Chapter 1 : Impact of Genome Plasticity on Adaptation of during Urinary Bladder Colonization

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

Impact of Genome Plasticity on Adaptation of during Urinary Bladder Colonization, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817213/9781555817084_Chap01-1.gif /docserver/preview/fulltext/10.1128/9781555817213/9781555817084_Chap01-2.gif


Genome plasticity leads to the generation and selection of fitter mutants via the key processes of Darwinian evolution. Urinary tract infections (UTIs) are considered to be the most common bacterial infection in industrialized countries. Genotypic and phenotypic comparisons of closely related isolates which demonstrated the impact of genome plasticity, i.e., gene acquisition and gene loss, on bacterial evolution as different members of sequence type (ST) 73 represent highly uropathogenic as well as commensal or ABU isolates. Data on genome-wide changes and adaptation during long-term growth of in vitro have started to accumulate only recently. Bacterial adaptation to prolonged in vivo growth in different host backgrounds has been analyzed by comparing the genome structure and virulence- and fitness-related phenotypes of 83972 and three selected reisolates from deliberate human therapeutic urinary bladder colonization. In individual hosts, 83972 used different strategies to optimize proliferation. The observed increased genome plasticity of in vivo-grown reisolates of 83972 relative to control isolates from the in vitro experimental evolution study may in part result from stress-induced increased genome plasticity.

Citation: Dobrindt U, Zdziarski J, Hacker J. 2012. Impact of Genome Plasticity on Adaptation of during Urinary Bladder Colonization, p 1-15. In Hacker J, Dobrindt U, Kurth R (ed), Genome Plasticity and Infectious Diseases. ASM Press, Washington, DC. doi: 10.1128/9781555817213.ch1
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of FIGURE 1

Impact of genome plasticity on adaptation and evolution of (pathogenic) bacteria. Plasmids, bacteriophages, and genomic islands may encode virulence-associated traits, such as adhesins, toxins, siderophore systems, and capsules. Acquisition of such mobile and accessory DNA elements contributes to the evolution of pathogenic variants by horizontal gene transfer. Genome plasticity can also result in alterations of gene expression or inactivation of virulence factors due to DNA rearrangements, deletions, or point mutations. Altered expression of virulence factors either as a result of active bacterial gene regulation or selection of corresponding mutants arising from genome plasticity can be advantageous for pathogenic bacteria with the ability to cause persistent infection in order to avoid or reduce activation of the host immune response.doi:10.1128/9781555817213.ch01f01

Citation: Dobrindt U, Zdziarski J, Hacker J. 2012. Impact of Genome Plasticity on Adaptation of during Urinary Bladder Colonization, p 1-15. In Hacker J, Dobrindt U, Kurth R (ed), Genome Plasticity and Infectious Diseases. ASM Press, Washington, DC. doi: 10.1128/9781555817213.ch1
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2

Competitiveness of in vivo reisolates of 83972 relative to their parent strain in pooled human urine. For growth competition experiments, the chloramphenicol-resistant derivative of parent strain 83972, 83972, and one in vivo reisolate were mixed in the same ratio and cultivated at 37°C for 72 h in pooled human urine. At different time points (6, 24, 48, and 72 h), the ratio of the parent strain 83972to the in vivo reisolate was determined by colony counting on LB agar plates supplemented with chloramphenicol and LB plates, respectively. (A) Results of the control experiment, where the parent strain and its chloramphenicol-resistant variant 83972were cocultured to demonstrate their identical competitiveness. Competitiveness of consecutive reisolates (as indicated by the order of letters) from individual patients P1 to P6 differed between the patients as well as between reisolates from the same patient (B to F). All experiments were performed in triplicate, and the corresponding mean values of the ratio between parent strain and reisolate and standard deviations were plotted.doi:10.1128/9781555817213.ch01f02

Citation: Dobrindt U, Zdziarski J, Hacker J. 2012. Impact of Genome Plasticity on Adaptation of during Urinary Bladder Colonization, p 1-15. In Hacker J, Dobrindt U, Kurth R (ed), Genome Plasticity and Infectious Diseases. ASM Press, Washington, DC. doi: 10.1128/9781555817213.ch1
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Ackermann, M.,, B. Stecher,, N. E. Freed,, P. Songhet,, W. D. Hardt,, and M. Doebeli. 2008. Self-destructive cooperation mediated by phenotypic noise. Nature 454: 987 990.
2. Ahmed, N.,, U. Dobrindt,, J. Hacker,, and S. E. Hasnain. 2008. Genomic fluidity and pathogenic bacteria: applications in diagnostics, epidemiology and intervention. Nat. Rev. Microbiol. 6: 387 394.
3. Alteri, C. J.,, and H. L. Mobley. 2007. Quantitative profile of the uropathogenic Escherichia coli outer membrane proteome during growth in human urine. Infect. Immun. 75: 2679 2688.
4. Alteri, C. J.,, S. N. Smith,, and H. L. Mobley. 2009. Fitness of Escherichia coli during urinary tract infection requires gluconeogenesis and the TCA cycle. PLoS Pathog. 5: e1000448.
5. Anfora, A. T.,, D. K. Halladin,, B. J. Haugen,, and R. A. Welch. 2008. Uropathogenic Escherichia coli CFT073 is adapted to acetatogenic growth but does not require acetate during murine urinary tract infection. Infect. Immun. 76: 5760 5767.
6. Babitzke, P.,, and T. Romeo. 2007. CsrB sRNA family: sequestration of RNA-binding regulatory proteins. Curr. Opin. Microbiol. 10: 156 163.
7. Barrick, J. E.,, D. S. Yu,, S. H. Yoon,, H. Jeong,, T. K. Oh,, D. Schneider,, R. E. Lenski,, and J. F. Kim. 2009. Genome evolution and adaptation in a long-term experiment with Escherichia coli. Nature 461: 1243 1247.
8. Bergsten, G.,, M. Samuelsson,, B. Wullt,, I. Leijonhufvud,, H. Fischer,, and C. Svanborg. 2004. PapG-dependent adherence breaks mucosal inertia and triggers the innate host response. J. Infect. Dis. 189: 1734 1742.
9. Bergsten, G.,, B. Wullt,, and C. Svanborg. 2005. Escherichia coli, fimbriae, bacterial persistence and host response induction in the human urinary tract. Int. J. Med. Microbiol. 295: 487 502.
10. Bettelheim, K. A.,, and J. Taylor. 1969. A study of Escherichia coli isolated from chronic urinary infection. J. Med. Microbiol. 2: 225 236.
11. Bjedov, I.,, O. Tenaillon,, B. Gerard,, V. Souza,, E. Denamur,, M. Radman,, F. Taddei,, and I. Matic. 2003. Stress-induced mutagenesis in bacteria. Science 300: 1404 1409.
12. Björkman, J.,, and D. I. Andersson. 2000. The cost of antibiotic resistance from a bacterial perspective. Drug Resist. Updat. 3: 237 245.
13. Borderon, E.,, and T. Horodniceanu. 1978. Metabolically deficient dwarf-colony mutants of Escherichia coli: deficiency and resistance to antibiotics of strains isolated from urine culture. J. Clin. Microbiol. 8: 629 634.
14. Brzuszkiewicz, E.,, H. Brüggemann,, H. Liesegang,, M. Emmerth,, T. Oelschlaeger,, G. Nagy,, K. Albermann,, C. Wagner,, C. Buchrieser,, L. Emödy,, G. Gottschalk,, J. Hacker,, and U. Dobrindt. 2006. How to become a uropathogen: comparative genomic analysis of extraintestinal pathogenic Escherichia coli strains. Proc. Natl. Acad. Sci. USA 103: 12879 12884.
15. Carmel-Harel, O.,, and G. Storz. 2000. Roles of the glutathione- and thioredoxin-dependent reduction systems in the Escherichia coli and Saccharomyces cerevisiae responses to oxidative stress. Annu. Rev. Microbiol. 54: 439 461.
16. Chen, S. L.,, C. S. Hung,, J. Xu,, C. S. Reigstad,, V. Magrini,, A. Sabo,, D. Blasiar,, T. Bieri,, R. R. Meyer,, P. Ozersky,, J. R. Armstrong,, R. S. Fulton,, J. P. Latreille,, J. Spieth,, T. M. Hooton,, E. R. Mardis,, S. J. Hultgren,, and J. I. Gordon. 2006. Identification of genes subject to positive selection in uropathogenic strains of Escherichia coli: a comparative genomics approach. Proc. Natl. Acad. Sci. USA 103: 5977 5982.
17. Colgan, R.,, L. E. Nicolle,, A. McGlone,, and T. M. Hooton. 2006. Asymptomatic bacteriuria in adults. Am. Fam. Physician 74: 985 990.
18. Cooper, V. S.,, A. F. Bennett,, and R. E. Lenski. 2001. Evolution of thermal dependence of growth rate of Escherichia coli populations during 20,000 generations in a constant environment. Evolution 55: 889 896.
19. de Visser, J. A.,, and R. E. Lenski. 2002. Long-term experimental evolution in Escherichia coli. XI. Rejection of non-transitive interactions as cause of declining rate of adaptation. BMC Evol. Biol. 2: 19.
20. Dobrindt, U.,, F. Agerer,, K. Michaelis,, A. Janka,, C. Buchrieser,, M. Samuelson,, C. Svanborg,, G. Gottschalk,, H. Karch,, and J. Hacker. 2003. Analysis of genome plasticity in pathogenic and commensal Escherichia coli isolates by use of DNA arrays. J. Bacteriol. 185: 1831 1840.
21. Dobrindt, U.,, B. Hochhut,, U. Hentschel,, and J. Hacker. 2004. Genomic islands in pathogenic and environmental microorganisms. Nat. Rev. Microbiol. 2: 414 424.
22. Edén, C. S.,, G. L. Janson,, and U. Lindberg. 1979. Adhesiveness to urinary tract epithelial cells of fecal and urinary Escherichia coli isolates from patients with symptomatic urinary tract infections or asymptomatic bacteriuria of varying duration. J. Urol. 122: 185 188.
23. Foxman, B. 2002. Epidemiology of urinary tract infections: incidence, morbidity, and economic costs. Am. J. Med. 113( Suppl. 1A): 5S 13S.
24. Freed, N. E.,, O. K. Silander,, B. Stecher,, A. Bohm,, W. D. Hardt,, and M. Ackermann. 2008. A simple screen to identify promoters conferring high levels of phenotypic noise. PLoS Genet. 4: e1000307.
25. Frendeus, B.,, C. Wachtler,, M. Hedlund,, H. Fischer,, P. Samuelsson,, M. Svensson,, and C. Svanborg. 2001. Escherichia coli P fimbriae utilize the Toll-like receptor 4 pathway for cell activation. Mol. Microbiol. 40: 37 51.
26. Frost, L. S.,, and G. Koraimann. 2010. Regulation of bacterial conjugation: balancing opportunity with adversity. Future Microbiol. 5: 1057 1071.
27. Fünfstück, R.,, H. Tschäpe,, G. Stein,, H. Kunath,, M. Bergner,, and G. Wessel. 1986. Virulence properties of Escherichia coli strains in patients with chronic pyelonephritis. Infection 14: 145 150.
28. Giraud, A.,, S. Arous,, M. De Paepe,, V. Gaboriau-Routhiau,, J. C. Bambou,, S. Rakotobe,, A. B. Lindner,, F. Taddei,, and N. Cerf-Bensussan. 2008. Dissecting the genetic components of adaptation of Escherichia coli to the mouse gut. PLoS Genet. 4: e2.
29. Godaly, G.,, A. E. Proudfoot,, R. E. Offord,, C. Svanborg,, and W. W. Agace. 1997. Role of epithelial interleukin-8 (IL-8) and neutrophil IL-8 receptor A in Escherichia coli-induced transuroepithelial neutrophil migration. Infect. Immun. 65: 3451 3456.
30. Gordon, D. M.,, and M. A. Riley. 1992. A theoretical and experimental analysis of bacterial growth in the bladder. Mol. Microbiol. 6: 555 562.
31. Hacker, J.,, L. Bender,, M. Ott,, J. Wingender,, B. Lund,, R. Marre,, and W. Goebel. 1990. Deletions of chromosomal regions coding for fimbriae and hemolysins occur in vitro and in vivo in various extraintestinal Escherichia coli isolates. Microb. Pathog. 8: 213 225.
32. Hacker, J.,, U. Hentschel,, and U. Dobrindt. 2003. Prokaryotic chromosomes and disease. Science 301: 790 793.
33. Hagan, E. C.,, A. L. Lloyd,, D. A. Rasko,, G. J. Faerber,, and H. L. Mobley. 2010. Escherichia coli global gene expression in urine from women with urinary tract infection. PLoS Pathog. 6: e1001187.
34. Hang, L.,, M. Haraoka,, W. W. Agace,, H. Leffler,, M. Burdick,, R. Strieter,, and C. Svanborg. 1999. Macrophage inflammatory protein-2 is required for neutrophil passage across the epithelial barrier of the infected urinary tract. J. Immunol. 162: 3037 3044.
35. Hansson, S.,, U. Jodal,, L. Noren,, and J. Bjure. 1989. Untreated bacteriuria in asymptomatic girls with renal scarring. Pediatrics 84: 964 968.
36. Hogardt, M.,, and J. Heesemann. 2010. Adaptation of Pseudomonas aeruginosa during persistence in the cystic fibrosis lung. Int. J. Med. Microbiol. 300: 557 562.
37. Hull, R. A.,, and S. I. Hull. 1997. Nutritional requirements for growth of uropathogenic Escherichia coli in human urine. Infect. Immun. 65: 1960 1961.
38. Jelsbak, L.,, H. K. Johansen,, A. L. Frost,, R. Thogersen,, L. E. Thomsen,, O. Ciofu,, L. Yang,, J. A. Haagensen,, N. Hoiby,, and S. Molin. 2007. Molecular epidemiology and dynamics of Pseudomonas aeruginosa populations in lungs of cystic fibrosis patients. Infect. Immun. 75: 2214 2224.
39. Juhas, M.,, J. R. van der Meer,, M. Gaillard,, R. M. Harding,, D. W. Hood,, and D. W. Crook. 2009. Genomic islands: tools of bacterial horizontal gene transfer and evolution. FEMS Microbiol. Rev. 33: 376 393.
40. Klemm, P.,, V. Roos,, G. C. Ulett,, C. Svanborg,, and M. A. Schembri. 2006. Molecular characterization of the Escherichia coli asymptomatic bacteriuria strain 83972: the taming of a pathogen. Infect. Immun. 74: 781 785.
41. Lane, M. C.,, C. J. Alteri,, S. N. Smith,, and H. L. Mobley. 2007. Expression of flagella is coincident with uropathogenic Escherichia coli ascension to the upper urinary tract. Proc. Natl. Acad. Sci. USA 104: 16669 16674.
42. Lane, M. C.,, V. Lockatell,, G. Monterosso,, D. Lamphier,, J. Weinert,, J. R. Hebel,, D. E. Johnson,, and H. L. Mobley. 2005. Role of motility in the colonization of uropathogenic Escherichia coli in the urinary tract. Infect. Immun. 73: 7644 7656.
43. Lenski, R. E. 1991. Quantifying fitness and gene stability in microorganisms. Biotechnology 15: 173 192.
44. Lenski, R. E.,, and M. Travisano. 1994. Dynamics of adaptation and diversification: a 10,000-generation experiment with bacterial populations. Proc. Natl. Acad. Sci. USA 91: 6808 6814.
45. Lenski, R. E.,, C. L. Winkworth,, and M. A. Riley. 2003. Rates of DNA sequence evolution in experimental populations of Escherichia coli during 20,000 generations. J. Mol. Evol. 56: 498 508.
46. Lindberg, U.,, I. Claesson,, L. A. Hanson,, and U. Jodal. 1978. Asymptomatic bacteriuria in schoolgirls. VIII. Clinical course during a 3-year follow-up. J. Pediatr. 92: 194 199.
47. Lloyd, A. L.,, T. A. Henderson,, P. D. Vigil,, and H. L. Mobley. 2009. Genomic islands of uropathogenic Escherichia coli contribute to virulence. J. Bacteriol. 191: 3469 3481.
48. Lundstedt, A. C.,, S. McCarthy,, M. C. Gustafsson,, G. Godaly,, U. Jodal,, D. Karpman,, I. Leijonhufvud,, C. Linden,, J. Martinell,, B. Ragnarsdottir,, M. Samuelsson,, L. Truedsson,, B. Andersson,, and C. Svanborg. 2007. A genetic basis of susceptibility to acute pyelonephritis. PLoS One 2: e825.
49. Mabbett, A. N.,, G. C. Ulett,, R. E. Watts,, J. J. Tree,, M. Totsika,, C. L. Ong,, J. M. Wood,, W. Monaghan,, D. F. Looke,, G. R. Nimmo,, C. Svanborg,, and M. A. Schembri. 2009. Virulence properties of asymptomatic bacteriuria Escherichia coli. Int. J. Med. Microbiol. 299: 53 63.
50. Mysorekar, I. U.,, and S. J. Hultgren. 2006. Mechanisms of uropathogenic Escherichia coli persistence and eradication from the urinary tract. Proc. Natl. Acad. Sci. USA 103: 14170 14175.
51. Nielubowicz, G. R.,, and H. L. Mobley. 2010. Host-pathogen interactions in urinary tract infection. Nat. Rev. Urol. 7: 430 441.
52. Novak, M.,, T. Pfeiffer,, R. E. Lenski,, U. Sauer,, and S. Bonhoeffer. 2006. Experimental tests for an evolutionary trade-off between growth rate and yield in E. coli. Am. Nat. 168: 242 251.
53. Ochman, H.,, J. G. Lawrence,, and E. A. Groisman. 2000. Lateral gene transfer and the nature of bacterial innovation. Nature 405: 299 304.
54. Oh, J. D.,, H. Kling-Backhed,, M. Giannakis,, J. Xu,, R. S. Fulton,, L. A. Fulton,, H. S. Cordum,, C. Wang,, G. Elliott,, J. Edwards,, E. R. Mardis,, L. G. Engstrand,, and J. I. Gordon. 2006. The complete genome sequence of a chronic atrophic gastritis Helicobacter pylori strain: evolution during disease progression. Proc. Natl. Acad. Sci. USA 103: 9999 10004.
55. Olesen, B.,, H. J. Kolmos,, F. Ørskov,, and I. Ørskov. 1998. Escherichia coli bacteraemia in patients with and without haematological malignancies: a study of strain characters and recurrent episodes. J. Infect. 36: 93 100.
56. Peekhaus, N.,, and T. Conway. 1998. What’s for dinner? Entner-Doudoroff metabolism in Escherichia coli. J. Bacteriol. 180: 3495 3502.
57. Pernestig, A. K.,, D. Georgellis,, T. Romeo,, K. Suzuki,, H. Tomenius,, S. Normark,, and O. Melefors. 2003. The Escherichia coli BarA-UvrY two-component system is needed for efficient switching between glycolytic and gluconeogenic carbon sources. J. Bacteriol. 185: 843 853.
58. Plotkin, J. B.,, and J. Dushoff. 2003. Codon bias and frequency-dependent selection on the hemagglutinin epitopes of influenza A virus. Proc. Natl. Acad. Sci. USA 100: 7152 7157.
59. Poock, S. R.,, E. R. Leach,, J. W. Moir,, J. A. Cole,, and D. J. Richardson. 2002. Respiratory detoxification of nitric oxide by the cytochrome c nitrite reductase of Escherichia coli. J. Biol. Chem. 277: 23664 23669.
60. Poole, L. B. 2005a. Bacterial defenses against oxidants: mechanistic features of cysteine-based peroxidases and their flavoprotein reductases. Arch. Biochem. Biophys. 433: 240 254.
61. Poole, R. K. 2005b. Nitric oxide and nitrosative stress tolerance in bacteria. Biochem. Soc. Trans. 33: 176 180.
62. Poole, R. K.,, M. F. Anjum,, J. Membrillo-Hernandez,, S. O. Kim,, M. N. Hughes,, and V. Stewart. 1996. Nitric oxide, nitrite, and Fnr regulation of hmp (flavohemoglobin) gene expression in Escherichia coli K-12. J. Bacteriol. 178: 5487 5492.
63. Ragnarsdóttir, B.,, H. Fischer,, G. Godaly,, J. Gronberg-Hernandez,, M. Gustafsson,, D. Karpman,, A. C. Lundstedt,, N. Lutay,, S. Ramisch,, M. L. Svensson,, B. Wullt,, M. Yadav,, and C. Svanborg. 2008. TLR- and CXCR1-dependent innate immunity: insights into the genetics of urinary tract infections. Eur. J. Clin. Investig. 38( Suppl. 2): 12 20.
64. Ragnarsdóttir, B.,, M. Samuelsson,, M. C. Gustafsson,, I. Leijonhufvud,, D. Karpman,, and C. Svanborg. 2007. Reduced toll-like receptor 4 expression in children with asymptomatic bacteriuria. J. Infect. Dis. 196: 475 484.
65. Raz, R. 2003. Asymptomatic bacteriuria. Clinical significance and management. Int. J. Antimicrob. Agents 22(Suppl. 2): 45 47.
66. Roos, V.,, and P. Klemm. 2006. Global gene expression profiling of the asymptomatic bacteriuria Escherichia coli strain 83972 in the human urinary tract. Infect. Immun. 74: 3565 3575.
67. Roos, V.,, E. M. Nielsen,, and P. Klemm. 2006a. Asymptomatic bacteriuria Escherichia coli strains: adhesins, growth and competition. FEMS Microbiol. Lett. 262: 22 30.
68. Roos, V.,, M. A. Schembri,, G. C. Ulett,, and P. Klemm. 2006b. Asymptomatic bacteriuria Escherichia coli strain 83972 carries mutations in the foc locus and is unable to express F1C fimbriae. Microbiology 152: 1799 1806.
69. Roos, V.,, G. C. Ulett,, M. A. Schembri,, and P. Klemm. 2006c. The asymptomatic bacteriuria Escherichia coli strain 83972 outcompetes uropathogenic E. coli strains in human urine. Infect. Immun. 74: 615 624.
70. Rosen, D. A.,, T. M. Hooton,, W. E. Stamm,, P. A. Humphrey,, and S. J. Hultgren. 2007. Detection of intracellular bacterial communities in human urinary tract infection. PLoS Med. 4: e329.
71. Rosenberg, S. M. 2001. Evolving responsively: adaptive mutation. Nat. Rev. Genet. 2: 504 515.
72. Rozen, D. E.,, J. A. de Visser,, and P. J. Gerrish. 2002. Fitness effects of fixed beneficial mutations in microbial populations. Curr. Biol. 12: 1040 1045.
73. Russo, T. A.,, U. B. Carlino,, A. Mong,, and S. T. Jodush. 1999. Identification of genes in an extraintestinal isolate of Escherichia coli with increased expression after exposure to human urine. Infect. Immun. 67: 5306 5314.
74. Saint-Ruf, C.,, and I. Matic. 2006. Environmental tuning of mutation rates. Environ. Microbiol. 8: 193 199.
75. Sakai, A.,, M. Nakanishi,, K. Yoshiyama,, and H. Maki. 2006. Impact of reactive oxygen species on spontaneous mutagenesis in Escherichia coli. Genes Cells 11: 767 778.
76. Samuelsson, P.,, L. Hang,, B. Wullt,, H. Irjala,, and C. Svanborg. 2004. Toll-like receptor 4 expression and cytokine responses in the human urinary tract mucosa. Infect. Immun. 72: 3179 3186.
77. Seaver, L. C.,, and J. A. Imlay. 2001a. Alkyl hydroperoxide reductase is the primary scavenger of endogenous hydrogen peroxide in Escherichia coli. J. Bacteriol. 183: 7173 7181.
78. Seaver, L. C.,, and J. A. Imlay. 2001b. Hydrogen peroxide fluxes and compartmentalization inside growing Escherichia coli. J. Bacteriol. 183: 7182 7189.
79. Shapiro, B. J.,, L. A. David,, J. Friedman,, and E. J. Alm. 2009. Looking for Darwin’s footprints in the microbial world. Trends Microbiol. 17: 196 204.
80. Shapiro, R.,, and S. H. Pohl. 1968. The reaction of ribonucleosides with nitrous acid. Side products and kinetics. Biochemistry 7: 448 455.
81. Smith, E. E.,, D. G. Buckley,, Z. Wu,, C. Saenphimmachak,, L. R. Hoffman,, D. A. D’Argenio,, S. I. Miller,, B. W. Ramsey,, D. P. Speert,, S. M. Moskowitz,, J. L. Burns,, R. Kaul,, and M. V. Olson. 2006. Genetic adaptation by Pseudomonas aeruginosa to the airways of cystic fibrosis patients. Proc. Natl. Acad. Sci. USA 103: 8487 8492.
82. Snyder, J. A.,, B. J. Haugen,, E. L. Buckles,, C. V. Lockatell,, D. E. Johnson,, M. S. Donnenberg,, R. A. Welch,, and H. L. Mobley. 2004. Transcriptome of uropathogenic Escherichia coli during urinary tract infection. Infect. Immun. 72: 6373 6381.
83. Svanborg, C.,, G. Bergsten,, H. Fischer,, G. Godaly,, M. Gustafsson,, D. Karpman,, A. C. Lundstedt,, B. Ragnarsdottir,, M. Svensson,, and B. Wullt. 2006. Uropathogenic Escherichia coli as a model of host-parasite interaction. Curr. Opin. Microbiol. 9: 33 39.
84. Svanborg, C.,, B. Frendeus,, G. Godaly,, L. Hang,, M. Hedlund,, and C. Wachtler. 2001. Toll-like receptor signaling and chemokine receptor expression influence the severity of urinary tract infection. J. Infect. Dis. 183( Suppl. 1): S61 S65.
85. Tappe, D.,, H. Claus,, J. Kern,, A. Marzinzig,, M. Frosch,, and M. Abele-Horn. 2006. First case of febrile bacteremia due to a wild type and small-colony variant of Escherichia coli. Eur. J. Clin. Microbiol. Infect. Dis. 25: 31 34.
86. Tomenius, H.,, A. K. Pernestig,, K. Jonas,, D. Georgellis,, R. Mollby,, S. Normark,, and O. Melefors. 2006. The Escherichia coli BarA-UvrY two-component system is a virulence determinant in the urinary tract. BMC Microbiol. 6: 27.
87. Tsikas, D.,, R. H. Boger,, S. M. Bode-Boger,, F. M. Gutzki,, and J. C. Frolich. 1994. Quantification of nitrite and nitrate in human urine and plasma as pentafluorobenzyl derivatives by gas chromatography-mass spectrometry using their 15N-labelled analogs. J. Chromatogr. B 661: 185 191.
88. Weiss, B. 2006. Evidence for mutagenesis by nitric oxide during nitrate metabolism in Escherichia coli. J. Bacteriol. 188: 829 833.
89. Welch, R. A.,, V. Burland,, G. Plunkett III,, P. Redford,, P. Roesch,, D. Rasko,, E. L. Buckles,, S. R. Liou,, A. Boutin,, J. Hackett,, D. Stroud,, G. F. Mayhew,, D. J. Rose,, S. Zhou,, D. C. Schwartz,, N. T. Perna,, H. L. Mobley,, M. S. Donnenberg,, and F. R. Blattner. 2002. Extensive mosaic structure revealed by the complete genome sequence of uropathogenic Escherichia coli. Proc. Natl. Acad. Sci. USA 99: 17020 17024.
90. Wheeler, M. A.,, S. D. Smith,, G. Garcia-Cardena,, C. F. Nathan,, R. M. Weiss,, and W. C. Sessa. 1997. Bacterial infection induces nitric oxide synthase in human neutrophils. J. Clin. Investig. 99: 110 116.
91. Wiles, T. J.,, R. R. Kulesus,, and M. A. Mulvey. 2008. Origins and virulence mechanisms of uropathogenic Escherichia coli. Exp. Mol. Pathol. 85: 11 19.
92. Wozniak, R. A.,, and M. K. Waldor. 2010. Integrative and conjugative elements: mosaic mobile genetic elements enabling dynamic lateral gene flow. Nat. Rev. Microbiol. 8: 552 563.
93. Zdziarski, J.,, E. Brzuszkiewicz,, B. Wullt,, H. Liesegang,, D. Biran,, B. Voigt,, J. Grönberg-Hernandez,, B. Ragnarsdóttir,, M. Hecker,, E. Z. Ron,, R. Daniel,, G. Gottschalk,, J. Hacker,, C. Svanborg,, and U. Dobrindt. 2010. Host imprints on bacterial genomes—rapid, divergent evolution in individual patients. PLoS Pathog. 6: e1001078.
94. Zdziarski, J.,, C. Svanborg,, B. Wullt,, J. Hacker,, and U. Dobrindt. 2008. Molecular basis of commensalism in the urinary tract: low virulence or virulence attenuation? Infect. Immun. 76: 695 703.
95. Zhou, X.,, J. A. Giron,, A. G. Torres,, J. A. Crawford,, E. Negrete,, S. N. Vogel,, and J. B. Kaper. 2003. Flagellin of enteropathogenic Escherichia coli stimulates interleukin-8 production in T84 cells. Infect. Immun. 71: 2120 2129.


Generic image for table

Examples of in vivo adaptation strategies of uropathogenic during infection

Citation: Dobrindt U, Zdziarski J, Hacker J. 2012. Impact of Genome Plasticity on Adaptation of during Urinary Bladder Colonization, p 1-15. In Hacker J, Dobrindt U, Kurth R (ed), Genome Plasticity and Infectious Diseases. ASM Press, Washington, DC. doi: 10.1128/9781555817213.ch1

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error