Chapter 18 : Genome Plasticity in

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

Genome Plasticity in , Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817213/9781555817084_Chap18-1.gif /docserver/preview/fulltext/10.1128/9781555817213/9781555817084_Chap18-2.gif


This chapter describes the different mechanisms of genome plasticity in and their impact on phenotypic plasticity, with an emphasis on recent advances in antifungal drug resistance. The average divergence between genetic groups is approximately 2 million years. As a consequence, the recombination and genetic exchanges are most likely due to ancient mating events in and not due to recent mating events. The requirement of sex to repair DNA damage may be moot in a diploid because sequences on homologous chromosomes can be used as templates to repair DNA breaks by an effective homologous recombination mechanism. The chapter gives a brief overview of some of the hypotheses that may particularly apply to . A source of genome plasticity associated with recombination at MRS loci is chromosome translocation. The possibility exists that recombinations at the MRS can alter its structure and affect filamentation. In conclusion, the development of resistance to fluconazole can involve mutations at TAC1 and ERG11, as well as several genome plasticity events leading to loss of eterozygosity (LOH) and aneuploidy that affect these two genes as well as additional genes on chromosome 5.

Citation: Pujol C, Soll D. 2012. Genome Plasticity in , p 303-325. In Hacker J, Dobrindt U, Kurth R (ed), Genome Plasticity and Infectious Diseases. ASM Press, Washington, DC. doi: 10.1128/9781555817213.ch18
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


1. Aanen, D. K.,, and R. F. Hoekstra,. 2007. Why sex is good: on fungi and beyond, p. 527 534. In J. Heitman,, J. W. Kronstad,, J. W. Taylor,, and L. A. Casselton (ed.), Sex in Fungi: Molecular Determination and Evolutionary Implications. ASM Press, Washington, DC.
2. Akins, R. A. 2005. An update on antifungal targets and mechanisms of resistance in Candida albicans. Med. Mycol. 43: 285 318.
3. Andaluz, E.,, J. Gómez-Raja,, B. Hermosa,, T. Ciudad,, E. Rustchenko,, R. Calderone,, and G. Larriba. 2007. Loss and fragmentation of chromosome 5 are major events linked to the adaptation of rad52-ΔΔ strains of Candida albicans to sorbose. Fungal Genet. Biol. 44: 789 798.
4. Anderson, J. B.,, C. Wickens,, M. Khan,, L. E. Cowen,, N. Federspiel,, T. Jones,, and L. M. Kohn. 2001. Infrequent genetic exchange and recombination in the mitochondrial genome of Candida albicans. J. Bacteriol. 183: 865 872.
5. Asakura, K.,, S. Iwaguchi,, M. Homma,, T. Sukai,, K. Higashide,, and K. Tanaka. 1991. Electrophoretic karyotypes of clinically isolated yeasts of Candida albicans and C. glabrata. J. Gen. Microbiol. 137: 2531 2538.
6. Barton, R. C.,, and S. Scherer. 1994. Induced chromosome rearrangements and morphologic variation in Candida albicans. J. Bacteriol. 176: 756 763.
7. Barton, R. C.,, A. van Belkum,, and S. Scherer. 1995. Stability of karyotype in serial isolates of Candida albicans from neutropenic patients. J. Clin. Microbiol. 33: 794 796.
8. Bennett, R. J.,, and A. D. Johnson. 2003. Completion of a parasexual cycle in Candida albicans by induced chromosome loss in tetraploid strains. EMBO J. 22: 2505 2515.
9. Bennett, R. J.,, M. A. Uhl,, M. G. Miller,, and A. D. Johnson. 2003. Identification and characterization of a Candida albicans mating pheromone. Mol. Cell. Biol. 23; 8189 8201.
10. Birdsell, J.,, and C. Wills. 1996. Significant competitive advantage conferred by meiosis and syngamy in the yeast Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 93: 908 912.
11. Blignaut, E.,, C. Pujol,, S. Lockhart,, S. Joly,, and D. R. Soll. 2002. Ca3 fingerprinting of Candida albicans isolates from human immunodeficiency virus-positive and healthy individuals reveals a new clade in South Africa. J. Clin. Microbiol. 40: 826 836.
12. Bougnoux, M.-E.,, C. Pujol,, D. Diogo,, C. Bouchier,, D. R. Soll,, and C. d’Enfert. 2008. Mating is rare within as well as between clades of the human pathogen Candida albicans. Fungal Genet. Biol. 45: 221 231.
13. Bougnoux, M.-E.,, D. Diogo,, C. Pujol,, D. R. Soll,, and C. d’Enfert,. 2007. Molecular epidemiology and population dynamics in Candida albicans, p. 51 70. In C. d’Enfert, and B. Hube (ed.), Candida: Comparative and Functional Genomics. Caister Academic Press, Norwich, United Kingdom.
14. Bougnoux, M.-E.,, D. Diogo,, N. François,, B. Sendid,, S. Veirmeire,, J. F. Colombel,, C. Bouchier,, H. Van Kruiningen,, C. d’Enfert,, and D. Poulain. 2006. Multilocus sequence typing reveals intrafamilial transmission and microevolutions of Candida albicans isolates from the human digestive tract. J. Clin. Microbiol. 44: 1810 1820.
15. Bulik, C. C.,, J. D. Sobel,, and M. D. Nailor. 2011. Susceptibility profile of vaginal isolates of Candida albicans prior to and following fluconazole introduction—impact of two decades. Mycoses 54: 34 38.
16. Butler, G.,, M. D. Rasmussen,, M. F. Lin,, M. A. Santos,, S. Sakthikumar,, C. A. Munro,, E. Rheinbay,, M. Grabherr,, A. Forche,, J. L. Reedy,, I. Agrafioti,, M. B. Arnaud,, S. Bates,, A. J. Brown,, S. Brunke,, M. C. Costanzo,, D. A. Fitzpatrick,, P. W. de Groot,, D. Harris,, L. L. Hoyer,, B. Hube,, F. M. Klis,, C. Kodira,, N. Lennard,, M. E. Logue,, R. Martin,, A. M. Neiman,, E. Nikolaou,, M. A. Quail,, J. Quinn,, M. C. Santos,, F. F. Schmitzberger,, G. Sherlock,, P. Shah,, K. A. Silverstein,, M. S. Skrzypek,, D. Soll,, R. Staggs,, I. Stansfield,, M. P. Stumpf,, P. E. Sudbery,, T. Srikantha,, Q. Zeng,, J. Berman,, M. Berriman,, J. Heitman,, N. A. Gow,, M. C. Lorenz,, B. W. Birren,, M. Kellis,, and C. A. Cuomo. 2009. Evolution of pathogenicity and sexual reproduction in eight Candida genomes. Nature 459: 657 662.
17. Chen, X.,, B. B. Magee,, D. Dawson,, P. T. Magee,, and C. A. Kumamoto. 2004. Chromosome 1 trisomy compromises the virulence of Candida albicans. Mol. Microbiol. 51: 551 565.
18. Chibana, H.,, and P. T. Magee. 2009. The enigma of the major repeat sequence of Candida albicans. Future Microbiol. 4: 171 179.
19. Chibana, H.,, J. L. Beckerman,, and P. T. Magee. 2000. Fine-resolution physical mapping of genomic diversity in Candida albicans. Genome Res. 10: 1865 1877.
20. Chindamporn, A.,, Y. Nakagawa,, I. Mizuguchi,, H. Chibana,, M. Doi,, and K. Tanaka. 1998. Repetitive sequences (RPS) in the chromosomes of Candida albicans are sandwiched between two novel stretches, HOK and RB2, common to each chromosome. Microbiology 144: 849 857.
21. Chu, W. S.,, B. B. Magee,, P. T. Magee. 1993. Construction of an SfiI macrorestriction map of the Candida albicans genome. J. Bacteriol. 175: 6637 6651.
22. Ciudad, T.,, E. Andaluz,, O. Steinberg-Neifach,, N. Lue,, N. Gow,, R. Calderone,, and G. Larriba. 2004. Homologous recombination in Candida albicans: role of CaRad52p in DNA repair, integration of linear DNA fragments and telomere length. Mol. Microbiol. 53: 1177 1194.
23. Coste, A.,, A. Selmecki,, A. Forche,, D. Diogo,, M.-E. Bougnoux,, C. d’Enfert,, J. Berman,, and D. Sanglard. 2007. Genotypic evolution of azole resistance mechanisms in sequential Candida albicans isolates. Eukaryot. Cell 6: 1889 1904.
24. Coste, A. T.,, M. Karababa,, F. Ischer,, J. Bille,, and D. Sanglard. 2004. TAC1, transcriptional activator of CDR genes, is a new transcription factor involved in the regulation of Candida albicans ABC transporters CDR1 and CDR2. Eukaryot. Cell 3: 1639 1652.
25. Coste, A.,, V. Turner,, F. Ischer,, J. Morschhäuser,, A. Forche,, A. Selmecki,, J. Berman,, J. Bille,, and D. Sanglard. 2006. A mutation in Tac1p, a transcription factor regulating CDR1 and CDR2, is coupled with loss of heterozygosity at Chromosome 5 to mediate antifungal resistance in Candida albicans. Genetics 172: 2139 2156.
26. Cowen, L. E.,, C. Sirjusingh,, R. C. Summerbell,, S. Walmsley,, S. Richardson,, L. M. Kohn,, and J. B. Anderson. 1999. Multilocus genotypes and DNA fingerprints do not predict variation in azole resistance among clinical isolates of Candida albicans. Antimicrob. Agents Chemother. 43: 2930 2938.
27. Daniels, K. J.,, T. Srikantha,, S. R. Lockhart,, C. Pujol,, and D. R. Soll. 2006. Opaque cells signal white cells to form biofilms in Candida albicans. EMBO J. 25: 2240 2252.
28. Dignard, D.,, A. L. El-Naggar,, M. E. Logue,, G. Butler,, and M. Whiteway. 2007. Identification and characterization of MFA1, the gene encoding Candida albicans a-factor pheromone. Eukaryot. Cell 6: 487 494.
29. Diogo, D.,, C. Bouchier,, C. d’Enfert,, and M.-E. Bougnoux. 2009. Loss of heterozygosity in commensal isolates of the asexual diploid yeast Candida albicans. Fungal Genet. Biol. 46: 159 168.
30. Dodgson, A. R.,, K. J. Dodgson,, C. Pujol,, M. A. Pfaller,, and D. R. Soll. 2004. Clade-specific flucytosine resistance is due to a single nucleotide change in the FUR1 gene of Candida albicans. Antimicrob. Agents Chemother. 48: 2223 2227.
31. Doi, M.,, M. Homma,, A. Chindamporn,, and K. Tanaka. 1992. Estimation of chromosome number and size by pulsed-field gel electrophoresis (PFGE) in medically important Candida species. J. Gen. Microbiol. 138: 2241 2251.
32. Doi, M.,, M. Homma,, S. I. Iwaguchi,, K. Horibe,, and K. Tanaka. 1994. Strain relatedness of Candida albicans strains isolated from children with leukemia and their bedside parent. J. Clin. Microbiol. 32: 2253 2259.
33. Dumitru, R.,, D. H. M. L. P. Navarathna,, C. P. Semighini,, C. G. Elowsky,, R. V. Dumitru,, D. Dignard,, M. Whiteway,, A. L. Atkin,, and K. W. Nickerson. 2007. In vivo and in vitro anaerobic mating in Candida albicans. Eukaryot. Cell 6: 465 472.
34. Fischer, G.,, E. P. C. Rocha,, F. Brunet,, M. Vergassola,, and B. Dujon. 2006. Highly variable rates of genome rearrangements between hemiascomycetous yeast lineages. PLoS Genet. 2: e32.
35. Fonzi, W. A.,, and M. Y. Irwin. 1993. Isogenic strain construction and gene mapping in Candida albicans. Genetics 134: 717 728.
36. Forche, A.,, K. Alby,, D. Schaefer,, A. D. Johnson,, J. Berman,, and R. J. Bennett. 2008. The parasexual cycle in Candida albicans provides an alternative pathway to meiosis for the formation of recombinant strains. PLoS Biol. 6: e110.
37. Forche, A.,, G. Schönian,, Y. Gräser,, R. Vilgalys,, and T. G. Mitchell. 1999. Genetic structure of typical and atypical populations of Candida albicans from Africa. Fungal Genet. Biol. 28: 107 125.
38. Gee, S. G.,, S. Joly,, D. R. Soll,, J. F. G. M. Meis,, P. E. Verweij,, I. Polacheck,, D. J. Sullivan,, and D. C. Coleman. 2002. Identification of four distinct genotypes of Candida dubliniensis and detection of microevolution in vitro and in vivo. J. Clin. Microbiol. 40: 556 574.
39. Goddard, M. R., 2007. Why bother with sex? Answers from experiments with yeast and other organisms, p. 489 506. In J. Heitman,, J. W. Kronstad,, J. W. Taylor,, and L. A. Casselton (ed.), Sex in Fungi: Molecular Determination and Evolutionary Implications. ASM Press, Washington, DC.
40. Goodwin, T. J. D.,, and R. T. M. Poulter. 2000. Multiple LTR-retrotransposon families in the asexual yeast Candida albicans. Genome Res. 10: 174 191.
41. Goodwin, T. J. D.,, J. E. Ormandy,, and R. T. M. Poulter. 2001. L1-like non-LTR retrotransposons in the yeast Candida albicans. Curr. Genet. 39: 83 91.
42. Goodwin, T. J. D.,, J. N. Busby,, and R. T. M. Poulter. 2007. A yeast model for target-primed (non-LTR) retrotransposition. BMC Genomics 8: e263.
43. Gräser, Y.,, M. Volovsek,, J. Arrington,, G. Schönian,, W. Presber,, T. G. Mitchell,, and R. Vilgalys. 1996. Molecular markers reveal that population structure of the human pathogen Candida albicans exhibits both clonality and recombination. Proc. Natl. Acad. Sci. USA 93: 12473 12477.
44. Hilton, C.,, D. Markie,, B. Corner,, E. Rikkerink,, and R. Poulter. 1985. Heat shock induces chromosome loss in the yeast Candida albicans. Mol. Gen. Genet. 200: 162 168.
45. Holmes, A. R.,, S. Tsao,, S.-W. Ong,, E. Lamping,, K. Niimi,, B. C. Monk,, M. Niimi,, A. Kaneko,, B. R. Holland,, J. Schmid,, and R. D. Cannon. 2006. Heterozygosity and functional allelic variation in the Candida albicans efflux pump genes CDR1 and CDR2. Mol. Microbiol. 62: 170 186.
46. Hoyer, L. L. 2001. The ALS gene family of Candida albicans. Trends Microbiol. 9: 176 180.
47. Huang, G.,, H. Wang,, S. Chou,, X. Nie,, J. Chen,, and H. Liu. 2006. Bistable expression of WOR1, a master regulator of white-opaque switching in Candida albicans. Proc. Natl. Acad. Sci. USA 103: 12813 12818.
48. Huang, G.,, T. Srikantha,, N. Sahni,, S. Yi,, and D. R. Soll. 2009. CO 2 regulates white-to-opaque switching in Candida albicans. Curr. Biol. 19: 330 334.
49. Hull, C. M.,, and A. D. Johnson. 1999. Identifcation of a mating type-like locus in the asexual pathogenic yeast Candida albicans. Science 285: 1271 1275.
50. Hull, C. M.,, R. M. Raisner,, and A. D. Johnson. 2000. Evidence for mating of the “asexual” yeast Candida albicans in a mammalian host. Science 289: 307 310.
51. Ibrahim, A. S.,, B. B. Magee,, D. C. Sheppard,, M. Yang,, S. Kauffman,, J. Becker,, J. E. Edwards, Jr.,, and P. T. Magee. 2005. Effects of ploidy and mating type on virulence of Candida albicans. Infect. Immun. 73: 7366 7374.
52. Iwaguchi, S.-I.,, M. Sato,, B. B. Magee,, P. T. Magee,, K. Makimura, and T Suzuki. 2001. Extensive chromosome translocation in a clinical isolate showing the distinctive carbohydrate assimilation profile from a candidiasis patient. Yeast 18: 1035 1046.
53. Iwaguchi, S.,, M. Homma,, and K. Tanaka. 1990. Variation in the electrophoretic karyotype analysed by the assignment of DNA probes in Candida albicans. J. Gen. Microbiol. 136: 2433 2442.
54. Iwaguchi, S.,, M. Homma,, and K. Tanaka. 1992. Clonal variation of chromosome size derived from the rDNA cluster region in Candida albicans. J. Gen. Microbiol. 138: 1177 1184.
55. Iwaguchi, S.,, M. Suzuki,, N. Sakai,, Y. Nakagawa,, P. T. Magee,, and T. Suzuki. 2004. Chromosome translocation induced by the insertion of the URA blaster into the major repeat sequence (MRS) in Candida albicans. Yeast 21: 619 634.
56. Jacobsen, M. D.,, A. D Duncan,, J. Bain,, E. M. Johnson,, J. R. Naglik,, D. J. Shaw,, N. A. R. Gow,, and F. C. Odds. 2008a. Mixed Candida albicans strain populations in colonized and infected mucosal tissues. FEMS Yeast Res. 8: 1334 1338.
57. Jacobsen, M. D.,, A. M. J. Rattray,, N. A. Gow,, F. C. Odds,, and D. J. Shaw. 2008b. Mitochondrial haplotypes and recombination in Candida albicans. Med. Mycol. 46: 647 654.
58. Janbon, G.,, F. Sherman,, and E. Rustchenko. 1998. Monosomy of a specific chromosome determines L-sorbose utilization: a novel regulatory mechanism in Candida albicans. Proc. Natl. Acad. Sci. USA 95: 5150 5155.
59. Joly, S.,, C. Pujol,, and D. R. Soll. 2002. Microevolutionary changes and chromosomal translocations are more frequent at RPS loci in Candida dubliniensis than in Candida albicans. Infect. Genet. Evol. 2: 19 37.
60. Joly, S.,, C. Pujol,, M. Rysz,, K. Vargas,, and D. R. Soll. 1999. Development and characterization of complex DNA fingerprinting probes for the infectious yeast Candida dubliniensis. J. Clin. Microbiol. 37: 1035 1044.
61. Jones, T.,, N. A. Federspiel,, H. Chibana,, J. Dungan,, S. Kalman,, B. B. Magee,, G. Newport,, Y. R. Thorstenson,, N. Agabian,, P. T. Magee,, R. W. Davis,, and S. Scherer. 2004. The diploid genome sequence of Candida albicans. Proc. Natl. Acad. Sci. USA 101: 7329 7334.
62. Kanbe, T.,, T. Arishima, T Horii, and A. Kibuchi. 2003. Improvement of PCR-based identification targeting the DNA topoisomerase II gene to determine major species of the opportunistic fungi Candida and Aspergillus fumigatus. Microbiol. Immunol. 47: 631 638.
63. Kvaal, C. A.,, T. Srikantha,, and D. R. Soll. 1997. Misexpression of the white-phase-specific gene WH11 in the opaque phase of Candida albicans affects switching and virulence. Infect. Immun. 65: 4468 4475.
64. Kvaal, C.,, S. A. Lachke,, T. Srikantha,, K. Daniels,, J. McCoy,, and D. R. Soll. 1999. Misexpression of the opaque-phase-specific gene PEP1 ( SAP1) in the white phase of Candida albicans confers increased virulence in a mouse model of cutaneous infection. Infect. Immun. 67: 6652 6662.
65. Lasker, B. A.,, G. F. Carle,, G. S. Kobayashi,, and G. Medoff. 1989. Comparison of the separation of Candida albicans chromosome-sized DNA by pulsed-field gel electrophoresis techniques. Nucleic Acids Res. 17: 3783 3793.
66. Legrand, M.,, A. Forche,, A. Selmecki,, C. Chan,, D. T. Kirkpatrick,, and J. Berman. 2008. Haplotype mapping of a diploid non-meiotic organism using existing and induced aneuploidies. PLoS Genet. 4: e1.
67. Legrand, M.,, P. Lephart,, A. Forche,, F.-M. C. Mueller,, T. Walsh,, P. T. Magee,, and B. B. Magee. 2004. Homozygosity at the MTL locus in clinical strains of Candida albicans: karyotypic rearrangements and tetraploid formation. Mol. Microbiol. 52: 1451 1462.
68. Lephart, P. R.,, and P. T. Magee. 2006. Effect of the major repeat sequence on mitotic recombination in Candida albicans. Genetics 174: 1737 1744.
69. Lephart, P. R.,, H. Chibana,, and P. T. Magee. 2005. Effect of the major repeat sequence on chromosome loss in Candida albicans. Eukaryot. Cell 4: 733 741.
70. Lockhart, S. R.,, B. Reed,, and D. R. Soll. 1996. Most frequent scenario for recurrent Candida vaginitis is strain maintenance with “substrain shuffling”: demonstration by sequential DNA fingerprinting with probes Ca3, C1, and CARE2. J. Clin. Microbiol. 34: 767 777.
71. Lockhart, S. R.,, C. Pujol,, K. J. Daniels,, M. G. Miller,, A. D. Johnson,, M. A. Pfaller,, and D. R. Soll. 2002. In Candida albicans, white-opaque switchers are homozygous for mating type. Genetics 162: 737 745.
72. Lockhart, S. R.,, J. J. Fritch,, A. S. Meier,, K. Schröppel,, T. Srikantha,, R. Galask,, and D. R. Soll. 1995. Colonizing populations of Candida albicans are clonal in origin but undergo microevolution through C1 fragment reorganization as demonstrated by DNA fingerprinting and C1 sequencing. J. Clin. Microbiol. 33: 1501 1509.
73. Lockhart, S. R.,, K. J. Daniels,, R. Zhao,, D. Wessels,, and D. R. Soll. 2003a. Cell biology of mating in Candida albicans. Eukaryot. Cell 2: 49 61.
74. Lockhart, S. R.,, R. Zhao,, K. J. Daniels,, and D. R. Soll. 2003b. a-pheromone-induced “shmooing” and gene regulation require white-opaque switching during Candida albicans mating. Eukaryot. Cell 2: 847 855.
75. Lockhart, S. R.,, W. Wu,, J. B. Radke,, R. Zhao,, and D. R. Soll. 2005. Increased virulence and competitive advantage of a/a over a/a or a/a offspring conserves the mating system of Candida albicans. Genetics 169: 1883 1890.
76. Lott, T. J.,, R. E. Fundyga,, R. J. Kuykendall,, and J. Arnold. 2005. The human commensal yeast, Candida albicans, has an ancient origin. Fungal Genet. Biol. 42: 444 451.
77. Magee, B. B.,, and P. T. Magee. 1987. Electrophoretic karyotypes and chromosome numbers in Candida species. J. Gen. Microbiol. 133: 425 430.
78. Magee, B. B.,, and P. T. Magee. 1997. WO-2, a stable aneuploid derivative of Candida albicans strain WO-1, can switch from white to opaque and form hyphae. Microbiology 143: 289 295.
79. Magee, B. B.,, M. D. Sanchez,, D. Saunders,, D. Harris,, M. Berriman,, and P. T. Magee. 2008. Extensive chromosome rearrangements distinguish the karyotype of the hypovirulent species Candida dubliniensis from the virulent Candida albicans. Fungal Genet. Biol. 45: 338 350.
80. McManus, B. A.,, D. C. Coleman,, G. Moran,, E. Pinjon,, D. Diogo,, M.-E. Bougnoux,, S. Borecká-Melkusova,, H. Bujdákova,, P. Murphy,, C. d’Enfert,, and D. J. Sullivan. 2008. Multilocus sequence typing reveals that the population structure of Candida dubliniensis is significantly less divergent than that of Candida albicans. J. Clin. Microbiol. 46: 652 664.
81. Miller, M. G.,, and A. D. Johnson. 2002. White-opaque switching in Candida albicans is controlled by mating-type locus homeodomain proteins and allows efficient mating. Cell 110: 293 302.
82. Mishra, P. K.,, M. Baum,, and J. Carbon. 2007. Centromere size and position in Candida albicans are evolutionarily conserved independent of DNA sequence heterogeneity. Mol. Genet. Genomics 278: 455 465.
83. Navarro-Garcia, F.,, R. M. Pérez-Diaz,, B. B. Magee,, J. Pla,, C. Nombela,, and P. Magee. 1995. Chromosome reorganization in Candida albicans 1001 strain . J. Med. Vet. Mycol. 33: 361 366.
84. Odds, F. C.,, M.-E. Bougnoux,, D. J. Shaw,, J. M. Bain,, A. D. Davidson,, D. Diogo,, M. D. Jacobsen,, M. Lecomte,, S.-Y. Li,, A. Tavanti,, M. C. J. Maiden,, N. A. R. Gow,, and C. d’Enfert. 2007. Molecular phylogenetics of Candida albicans. Eukaryot. Cell 6: 1041 1052.
85. Oh, S.-H.,, G. Cheng,, J. A. Nuessen,, R. Jajko,, K. M. Yeater,, X. Zhao,, C. Pujol,, D. R. Soll,, and L. L. Hoyer. 2005. Functional specificity of Candida albicans Als3p proteins and clade specificity of ALS3 alleles discriminated by the number of copies of the tandem repeat sequence in the central domain. Microbiology 151: 673 681.
86. Olaiya, A. F.,, and S. J. Sogin. 1979. Ploidy determination of Candida albicans. J. Bacteriol. 140: 1043 1049.
87. Perea, S.,, J. L. López-Ribot,, W. R. Kirkpatrick,, R. K. McAtee,, R. A. Santillán,, M. Martínez,, D. Calabrese,, D. Sanglard,, and T. F. Patterson. 2001. Prevalence of molecular mechanisms of resistance to azole antifungal agents in Candida albicans strains displaying high-level fluconazole resistance isolated from human immunodeficiency virus-infected patients. Antimicrob. Agents Chemother. 45: 2676 2684.
88. Perepnikhatka, V.,, F. J. Fischer,, M. Niimi,, R. A. Baker,, R. D. Cannon,, Y.-K. Wang,, F. Sherman,, and E. Rustchenko. 1999. Specific chromosome alterations in fluconazole-resistant mutants of Candida albicans. J. Bacteriol. 181: 4041 4049.
89. Pfaller, M. A.,, and D. J. Diekema. 2004. Twelve years of fluconazole in clinical practice: global trends in species distribution and fluconazole susceptibility of bloodstream isolates of Candida. Clin. Microbiol. Infect. 10( Suppl. 1): 11 23.
90. Pujol, C.,, A. Dodgson,, and D. R. Soll,. 2005. Population genetics of ascomycetes pathogenic to humans and animals, p. 149 188. In J. Xu (ed.), Evolutionary Genetics of Fungi. Horizon Scientific Press, Norwich, United Kingdom.
91. Pujol, C.,, J. Reynes,, F. Renaud,, M. Raymond,, M. Tibayrenc,, F. J. Ayala,, F. Janbon,, M. Mallié,, and J.-M. Bastide. 1993. The yeast Candida albicans has a clonal mode of reproduction in a population of infected human immunodeficiency virus-positive patients. Proc. Natl. Acad. Sci. USA 90: 9456 9459.
92. Pujol, C.,, M. Pfaller,, and D. R. Soll. 2002. Ca3 fingerprinting of Candida albicans bloodstream isolates from the United States, Canada, South America, and Europe reveals a European clade. J. Clin. Microbiol. 40: 2729 2740.
93. Pujol, C.,, S. A. Messer,, M. Pfaller,, and D. R. Soll. 2003. Drug resistance is not directly affected by mating type locus zygosity in Candida albicans. Antimicrob. Agents Chemother. 47: 1207 1212.
94. Pujol, C.,, S. Joly,, B. Nolan,, T. Srikantha,, and D. R. Soll. 1999. Microevolutionary changes in Candida albicans identified by the complex Ca3 fingerprinting probe involve insertions and deletions of the full-length repetitive sequence RPS at specific genomic sites. Microbiology 145: 2635 2646.
95. Pujol, C.,, S. Joly,, S. R. Lockhart,, S. Noel,, M. Tibayrenc,, and D. R. Soll. 1997. Parity among the randomly amplified polymorphic DNA method, multilocus enzyme electrophoresis, and Southern blot hybridization with the moderately repetitive DNA probe Ca3 for fingerprinting Candida albicans. J. Clin. Microbiol. 35: 2348 2358.
96. Ramírez-Zavala, B.,, O. Reuβ,, Y.-N. Park,, K. Ohlsen,, and J. Morschhäuser. 2008. Environmental induction of white-opaque switching in Candida albicans. PLoS Pathog. 4: e1000089.
97. Ramsey, H.,, B. Morrow,, and D. R. Soll. 1994. An increase in switching frequency correlates with an increase in recombination of the ribosomal chromosomes of Candida albicans strain 3153A. Microbiology 140: 1525 1531.
98. Rauceo, J. M.,, R. De Armond,, H. Otoo,, P. C. Kahn,, S. A. Klotz,, N. K. Gaur,, and P. N. Lipke. 2006. Threonine-rich repeats increase fibronectin binding in the Candida albicans adhesin Als5p. Eukaryot. Cell 5: 1664 1673.
99. Reedy, J. L.,, A. M. Floyd,, and J. Heitman. 2009. Mechanistic plasticity of sexual reproduction and meiosis in the Candida pathogenic species complex. Curr. Biol. 19: 891 899.
100. Robles, J. C.,, L. Koreen,, S. Park,, and D. S. Perlin. 2004. Multilocus sequence typing is a reliable alternative method to DNA fingerprinting for discriminating among strains of Candida albicans. J. Clin. Microbiol. 42: 2480 2488.
101. Ruan, S.-Y.,, and P.-R. Hsueh. 2009. Invasive candidiasis: an overview from Taiwan. J. Formos. Med. Assoc. 108: 443 451.
102. Rustad, T. R.,, D. A. Stevens,, M. A. Pfaller, and T. C. White. 2002. Homozygosity at the Candida albicans MTL locus associated with azole resistance. Microbiology 148: 1061 1072.
103. Rustchenko, E. P.,, D. H. Howard,, and F. Sherman. 1994. Chromosomal alterations of Candida albicans are associated with the gain and loss of assimilating functions. J. Bacteriol. 176: 3231 3241.
104. Rustchenko, E. P.,, T. M. Curran,, and F. Sherman. 1993. Variations in the number of ribosomal DNA units in morphological mutants and normal strains of Candida albicans and in normal strains of Saccharomyces cerevisiae. J. Bacteriol. 175: 7189 7199.
105. Rustchenko-Bulgac, E. P. 1991. Variations of Candida albicans electrophoretic karyotypes. J. Bacteriol. l 73: 6586 6596.
106. Rustchenko-Bulgac, E. P.,, F. Sherman,, and J. B. Hicks. 1990. Chromosomal rearrangements associated with morphological mutants provide a means for genetic variation in Candida albicans. J. Bacteriol. 172: 1276 1283.
107. Sadhu, C.,, M. J. McEachern,, E. P. Rustchenko-Bulgac,, J. Schmid,, D. R. Soll,, and J. B. Hicks. 1991. Telomeric and dispersed repeat sequences in Candida yeasts and their use in strain identification. J. Bacteriol. 173: 842 850.
108. Sahni, N.,, S. Yi,, C. Pujol,, and D. R. Sol. 2009. The white cell response to pheromone is a general characteristic of Candida albicans strains. Eukaryot. Cell 8: 251 256.
109. Sanglard, D.,, F. Ischer,, L. Koymans,, and J. Bille. 1998. Amino acid substitutions in the cytochrome P450 lanosterol 14a-demethylase (CYP51A1) from azole-resistant Candida albicans clinical isolates contributing to the resistance to azole antifungal agents. Antimicrob. Agents Chemother. 42: 241 253.
110. Sanz, M.,, R. Valle,, and C. Roncero. 2007. Promoter heterozygosity at the Candida albicans CHS7 gene is translated into differential expression between alleles. FEMS Yeast Res. 7: 993 1003.
111. Scherer, S.,, and D. A. Stevens. 1988. A Candida albicans dispersed, repeated gene family and its epidemiological applications. Proc. Natl. Acad. Sci. USA 85: 1452 1456.
112. Schmid, J.,, E. Voss,, and D. R. Soll. 1990. Computer-assisted methods for assessing strain relatedness in Candida albicans by fingerprinting with the moderately repetitive sequence Ca3. J. Clin. Microbiol. 28: 1236 1243.
113. Selmecki, A.,, A. Forche,, and J. Berman. 2006. Aneuploidy and isochromosome formation in drug-resistant Candida albicans. Science 313: 367 370.
114. Selmecki, A.,, M. Gerami-Nejad,, C. Paulson,, A. Forche,, and J. Berman. 2008. An isochromosome confers drug resistance in vivo by amplification of two genes, ERG11 and TAC1. Mol. Microbiol. 68: 624 641.
115. Selmecki, A.,, S. Bergmann,, and J. Berman. 2005. Comparative genome hybridization reveals widespread aneuploidy in Candida albicans laboratory strains. Mol. Microbiol. 55: 1553 1565.
116. Snell, R. G.,, I. F. Hermans,, R. J. Wilkins,, and B. E. Cornerl. 1987. Chromosomal variations in Candida albicans. Nucleic Acids Res. 15: 3625.
117. Slutsky, B.,, J. Buffo,, and D. R. Soll. 1985. High frequency switching of colony morphology in Candida albicans. Science 230: 666 669.
118. Slutsky, B.,, M. Staebell,, J. Anderson,, L. Risen,, M. Pfaller,, and D. R. Soll. 1987. “White-opaque transition”: a second high-frequency switching system in Candida albicans. J. Bacteriol. 169: 189 197.
119. Soll, D. R. 1992. High-frequency switching in Candida albicans. Clin. Microbiol. Rev. 5: 183 203.
120. Soll, D. R. 2000. The ins and outs of DNA fingerprinting the infectious fungi. Clin. Microbiol. Rev. 13: 332 370.
121. Soll, D. R.,, and C. Pujol. 2003. Candida albicans clades. FEMS Immunol. Med. Microbiol. 39: 1 7.
122. Soll, D. R.,, C. J. Langtimm,, J. McDowell,, J. Hicks,, and R. Galask. 1987. High-frequency switching in Candida strains isolated from vaginitis patients. J. Clin. Microbiol. 25: 1611 1622.
123. Soll, D. R.,, C. Pujol,, and T. Srikantha. 2009. Sex: deviant mating in yeast. Curr. Biol. 19: R509 R511.
124. Soll, D. R.,, R. Galask,, J. Schmid,, C. Hanna,, K. Mac,, and B. Morrow. 1991. Genetic dissimilarity of commensal strains carried in different anatomical locations of the same healthy women. J. Clin. Microbiol. 29: 1702 1710.
125. Srikantha, T.,, A. R. Borneman,, K. J. Daniels,, C. Pujol,, W. Wu,, M. R. Seringhaus,, M. Gerstein,, S. Yi,, M. Snyder,, and D. R. Soll. 2006. TOS9 regulates white-opaque switching in Candida albicans. Eukaryot. Cell 5: 1674 1687.
126. Staib, P.,, M. Kretschmar,, T. Nichterlein,, H. Hof,, and J. Morschhäuser. 2002. Host versus in vitro signals and intrastrain allelic differences in the expression of a Candida albicans virulence gene. Mol. Microbiol. 44: 1351 1366.
127. Sudbery, P.,, N. Gow,, and J. Berman. 2004. The distinct morphogenic states of Candida albicans. Trends Microbiol. 12: 317 324.
128. Sullivan, D. J.,, G. P. Moran,, E. Pinjon,, A. Al-Mosaid,, C. Stokes,, C. Vaughan,, and D. C. Coleman. 2004. Comparison of the epidemiology, drug resistance mechanisms, and virulence of Candida dubliniensis and Candida albicans. FEMS Yeast Res. 4: 369 376.
129. Suzuki, T.,, S. Nishibayashi,, T. Kuroiwa,, T. Kanbe,, and K. Tanaka. 1982. Variance of ploidy in Candida albicans. J. Bacteriol. 152: 893 896.
130. Tavanti, A.,, A. D. Davidson,, M. J. Fordyce,, N. A. Gow,, M. C. Maiden,, and F. C. Odds. 2005. Population structure and properties of Candida albicans, as determined by multilocus sequence typing. J. Clin. Microbiol. 43: 5601 5613.
131. Tavanti, A.,, N. A. R. Gow,, M. C. J. Maiden,, F. C. Odds,, and D. J. Shaw. 2004. Genetic evidence for recombination in Candida albicans based on haplotype analysis. Fungal Genet. Biol. 41: 553 562.
132. Tsong, A. E.,, M. G. Miller,, R. M. Raisner,, and A. D. Johnson. 2003. Evolution of a combinatorial transcriptional circuit: a case study in yeasts. Cell 115: 389 399.
133. Tzung, K. W.,, R. M. Williams,, S. Scherer,, N. Federspiel,, T. Jones,, N. Hansen,, V. Bivolarevic,, L. Huizar,, C. Komp,, R. Surzycki,, R. Tamse,, R. W. Davis,, and N. Agabian. 2001. Genomic evidence for a complete sexual cycle in Candida albicans. Proc. Natl. Acad. Sci. USA 98: 3249 3253.
134. Uhl, M. A.,, M. Biery,, N. Craig,, and A. D. Johnson. 2003. Haploinsufficiency-based large-scale forward genetic analysis of filamentous growth in the diploid human fungal pathogen C. albicans. EMBO J. 22: 2668 2678.
135. Van Kruiningen, H. J.,, M. Joossens,, S. Vermeire,, S. Joossens,, S. Debeugny,, C. Gower-Rousseau,, A. Cortot,, J. F. Colombel,, P. Rutgeerts,, and R. Vlietinck. 2005. Environmental factors in familial Crohn’s disease in Belgium. Inflamm. Bowel Dis. 11: 360 365.
136. Welch, D. M.,, and M. Meselson. 2000. Evidence for the evolution of bdelloid rotifers without sexual reproduction or genetic exchange. Science 288: 1211 1215.
137. Wellington, M.,, and E. Rustchenko. 2005. 5-Fluoro-orotic acid induces chromosome alterations in Candida albicans. Yeast 22: 57 70.
138. Whelan, W. L.,, and D. R. Soll. 1982. Mitotic recombination in Candida albicans: recessive lethal alleles linked to a gene required for methionine biosynthesis. Mol. Gen. Genet. 187: 477 485.
139. White, T. C. 1997. The presence of an R467K amino acid substitution and loss of allelic variation correlate with an azole-resistant lanosterol 14-alpha-demethylase in Candida albicans. Antimicrob. Agents Chemother. 41: 1488 1494.
140. White, T. C.,, K. A. Marr,, and R. A. Bowden. 1998. Clinical, cellular, and molecular factors that contribute to antifungal drug resistance. Clin. Microbiol. Rev. 11: 382 402.
141. Wickes, B.,, J. Staudinger,, B. B. Magee,, K.-J. Kwon-Chung,, P. T. Magee,, and S. Scherer. 1991 Physical and genetic mapping of Candida albicans: several genes previously assigned to chromosome 1 map to chromosome R, the rDNA-containing linkage group. Infect. Immun. 59: 2480 2484.
142. Wilson, M. J.,, D. W. Williams,, M. D. L. Forbes,, I. G. Finlay,, and M. A. O. Lewis. 2001. A molecular epidemiological study of sequential oral isolates of Candida albicans from terminally ill patients. J. Oral Pathol. Med. 30: 206 212.
143. Wu, W.,, C. Pujol,, S. R. Lockhart,, and D. R. Soll. 2005. Chromosome loss followed by duplication is the major mechanism of spontaneous mating-type locus homozygosis in Candida albicans. Genetics 169: 1311 1327.
144. Wu, W.,, S. R. Lockhart,, C. Pujol,, T. Srikantha,, and D. R. Soll. 2007. Heterozygosity of genes on the sex chromosome regulates Candida albicans virulence. Mol. Microbiol. 64: 1587 1604.
145. Yi, S.,, N. Sahni,, K. J. Daniels,, C. Pujol,, T. Srikantha,, and D. R. Soll. 2008. The same receptor, G protein, and mitogen-activated protein kinase pathway activate different downstream regulators in the alternative white and opaque pheromone responses of Candida albicans. Mol. Biol. Cell 19: 957 970.
146. Yi, S.,, N. Sahni,, C. Pujol,, K. J. Daniels,, T. Srikantha,, N. Ma,, and D. R. Soll. 2009. A Candida albicans-specific region of the a-pheromone receptor plays a selective role in the white cell pheromone response. Mol. Microbiol. 71: 925 947.
147. Zeyl, C., 2007. Ploidy and the sexual yeast genome in theory, nature, and experiment, p. 507 525. In J. Heitman,, J. W. Kronstad,, J. W. Taylor,, and L. A. Casselton (ed.), Sex in Fungi: Molecular Determination and Evolutionary Implications. ASM Press, Washington, DC.
148. Zhao, X.,, C. Pujol,, D. R. Soll,, and L. L. Hoyer. 2003. Allelic variation in the contiguous loci encoding Candida albicans ALS5, ALS1 and ALS9. Microbiology 149: 2947 2960.
149. Zhao, X.,, S.-H. Oh,, and L. L. Hoyer. 2007. Unequal contribution of ALS9 alleles to adhesion between Candida albicans and human vascular endothelial cells. Microbiology 153: 2342 2350.
150. Zordan, R. E.,, D. J. Galgoczy,, and A. D. Johnson. 2006. Epigenetic properties of white-opaque switching in Candida albicans are based on a self-sustaining transcriptional feedback loop. Proc. Natl. Acad. Sci. USA 103: 12807 12812.


Generic image for table

The proportion of -homozygous strains increases in older collections

Citation: Pujol C, Soll D. 2012. Genome Plasticity in , p 303-325. In Hacker J, Dobrindt U, Kurth R (ed), Genome Plasticity and Infectious Diseases. ASM Press, Washington, DC. doi: 10.1128/9781555817213.ch18

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error