Chapter 11 : Regulation of Arsenic Metabolic Pathways in Prokaryotes

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

Regulation of Arsenic Metabolic Pathways in Prokaryotes, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817190/9781555815363_Chap11-1.gif /docserver/preview/fulltext/10.1128/9781555817190/9781555815363_Chap11-2.gif


Despite the toxicity of arsenic to most organisms, certain prokaryotes have the ability to grow on arsenic oxyanions by using them as alternative electron acceptors or electron donors. The common forms of arsenic used for these metabolic pathways are arsenate and arsenite. The end result of arsenic-based metabolism is that the organism couples oxidation/reduction of arsenite/arsenate to growth and/or arsenic resistance. Several reviews have been published on the subject of microbial arsenate respiration and oxidation. This chapter presents a summary of the genes and enzymes for arsenate respiration and arsenite oxidation. The chemical differences between arsenate and arsenite manifest different biological responses. In contrast to numerous single-pathway investigations, very few proteomic and transcriptomic approaches have been used for investigating global or systems level changes to the biology of arsenic-metabolizing prokaryote. A variety of microbial ecology studies have been carried out to investigate the abundance, distribution, and expression of , , and genes in a variety of environments. Microbial ecology studies have resulted in an extensive database of and sequences from a variety of environments. Molecular tools are now available to carry out quantitative and gene expression studies in environmental samples. These approaches could be used, for example, to determine the occurrence of “hot spots” for biologically mediated arsenate reduction. This could help identify zones in a groundwater environment that are more prone to arsenic mobilization.

Citation: Saltikov C. 2011. Regulation of Arsenic Metabolic Pathways in Prokaryotes, p 195-210. In Stolz J, Oremland R (ed), Microbial Metal and Metalloid Metabolism. ASM Press, Washington, DC. doi: 10.1128/9781555817190.ch11
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of FIGURE 1

Arsenic metabolic pathways. (A) Biochemical models for arsenite oxidation coupled to oxygen respiration; detoxifying reduction of arsenate by ArsC; the uptake of arsenate by the Pit, phosphate inorganic transporter; arsenite efflux by ArsB; and anaerobic respiration of arsenate by ArrAB. The regulatory pathways are also included for arsenite oxidation (AoxXSR), detoxifying arsenate reduction (ArsR), and arsenate respiratory reduction (ArsR and ArrTSR). Instead of ArrC, sp. ANA-3 uses the membrane-bound tetraheme cytochrome CymA for transporting electrons from menaquinol to ArrAB. In other bacteria, there is genomic evidence that a transmembrane protein, ArrC, carries out this function. (B) Genomic regions of several bacteria that have gene clusters. The genes code for a two-component histidine kinase sensor and response regulators; codes for a putative periplasmic phosphonate binding protein. The methyl-accepting chemotaxis-like protein gene of codes for a putative chemotaxis protein. (C) Genomic regions of several bacteria that have gene clusters. Similar to , the genes code for a two-component histidine kinase sensor and response regulators. Both ArrT and AoxX are predicted to bind either arsenite or arsenate in the periplasm and activate ArrS and AoxS phosphorylation, respectively. Activation of ArrS and AoxS would phosphorylate the cognate response regulators ArrR and AoxR to bind promoter regions of and operons, resulting in activation of transcription. The species that have genes do not appear to have the and genes. The ArsR2 repressor mediates regulation of in sp. ANA-3. transcription is activated in the presence of arsenite. 10.1128/9781555817190.ch11.f1

Citation: Saltikov C. 2011. Regulation of Arsenic Metabolic Pathways in Prokaryotes, p 195-210. In Stolz J, Oremland R (ed), Microbial Metal and Metalloid Metabolism. ASM Press, Washington, DC. doi: 10.1128/9781555817190.ch11
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2

Phylogenetic analysis of arsenate respiratory reductases (ArrA), AoxB-type arsenite oxidases, and the ArxA-type arsenite oxidase of MLHE-1. The unrooted tree was constructed using a neighbor-joining method; gaps were ignored in the final phylogeny. The numbering refers to representative amino acid sequences ArrA and AoxB as described below. Arsenate respiratory reductase group (ArrA): 1, (WP3, YP_002311519); 2, sp. ANA-3 (*AAQ01672); 3, AAU11839 *; 4, ZP_ 01593421; 5, Rf4 ZP_01140714; 6, str. MLS10 AAQ19491*; 7, str. E1H AAU11841*; 8, str. SES-3 AAU11840*; 9, NP_906980*; 10, ABB02056*; 11, ZP_01372404 *; 12, MLMS-1 ZP_01288668 *; 13, ASO3-1 ZP_03737819; 14, YP_ 001916826; 15, SLAS-1 ACF74513 *; 16, ZP_00800578; 17, OhILAs ZP_01360543 *. AoxB arsenite oxidase group: 18, NT26 AAR05656 **; 19, ABB51928 **; 20, ACK38267; 21, Py2 ZP_01198801; 22, YP_571843; 23, sp. 217 ZP_01034989; 24, AAQ19838 **; 25, sp. 22 ACX69823; 26, AAN05581 **; 27, ZP 0157266830; 28, YP_524325; 29, sp. 3As CAM58792; 30, sp. TS44 ACB05943; 31, sp. HAL1 ACF77048; 32, ZP_00356; 33, YP_145366 **. The asterisks * and ** indicate that the organism is known to respire arsenate or to oxidize arsenite, respectively. TMAO, trimethylamine -oxide. 10.1128/9781555817190.ch11.f2

Citation: Saltikov C. 2011. Regulation of Arsenic Metabolic Pathways in Prokaryotes, p 195-210. In Stolz J, Oremland R (ed), Microbial Metal and Metalloid Metabolism. ASM Press, Washington, DC. doi: 10.1128/9781555817190.ch11
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Achour, A. R.,, P. Bauda, and, P. Billard. 2007. Diversity of arsenite transporter genes from arsenic-resistant soil bacteria. Res. Microbiol. 158: 128137.
2. Achour-Rokbani, A.,, A. Cordi,, P. Poupin,, P. Bauda, and, P. Billard. 2010. Characterization of the ars gene cluster from extremely arsenic-resistant Microbacterium sp. strain A33. Appl. Environ. Microbiol. 76: 948955.
3. Afkar, E.,, J. Lisak,, C. Saltikov,, P. Basu,, R. S. Oremland, and, J. F. Stolz. 2003. The respiratory arsenate reductase from Bacillus selenitireducens strain MLS10. FEMS Microbiol. Lett. 226: 107112.
4. Ahmann, D.,, A. L. Roberts,, L. R. Krumholz, and, F. M. Morel. 1994. Microbe grows by reducing arsenic. Nature 371: 750.
5. Anderson, G. L.,, J. Williams, and, R. Hille. 1992. The purification and characterization of arsenite oxidase from Alcaligenes faecalis, a molybdenum-containing hydroxlyase. J. Biol. Chem. 267: 2367423682.
6. Ashby, M. K. 2004. Survey of the number of two-component response regulator genes in the complete and annotated genome sequences of prokaryotes. FEMS Microbiol. Lett. 231: 277281.
7. Bennett, R. L.,, and M. H. Malamy. 1970. Arsenate resistant mutants of Escherichia coli and phosphate transport. Biochem. Biophys. Res. Commun. 40: 496.
8. Bobrowicz, P.,, R. Wysocki,, G. Owsianik,, A. Goffeau, and, S. Ulaszewski. 1997. Isolation of three contiguous genes, ACR1, ACR2 and ACR3, involved in resistance to arsenic compounds in the yeast Saccharomyces cerevisiae. Yeast 13: 819828.
9. Busenlehner, L. S.,, M. A. Pennella, and, D. P. Giedroc. 2003. The SmtB/ArsR family of metal-loregulatory transcriptional repressors: structural insights into prokaryotic metal resistance. FEMS Microbiol. Rev. 27: 131143.
10. Cai, J.,, K. Salmon, and, M. S. Dubow. 1998. A chromosomal ars operon homologue of Pseudomonas aeruginosa confers increased resistance to arsenic and antimony in Escherichia coli. Microbiology 144: 27052713.
11. Cai, L.,, G. H. Liu,, C. Rensing, and, G. J. Wang. 2009a. Genes involved in arsenic transformation and resistance associated with different levels of arsenic-contaminated soils. BMC Microbiol. 9: 4.
12. Cai, L.,, C. Rensing,, X. Y. Li, and, G. J. Wang. 2009b. Novel gene clusters involved in arsenite oxidation and resistance in two arsenite oxidizers: Achromobacter sp. SY8 and Pseudomonas sp. TS44. Appl. Microbiol. Biotechnol. 83: 715725.
13. Carapito, C.,, D. Muller,, E. Tarlin,, S. Koechler,, A. Danchin,, A. Van Dorsselaer,, E. Leize-Wagner,, P. N. Bertin, and, M. C. Lett. 2006. Identification of genes and proteins involved in the pleiotropic response to arsenic stress in Caenibacter arsenoxydans, a metalloresistant beta-proteobacterium with an un-sequenced genome. Biochimie 88: 595606.
14. Cervantes, C.,, and J. Chavez. 1992. Plasmid-determined resistance to arsenic and antimony in Pseudomonas aeruginosa. Antonie Van Leeuwenhoek 61: 333337.
15. Cervantes, C.,, G. Ji,, J. L. Ramairez, and, S. Silver. 1994. Resistance to arsenic compounds in microorganisms. FEMS Microbiol. Rev. 15: 355367.
16. Chang, J. S.,, J. H. Lee, and, K. W. Kim. 2007. DNA sequence homology analysis of ars genes in arsenic-resistant bacteria. Biotechnol. Bioprocess Eng. 12: 380389.
17. Chang, J. S.,, Y. H. Kim, and, K. W. Kim. 2008. The ars genotype characterization of arsenic-resistant bacteria from arsenic-contaminated gold-silver mines in the Republic of Korea. Appl. Microbiol. Biotechnol. 80: 155165.
18. Chen, C. M.,, H. L. T. Mobley, and, B. P. Rosen. 1985. Separate resistances to arsenate and arsenite (antimonate) encoded by the arsenical resistance operon of R-Factor R773. J. Bacteriol. 161: 758763.
19. Chen, C. M.,, T. K. Misra,, S. Silver, and, B. P. Rosen. 1986. Nucleotide sequence of the structural genes for an anion pump: the plasmid-encoded arsenical resistance operon. J. Biol. Chem. 261: 1503015038.
20. Clingenpeel, S. R.,, S. D’Imperio,, H. Oduro,, G. K. Druschel, and, T. R. McDermott. 2009. Cloning and in situ expression studies of the Hydrogenobaculum arsenite oxidase genes. Appl. Environ. Microbiol. 75: 33623365.
21. Cozen, A. E.,, M. T. Weirauch,, K. S. Pollard,, D. L. Bernick,, J. M. Stuart, and, T. M. Lowe. 2009. Transcriptional map of respiratory versatility in the hyperthermophilic Crenarchaeon Pyrobaculum aerophilum. J. Bacteriol. 191: 782794.
22. Diorio, C.,, J. Cai,, J. Marmor,, R. Shinder, and, M. S. DuBow. 1995. An Escherichia coli chromosomal ars operon homolog is functional in arsenic detoxification and is conserved in gram-negative bacteria. J. Bacteriol. 177: 20502056.
23. Donahoe-Christiansen, J.,, S. D’Imperio,, C. R. Jackson,, W. P. Inskeep, and, T. R. McDermott. 2004. Arsenite-oxidizing Hydrogenobaculum strain isolated from an acid-sulfate-chloride geothermal spring in Yellowstone National Park. Appl. Environ. Microbiol. 70: 18651868.
24. Escalante, G.,, V. L. Campos,, C. Valenzuela,, J. Yanez,, C. Zaror, and, M. A. Mondaca. 2009. Arsenic-resistant bacteria isolated from an arsenic-contaminated river in the Atacama Desert (Chile). Bull. Environ. Contam. Toxicol. 83: 657661.
25. Gihring, T. M.,, and J. F. Banfield. 2001. Arsenite oxidation and arsenate respiration by a new Thermus isolate. FEMS Microbiol. Lett. 204: 335340.
26. Green, H. H. 1918. Description of a bacterium which oxidizes arsenite to arsenate and of one which reduces arsenate to arsenite isoated from a cattle-dipping tank. S. Afr. J. Sci. 14: 465467.
27. Hamamura, N.,, R. E. Macur,, S. Korf,, G. Ackerman,, W. P. Taylor,, M. Kozubal,, A. L. Reysenbach, and, W. P. Inskeep. 2009. Linking microbial oxidation of arsenic with detection and phylogenetic analysis of arsenite oxidase genes in diverse geothermal environments. Environ. Microbiol. 11: 421431.
28. Hedges, R. W.,, and S. Baumberg. 1973. Resistance to arsenic compounds conferred by a plasmid transmissible between strains of Escherichia coli. J. Bacteriol. 115: 459460.
29. Hoeft, S. E.,, J. S. Blum,, J. F. Stolz,, F. R. Tabita,, B. Witte,, G. M. King,, J. M. Santini, and, R. S. Oremland. 2007. Alkalilimnicola ehrlichii sp. nov., a novel, arsenite-oxidizing haloalkaliphilic gammaproteobacterium capable of chemoautotrophic or heterotrophic growth with nitrate or oxygen as the electron acceptor. Int. J. Syst. Evol. Microbiol. 57: 504512.
30. Inskeep, W. P.,, R. E. Macur,, N. Hamamura,, T. P. Warelow,, S. A. Ward, and, J. M. Santini. 2007. Detection, diversity and expression of aerobic bacterial arsenite oxidase genes. Environ. Microbiol. 9: 934943.
31. Jareonmit, P.,, K. Sajjaphan, and, M. J. Sadowsky. 2010. Structure and diversity of arsenic-resistant bacteria in an old tin mine area of Thailand. J. Microbiol. Biotechnol. 20: 169178.
32. Ji, G. Y.,, and S. Silver. 1992a. Regulation and expression of the arsenic resistance operon from Staphylococcus aureus plasmid pI258. J. Bacteriol. 174: 36843694.
33. Ji, G. Y.,, and S. Silver. 1992b. Reduction of arsenate to arsenite by the ArsC protein of the arsenic resistance operon of Staphylococcus aureus plasmid pI258. Proc. Natl. Acad. Sci. USA 89: 94749478.
34. Kashyap, D. R.,, L. M. Botero,, W. L. Franck,, D. J. Hassett, and, T. R. McDermott. 2006. Complex regulation of arsenite oxidation in Agro-bacterium tumefaciens. J. Bacteriol. 188: 10811088.
35. Kaur, P.,, and B. P. Rosen. 1992. Plasmid-encoded resistance to arsenic and antimony. Plasmid 27: 2940.
36. Kaur, S.,, M. R. Kamli, and, A. Ali. 2009. Diversity of arsenate reductase genes ( arsC genes) from arsenic-resistant environmental isolates of E. coli. Curr. Microbiol. 59: 288294.
37. Krafft, T.,, and J. M. Macy. 1998. Purification and characterization of the respiratory arsenate reductase of Chrysiogenes arsenatis. Eur. J. Biochem. 255: 647653.
38. Kulp, T. R.,, S. E.,, Hoeft, M. Asao,, M. T. Madigan,, J. T. Hollibaugh,, J. C. Fisher,, J. F. Stolz,, C. W. Culbertson,, L. G. Miller, and, R. S. Oremland. 2008. Arsenic(III) fuels anoxygenic photosynthesis in hot spring biofilms from Mono Lake, California. Science 321: 967970.
39. Kulp, T. R.,, S. E. Hoeft,, L. G. Miller,, C. Saltikov,, J. N. Murphy,, S. Han,, B. Lanoil, and, R. S. Oremland. 2006. Dissimilatory arsenate and sulfate reduction in sediments of two hypersaline, arsenic-rich soda lakes: Mono and Searles Lakes, California. Appl. Environ. Microbiol. 72: 65146526.
40. Langner, H. W.,, C. R. Jackson,, T. R. McDermott, and, W. P. Inskeep. 2001. Rapid oxidation of arsenite in a hot spring ecosystem, Yellowstone National Park. Environ. Sci. Technol. 35: 33023309.
41. Laverman, A. M.,, J. S., Blum,, J. K. Schaefer,, E. J. P. Phillips,, D. R. Lovely, and, R. S. Oremland. 1995. Growth of strain SES-3 with arsenate and other diverse electron acceptors. Appl. Environ. Microbiol. 61: 35563561.
42. Lear, G.,, B. Song,, A. G. Gault,, D. A. Polya, and, J. R. Lloyd. 2007. Molecular analysis of arsenate-reducing bacteria within Cambodian sediments following amendment with acetate. Appl. Environ. Microbiol. 73: 10411048.
43. Lin, Y. F.,, J. Yang, and, B. P. Rosen. 2007. ArsD: an As(III) metallochaperone for the ArsAB As(III)-translocating ATPase. J. Bioenerg. Biomembr. 39: 453458.
44. Macur, R. E.,, C. R. Jackson,, L. M. Botero,, T. R. McDermott, and, W. P. Inskeep. 2004. Bacterial populations associated with the oxidation and reduction of arsenic in an unsaturated soil. Environ. Sci. Technol. 38: 104111.
45. Macy, J. M.,, K. Nunan,, K. D. Hagen,, D. R. Dixon,, P. J. Harbour,, M. Cahill, and, L. I. Sly. 1996. Chrysiogenes arsenatis gen. nov., sp. nov., a new arsenate-respiring bacterium isolated from gold mine wastewater. Int. J. Syst. Bacteriol. 46: 11531157.
46. Malasarn, D.,, J. R. Keeffe, and, D. K. Newman. 2008. Characterization of the arsenate respiratory reductase from Shewanella sp. strain ANA-3. J. Bacteriol. 190: 135142.
47. Malasarn, D.,, C. W. Saltikov,, K. M. Campbell,, J. M. Santini,, J. G. Hering, and, D. K. Newman. 2004. arrA is a reliable marker for As(V) respiration. Science 306: 455.
48. Menezes, R. A.,, C. Amaral,, A. S. Delaunay,, M. Toledano, and, C. Rodrigues-Pousada. 2004. Yap8p activation in Saccharomyces cerevisiae under arsenic conditions. FEBS Lett. 566: 141146.
49. Mobley, H. L.,, S. Silver,, F. D. Porter, and, B. P. Rosen. 1984. Homology among arsenate resistance determinants of R factors in Escherichia coli. Antimicrob. Agents Chemother. 25: 157161.
50. Mukhopadhyay, R.,, B. P. Rosen,, L. Phung, and, S. Silver. 2002. Microbial arsenic: from geocycles to genes and enzymes. FEMS Microbiol. Rev. 26: 311311.
51. Muller, D.,, C. Medigue,, S. Koechler,, V. Barbe,, M. Barakat,, E. Talla,, V. Bonnefoy,, E. Krin,, F. Arsène-Ploetze,, C. Carapito,, M. Chandler,, B. Cournoyer,, S. Cruveiller,, C. Dossat,, S. Duval,, M. Heymann,, E. Leize,, A. Lieutaud,, D. Lièvremont,, Y. Makita,, S. Mangenot,, W. Nitschke,, P. Ortet,, N. Perdrial,, B. Schoepp,, P. Siguier,, D. D. Simeonova,, Z. Rouy,, B. Segurens,, E. Turlin,, D. Vallenet,, A. Van Dorsselaer,, S. Weiss,, J. Weissenbach,, M. C. Lett,, A. Danchin, and, P. N. Bertin. 2007. A tale of two oxidation states: bacterial colonization of arsenic-rich environments. PLoS Genet. 3: e53.
52. Muller, D.,, D. D. Simeonova,, P. Riegel,, S. Mangenot,, S. Koechler,, D. Lievremont,, P. N. Bertin, and, M. C. Lett. 2006. Herminiimonas arsenicoxydans sp nov., a metalloresistant bacterium. Int. J. Syst. Evol. Microbiol. 56: 17651769.
53. Murphy, J. N.,, K. J. Durbin, and, C. W. Saltikov. 2009. Functional roles of arcA, etrA, cyclic AMP (cAMP)-cAMP receptor protein, and cya in the arsenate respiration pathway in Shewanella sp. strain ANA-3. J. Bacteriol. 191: 10351043.
54. Murphy, J. N.,, and C. W. Saltikov. 2009. The ArsR repressor mediates arsenite-dependent regulation of arsenate respiration and detoxification operons of Shewanella sp strain ANA-3. J. Bacteriol. 191: 67226731.
55. Ordonez, E.,, S. Thiyagarajan,, J. D. Cook,, T. L. Stemmler,, J. A. Gil,, L. M. Mateos, and, B. P. Rosen. 2008. Evolution of metal(loid) binding sites in transcriptional regulators. J. Biol. Chem. 283: 2570625714.
56. Oremland, R. S.,, S. E. Hoeft,, J. M. Santini,, N. Bano,, R. A. Hollibaugh, and, J. T. Hollibaugh. 2002. Anaerobic oxidation of arsenite in Mono Lake water and by a facultative, arseniteoxidizing chemoautotroph, strain MLHE-1. Appl. Environ. Microbiol. 68: 47954802.
57. Oremland, R. S.,, C. W. Saltikov,, F. Wolfe-Simon, and, J. F. Stolz. 2009. Arsenic in the evolution of Earth and extraterrestrial ecosystems. Geomicrobiol. J. 26: 522536.
58. Oremland, R. S.,, and J. F. Stolz. 2003. The ecology of arsenic. Science 300: 939944.
59. Oremland, R. S.,, and J. F. Stolz. 2005. Arsenic, microbes and contaminated aquifers. Trends Microbiol. 13: 4549.
60. Quemeneur, M.,, A. Heinrich-Salmeron,, D. Muller,, D. Livremont,, M. Jauzein,, P. N. Bertin,, F. Garrido, and, C. Joulian. 2008. Diversity surveys and evolutionary relationships of aoxB genes in aerobic arsenite-oxidizing bacteria. Appl. Environ. Microbiol. 74: 45674573.
61. Reyes, C.,, J. R. Lloyd, and, C. W. Saltikov. 2008. Geomicrobiology of iron and arsenic in anoxic sediments, p. 123–146. In S. Ahuja (ed.), Arsenic Contamination of Groundwater: Mechanisms, Analysis, and Remediation. John Wiley and Sons, Inc., Hoboken, NJ.
62. Rhine, E. D.,, S. M. Ni Chadhain,, G. J. Zylstra, and, L. Y. Young. 2007. The arsenite oxidase genes ( aroAB) in novel chemoautotrophic arsenite oxidizers. Biochem. Biophys. Res. Commun. 354: 662667.
63. Richey, C.,, P. Chovanec,, S. E. Hoeft,, R. S. Oremland,, P. Basu, and, J. F. Stolz. 2009. Respiratory arsenate reductase as a bidirectional enzyme. Biochem. Biophys. Res. Commun. 382: 298302.
64. Saltikov, C. W.,, and D. K. Newman. 2003. Genetic identification of a respiratory arsenate reductase. Proc. Natl. Acad. Sci. USA 100: 1098310988.
65. Saltikov, C. W.,, and B. H. Olson. 2002. Homology of Escherichia coli R773 arsA, arsB, and arsC genes in arsenic-resistant bacteria isolated from raw sewage and arsenic-enriched creek waters. Appl. Environ. Microbiol. 68: 280288.
66. Saltikov, C. W.,, R. A. Wildman, Jr., and, D. K. Newman. 2005. Expression dynamics of arsenic respiration and detoxification in Shewanella sp. strain ANA-3. J. Bacteriol. 187: 73907396.
67. Santini, J. M.,, L. I. Sly,, R. D. Schnagl, and, J. M. Macy. 2000. A new chemolithoautotrophic arsenite-oxidizing bacterium isolated from a gold mine: phylogenetic, physiological, and preliminary biochemical studies. Appl. Environ. Microbiol. 66: 9297.
68. Silver, S.,, K. Budd,, K. M. Leahy,, W. V. Shaw,, D. Hammond,, R. P. Novick,, G. R. Willsky,, M. H. Malamy, and, H. Rosenberg. 1981. Inducible plasmid-determined resistance to arsenate, arsenite, and antimony (III) in Escherichia coli and Staphylococcus aureus. J. Bacteriol. 146: 983996.
69. Silver, S.,, L. T. Phung, and, B. P. Rosen. 2002. Arsenic metabolism: resistance, reduction, and oxidation, p. 254. In W. T. Frankenberger (ed.), Environmental Chemistry of Arsenic. Marcel Dekker, Inc., New York, NY.
70. Stock, A. M.,, V. L. Robinson, and, P. N. Goudreau. 2000. Two-component signal transduction. Annu. Rev. Biochem. 69: 183215.
71. Stolz, J. F.,, P. Basu, and, R. S. Oremland. 2010. Microbial arsenic metabolism: new twists on an old poison. Microbe 5: 5359.
72. Stolz, J. E.,, P. Basu,, J. M. Santini, and, R. S. Oremland. 2006. Arsenic and selenium in microbial metabolism. Annu. Rev. Microbiol. 60: 107130.
73. Switzer Blum, J.,, A. Burns Bindi,, J. Buzzelli,, J. F. Stolz, and, R. S. Oremland. 1998. Bacillus arsenicoselenatis, sp. nov., and Bacillus selenitireducens, sp. nov.: two haloalkaliphiles from Mono Lake, California that respire oxyanions of selenium and arsenic. Arch. Microbiol. 171: 1930.
74. Thomas, D. J.,, M. Styblo, and, S. Lin. 2001. The cellular metabolism and systemic toxicity of arsenic. Toxicol. Appl. Pharmacol. 176: 127144.
75. Tseng, C. P.,, J. Albrecht, and, R. P. Gunsalus. 1996. Effect of microaerophilic cell growth conditions on expression of the aerobic ( cyoABCDE and cydAB) and anaerobic ( narGHJI, frdABCD, and dmsABC) respiratory pathway genes in Escherichia coli. J. Bacteriol. 178: 10941098.
76. Tufano, K. J.,, C. Reyes,, C. W. Saltikov, and, S. Fendorf. 2008. Reductive processes controlling arsenic retention: revealing the relative importance of iron and arsenic reduction. Environ. Sci. Technol. 42: 82838289.
77. Turner, A. W. 1949. Bacterial oxidation of arsenite. Nature 164: 7677.
78. Turner, A. W. 1954. Bacterial oxidation of arsenite. 1. Description of bacteria isolated from arsenical cattle-dipping fluids. Aust. J. Biol. Sci. 7: 452478.
79. Unden, G.,, and J. Bongaerts. 1997. Alternative respiratory pathways of Escherichia coli: energetics and transcriptional regulation in response to electron acceptors. Biochim. Biophys. Acta 1320: 217234.
80. Wang, G.,, S. P. Kennedy,, S. Fasiludeen,, C. Rensing, and, S. DasSarma. 2004. Arsenic resistance in Halobacterium sp. strain NRC-1 examined by using an improved gene knockout system. J. Bacteriol. 186: 31873194.
81. Willsky, G.,, and M. Malamy. 1980. Effect of arsenate on inorganic phosphate transport in Escherichia coli. J. Bacteriol. 144: 366374.
82. Willsky, G. R.,, and M. H. Malamy. 1974. Loss of PhoS periplasmic protein leads to a change in specificity of a constitutive inorganic-phosphate transport-system in Escherichia coli. Biochem. Biophys. Res. Commun. 60: 226233.
83. Wu, J.,, and B. P. Rosen. 1993. Metalloregulated expression of the ars operon. J. Biol. Chem. 268: 5258.
84. Xu, C.,, W. Shi, and, B. P. Rosen. 1996. The chromosomal arsR gene of Escherichia coli encodes a trans-acting metalloregulatory protein. J. Biol. Chem. 271: 24272432.
85. Xu, C.,, T. Zhou,, M. Kuroda, and, B. P. Rosen. 1998. Metalloid resistance mechanisms in prokaryotes. J. Biochem. (Tokyo) 123: 1623.
86. Zargar, K.,, S. Hoeft,, R. S. Oremland, and, C. W. Saltikov. 2010. Identification of a novel arsenite oxidase gene, arxA, in the haloalkaliphilic, arsenite-oxidizing bacterium Alkalilimnicola ehrlichii strain MLHE-1. J. Bacteriol. 192: 37553762.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error