5: 375399.
83. Lovley, D. R. 1991. Dissimilatory Fe(III) and Mn(IV) reduction. Microbiol. Rev. 55: 259287.
84. Lovley, D. R. 2000. Fe(III)-and Mn(IV)-reducing prokaryotes. In M. Dworkin,, S. Falkow,, E. Rosenberg,, K. Schleifer, and, E. Stackebrandt (ed.), The Prokaryotes. Springer-Verlag, New York, NY.
85. Lovley, D. R. 2001. Anaerobes to the rescue. Science 293: 14441446.
86. Lovley, D. R.,, J. D. Coates,, E. L. Blunt-Harris,, E. J. P. Phillips, and, J. C. Woodward. 1996. Humic substances as electron acceptors for microbial respiration. Nature 382: 445448.
87. Lovley, D. R.,, D. E. Holmes, and, K. P. Nevin. 2004. Dissimilatory Fe(III) and Mn(IV) reduction. Adv. Microb. Physiol. 49: 219286.
88. Lovley, D. R.,, and E. J. P. Phillips. 1986. Availability of ferric iron for microbial reduction in bottom sediments of the freshwater tidal Potomac River. Appl. Environ. Microbiol. 52: 751757.
89. Lovley, D. R.,, and E. J. P. Phillips. 1988. Novel mode of microbial energy metabolism: organic carbon oxidation coupled to dissimilatory reduction of iron or manganese. Appl. Environ. Microbiol. 54: 14721480.
90. Lovley, D. R.,, E. J. P. Phillips,, Y. A. Gorby, and, E. R. Landa. 1991a. Microbial reduction of uranium. Nature 350: 413416.
91. Lovley, D. R.,, E. J. P. Phillips, and, D. J. Lonergan. 1991b. Enzymatic versus nonenzymatic mechanisms for Fe(III) reduction in aquatic sediments. Environ. Sci. Technol. 25: 10621067.
92. Lower, B. H.,, L. Shi,, R. Yongsunthon,, T. Droubay,, D. E. McCready, and, S. K. Lower. 2007. Specific bonds between iron oxide surface and outer membrane cytochromes MtrC and OmcA from Shewanella oneidensis MR-1. J. Bacteriol. 189: 49444952.
93. Lower, S. K.,, M. F. Hochella, and, T. J. Beveridge. 2001. Bacterial recognition of mineral surfaces: nanoscale interactions between Shewanella and alpha-FeOOH. Science 292: 13601363.
94. Manceau, A.,, and V. A. Drits. 1993. Local structure of ferrihydrite and feroxyhite by EXAFS spectroscopy. Clay Miner. 28: 165184.
95. Moon, J. W.,, Y. W. Roy,, L. W. Yeary,, R. J. Lauf,, C. J. Rawn,, L. J. Love, and, T. J. Phelps. 2007a. Microbial formation of lanthanide-substituted magnetites by Thermoanaerobacter sp. TOR-39. Extremophiles 11: 859867.
96. Moon, J. W.,, L. W. Yeary,, A. J. Rondinone,, C. J. Rawn,, M. J. Kirkham,, Y. Roh,, L. J. Love, and, T. J. Phelps. 2007b. Magnetic response of microbially synthesized transition metal-and lanthanide-substituted nano-sized magnetites. J. Magn. Mater. 313: 283292.
97. Myers, C. R.,, and K. H. Nealson. 1988. Bacterial manganese reduction and growth with manganese oxide as the sole electron acceptor. Science 240: 13191321.
98. Myers, J. M.,, and C. R. Myers. 1998. Isolation and sequence of omcA, a gene encoding a decaheme outer membrane cytochrome c of Shewanella putrefaciens MR-1, and detection of omcA homologs in other strains of S. putrefaciens. Biochim. Biophys. Acta 1373: 237251.
99. Myers, J. M.,, and C. R. Myers. 2001. Role of outer membrane cyctochromes OmcA and OmcB of Shewanella putrefaciens MR-1 in reduction of manganese dioxide. Appl. Environ. Microbiol. 67: 260269.
100. Neal, A. L.,, T. L. Bank,, M. F. Hochella, and, K. M. Rosso. 2005. Cell adhesion of Shewanella oneidensis to iron oxide minerals: effect of different single crystal faces. Geochem. Trans. 6: 7784.
101. Neal, A. L.,, K. M. Rosso,, G. G. Geesey,, Y. A. Gorby, and, B. J. Little. 2003. Surface structure effects on direct reduction of iron oxides by Shewanella oneidensis. Geochim. Cosmochim. Acta 67: 44894503.
102. Nealson, K. H.,, and D. Saffarini. 1994. Iron and manganese in anaerobic respiration: environmental significance, physiology, and regulation. Annu. Rev. Microbiol. 48: 311343.
103. Neiss, J.,, B. D. Stewart,, P. S. Nico, and, S. Fendorf. 2007. Speciation-dependent microbial reduction of uranium within iron-coated sands. Environ. Sci. Technol. 41: 73437348.
104. Nevin, K. P.,, and D. R. Lovley. 2000. Lack of production of electron-shuttling compounds or solubilization of Fe(III) during reduction of insoluble Fe(III) oxide by Geobacter metallireducens. Appl. Environ. Microbiol. 66: 22482251.
105. Nevin, K. P.,, and D. R. Lovley. 2002. Mechanisms of Fe(III) oxide reduction in sedimentary environments. Geomicrobiol. J. 19: 141159.
106. Nico, P. S.,, B. D. Stewart, and, S. Fendorf. 2009. Incorporation of oxidized uranium into Fe (hydr)oxides during Fe(II) catalyzed remineralization. Environ. Sci. Technol. 43: 73917396.
107. Parmar, N.,, Y. A. Gorby,, T. J. Beveridge, and, F. G. Ferris. 2001. Formation of green rust and immobilization of nickel in response to bacterial reduction of hydrous ferric oxide. Geomicrobiol. J. 18: 375385.
108. Pedersen, H. D.,, D. Postma, and, R. Jakobsen. 2006. Release of arsenic associated with the reduction and transformation of iron oxides. Geochim. Cosmochim. Acta 70: 41164129.
109. Petrie, L.,, N. N. North,, S. L. Dollhopf,, D. L. Balkwill, and, J. E. Kostka. 2003. Enumeration and characterization of iron(III)-reducing microbial communities from acidic subsurface sediments contaminated with uranium(VI). Appl. Environ. Microbiol. 69: 74677479.
110. Phillips, D. H.,, D. B. Watson, and, Y. Roh. 2007. Uranium deposition in a weathered fractured saprolite/shale. Environ. Sci. Technol. 41: 76537660.
111. Phillips, E. J. P.,, D. R. Lovley, and, E. E. Roden. 1993. Composition of non-microbially reducible Fe(III) in aquatic sediments. Appl. Environ. Microbiol. 59: 27272729.
112. Postma, D.,, and R. Jakobsen. 1996. Redox zonation: equilibrium constraints on the Fe(III)/SO 4 reduction interface. Geochim. Cosmochim. Acta 60: 31693175.
113. Reeburgh, W. S. 1983. Rates of biogeochemical processes in anoxic sediments. Annu. Rev. Earth Planet. Sci. 11: 269298.
114. Robertson, W. D. 2000. Treatment of wastewater phophate by reductive dissolution of iron. J. Environ. Qual. 29: 16781685.
115. Roden, E. E. 2003a. Diversion of electron flow from methanogenesis to crystalline Fe(III) oxide reduction in carbon-limited cultures of wetland sediment microorganisms. Appl. Environ. Microbiol. 69: 57025706.
116. Roden, E. E. 2003b. Fe(III) oxide reactivity toward biological versus chemical reduction. Environ. Sci. Technol. 37: 13191324.
117. Roden, E. E. 2006. Geochemical and microbiological controls on dissimilatory iron reduction. C. R. Geosci. 338: 456467.
118. Roden, E. E.,, and M. M. Urrutia. 2002. Influence of biogenic Fe(II) on bacterial crystalline Fe(III) oxide reduction. Geomicrobiol. J. 19: 209251.
119. Roden, E. E.,, M. M. Urrutia, and, C. J. Mann. 2000. Bacterial reductive dissolution of crystalline Fe(III) oxide in continuous-flow column reactors. Appl. Environ. Microbiol. 66: 10621065.
120. Roden, E. E.,, and R. G. Wetzel. 2002. Kinetics of microbial Fe(III) oxide reduction in freshwater wetland sediments. Limnol. Ocean. 41: 17331748.
121. Roden, E. E.,, and J. M. Zachara. 1996. Microbial reduction of crystalline iron(III) oxides: influence of oxide surface area and potential for cell growth. Environ. Sci. Technol. 30: 16181628.
122. Rosso, K. M.,, D. M. A. Smith, and, M. Dupuis. 2003a. An ab initio model of electron transport in hematite (alpha-Fe2O3) basal planes. J. Chem. Phys. 118: 64556466.
123. Rosso, K. M.,, J. M. Zachara,, J. K. Fredrickson,, Y. A. Gorby, and, S. C. Smith. 2003b. Nonlocal bacterial electron transfer to hematite surfaces. Geochim. Cosmochim. Acta 67: 10811087.
124. Saltikov, C. W.,, and D. K. Newman. 2003. Genetic identification of a respiratory arsenate reductase. Proc. Natl. Acad. Sci. USA 100: 1098310988.
125. Sass, B. M.,, and D. Rai. 1987. Solubility of amorphous chromium(III)-iron(III) hydroxide solid solutions. Inorg. Chem. 26: 22282232.
126. Schwertmann, U. 1984. The influence of aluminum on Fe oxides IX. Dissolution of Al-goethites in 6 M HCl. Clays Clay Miner. 19: 919.
127. Singh, B.,, and R. J. Gilkes. 1992. Properties and distribution of iron oxides and their association with minor elements in the soils of south-western Australia. J. Soil Sci. 43: 7798.
128. Starkey, R. L.,, and H. O. Halvorson. 1927. Studies on the transformations of iron in nature. II. Concerning the importance of microorganisms in the solution and precipitation of iron. Soil Sci. 24: 381402.
129. Stewart, B. D.,, P. S. Nico, and, S. Fendorf. 2009. Stability of uranium incorporated into Fe (Hydr)oxides under fluctuating redox conditions. Environ. Sci. Technol. 43: 49224927.
130. Straub, K. L.,, and B. Schink. 2004. Ferrihydrite-dependent growth of Sulfurospirillum deleyianum through electron transfer via sulfur cycling. Appl. Environ. Microbiol. 70: 57445749.
131. Stucki, J. W.,, K. Lee,, B. A. Goodman, and, J. E. Kostka. 2007. Effects of in situ biostimulation on iron mineral speciation in a subsurface soil. Geochim. Cosmochim. Acta 71: 835843.
132. Sturm, A.,, S. A. Crowe, and, D. A. Fowle. 2008. Trace lead impacts biomineralization pathways during bacterial iron reduction. Chem. Geol. 249: 282293.
133. Taillefert, M.,, J. S. Beckler,, E. Carey,, J. L. Burns,, C. M. Fennessey, and, T. J. DiChristina. 2007. Shewanella putrefaciens produces an Fe(III)-solubilizing organic ligand during anaerobic respiration on insoluble Fe(III) oxides. J. Inorg. Biochem. 101: 17601767.
134. Thamdrup, B. 2000. Bacterial manganese and iron reduction in aquatic sediments, p. 41–84. Advances in Microbial Ecology, vol. 16. Kluwer Academic/Plenum Publishing, New York, NY.
135. Thamdrup, B.,, R. Rossello-Mora, and, R. Amann. 2000. Microbial manganese and sulfate reduction in Black Sea shelf sediments. Appl. Environ. Microbiol. 66: 28882897.
136. Torrent, J.,, U. Schwertmann, and, V. Barron. 1987. The reductive dissolution of synthetic goethite and hematite in dithionite. Clays Clay Miner. 22: 329337.
137. Trolard, F.,, G. Bourrie,, E. Jeanroy,, A. J. Herbillon, and, H. Martin. 1995. Trace elements in natural iron oxides from laterites: a study using selective kinetic extraction. Geochim. Cosmochim. Acta 59: 12851297.
138. Tufano, K. J.,, and S. Fendorf. 2008. Confounding impacts of iron reduction on arsenic retention. Environ. Sci. Technol. 42: 47774783.
139. Tufano, K. J.,, C. Reyes,, C. W. Saltikov, and, S. Fendorf. 2008. Reductive processes controlling arsenic retention: revealing the relative importance of iron and arsenic reduction. Environ. Sci. Technol. 42: 82838289.
140. Urrutia, M. M.,, E. E. Roden, and, J. M. Zachara. 1999. Influence of aqueous and solid-phase Fe(II) complexants on microbial reduction of crystalline iron(III) oxides. Environ. Sci. Technol. 33: 40224028.
141. Vorhies, J. S.,, and R. R. Gaines. 2009. Microbial dissolution of clay minerals as a source of iron and silica in marine sediments. Nat. Geosci. 2: 221225.
142. Waychunas, G. A.,, C. S. Kim, and, J. F. Banfield. 2005. Nanoparticulate oxide minerals in soils and sediments: unique properties and contaminant scavenging mechanisms. J. Nanoparticle Res. 7: 409433.
143. Weber, K. A.,, L. A. Achenbach, and, J. D. Coates. 2006. Microorganisms pumping iron: anaerobic microbial iron oxidation and reduction. Nature 4: 752764.
144. White, H. K.,, C. E. Reimers,, E. E. Cordes,, G. Dilly, and, P. R. Girguis. 2009. Quantitative population dynamics of microbial communities in plankton-fed microbial fuel cells. ISME J. 3: 635646.
145. Wielinga, B.,, M. M. Mizuba,, C. M. Hansel, and, S. Fendorf. 2001. Iron promoted reduction of chromate by dissimilatory iron-reducing bacteria. Environ. Sci. Technol. 35: 522527.
146. Wigginton, N. S.,, K. M. Rosso,, and M. F. Hochella, Jr. 2007. Mechanisms of electron transfer in two decaheme cytochromes from a metal-reducing bacterium. J. Phys. Chem B 111: 1285712864.
147. Williams, A. G. B.,, and M. M. Scherer. 2004. Spectroscopic evidence for Fe(II)-Fe(III) electron transfer at the iron oxide-water interface. Environ. Sci. Technol. 38: 47824790.
148. Xiong, Y.,, L. Shi,, B. Chen,, M. U. Mayer,, B. H. Lower,, Y. Londer,, S. Bose,, M. F. Hochella, Jr.,, J. K. Fredrickson, and, T. C. Squier. 2006. High-affinity binding and direct electron transfer to solid metals by the Shewanella oneidensis MR-1 outer membrane c-type cytochrome OmcA. J. Am. Chem. Soc. 128: 1397813979.
149. Yan, B. Z.,, B. A. Wrenn,, S. Basak,, P. Biswas, and, D. E. Giammar. 2008. Microbial reduction of Fe(III) in hematite nanoparticles by Geobacter sulfurreducens. Environ. Sci. Technol. 42: 65266531.
150. Zachara, J. M.,, J. K. Fredrickson,, S.-M. Li,, D. W. Kennedy,, S. C. Smith, and, P. L. Gassman. 1998. Bacterial reduction of crystalline Fe 3+ oxides in single phase suspensions and subsurface materials. Am. Miner. 83: 14261443.
151. Zachara, J. M.,, J. K. Fredrickson,, S. C. Smith, and, P. L. Gassman. 2001. Solubilization of Fe(III) oxide-bound trace metals by a dissimilatory Fe(III) reducing bacterium. Geochim. Cosmochim. Acta 65: 7593.
152. Zachara, J. M.,, R. K. Kukkadapu,, J. K. Fredrickson,, Y. A. Gorby, and, S. C. Smith. 2002. Biomineralization of poorly crystalline Fe(III) oxides by dissimilatory metal reducing bacteria (DMRB). Geomicrobiol. J. 19: 179207.


Generic image for table

Physicochemical properties of Fe(III) (hydr)oxides commonly used in bioreduction experiments

Citation: Hansel C, Lentini C. 2011. Mineralogical Controls on Microbial Reduction of Fe(III) (Hydr)oxides, p 93-115. In Stolz J, Oremland R (ed), Microbial Metal and Metalloid Metabolism. ASM Press, Washington, DC. doi: 10.1128/9781555817190.ch6

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error