Chapter 19 : Genome Plasticity of Species

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

Genome Plasticity of Species, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817213/9781555817084_Chap19-1.gif /docserver/preview/fulltext/10.1128/9781555817213/9781555817084_Chap19-2.gif


The chapter on genome plasticity of species focuses on the genome of various species. Aspergilli have an important impact on humankind, both beneficial and detrimental. On the one hand, some species are used industrially for the production or refinement of beverages, enzymes, food additives, or pharmaceuticals. The main genome features of fully sequenced genomes are summarized. The likelihood of finding genes belonging to these functional categories in the chromosomal center is six times higher than that of finding them within the subtelomeric regions. The function of most secondary metabolites in the producing organism is not known yet. As biologically active compounds they might protect the fungus against other soil inhabitants and may also contribute to weakening of the host immune system. Genes involved in the production of secondary metabolites are often organized in a cluster. Many of the clusters for biosynthesis of secondary metabolites contain regulatory genes. Secondary metabolite gene clusters are located predominantly in plasticity zones; in only the DHN melanin biosynthesis cluster and the Pes-1-associated cluster are not part of a plasticity zone. In eukaryotes, intragenic tandem repeats (ITRs) are not equally distributed in protein-encoding genes but tend to be biased to the end of the protein.

Citation: Heinekamp T, Brakhage A. 2012. Genome Plasticity of Species, p 326-342. In Hacker J, Dobrindt U, Kurth R (ed), Genome Plasticity and Infectious Diseases. ASM Press, Washington, DC. doi: 10.1128/9781555817213.ch19
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of FIGURE 1

Electron micrograph of an conidiophore. The conidiophore shows the typical columnar, uniseriate conidial head. Phialides are the conidiogenous cells which produce long chains of conidia in basipetal succession. Micrograph kindly provided by Jeannette Schmaler-Ripcke, Hans Knöll Institute and Center for Electron Microscopy, Friedrich Schiller University, Jena, Germany. doi:10.1128/9781555817213.ch19f01

Citation: Heinekamp T, Brakhage A. 2012. Genome Plasticity of Species, p 326-342. In Hacker J, Dobrindt U, Kurth R (ed), Genome Plasticity and Infectious Diseases. ASM Press, Washington, DC. doi: 10.1128/9781555817213.ch19
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2

Chromosomal localization of secondary metabolite gene clusters in . Putative secondary metabolite gene clusters from were obtained from precomputed results of the Web-based tool SMURF. The positions of secondary metabolite clusters are depicted by arrowheads; the cluster number corresponds to the SMURF prediction. Arrowheads without a number show the positions of single NRPS or PKS genes. Telomeric regions are indicated in gray. doi:10.1128/9781555817213.ch19f02

Citation: Heinekamp T, Brakhage A. 2012. Genome Plasticity of Species, p 326-342. In Hacker J, Dobrindt U, Kurth R (ed), Genome Plasticity and Infectious Diseases. ASM Press, Washington, DC. doi: 10.1128/9781555817213.ch19
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Amutan, M.,, E. Nyyssonen,, J. Stubbs,, M. R. Diaz-Torres,, and N. Dunn-Coleman. 1996. Identification and cloning of a mobile transposon from Aspergillus niger var. awamori. Curr. Genet. 29: 468 473.
2. Anitha, R.,, and K. Murugesan. 2005. Production of gliotoxin on natural substrates by Trichoderma virens. J. Basic Microbiol. 45: 12 19.
3. Arnaud, M. B.,, M. C. Chibucos,, M. C. Costanzo,, J. Crabtree,, D. O. Inglis,, A. Lotia,, J. Orvis,, P. Shah,, M. S. Skrzypek,, G. Binkley,, S. R. Miya sato,, J. R. Wortman,, and G. Sherlock. 2010. The Aspergillus Genome Database, a curated comparative genomics resource for gene, protein and sequence information for the Aspergillus research community. Nucleic Acids Res. 38: D420 D427.
4. Askew, D. S. 2008. Aspergillus fumigatus: virulence genes in a street-smart mold. Curr. Opin. Microbiol. 11: 331 337.
5. Baker, S. E.,, and J. W. Bennett,. 2008. An overview of the genus Aspergillus, p. 3 13. In S. A. Osmani,, and G. H. Goldman (ed.), The Aspergilli: Genomics, Medical Aspects, Biotechnology, and Research Methods. CRC Press. Boca Raton, FL.
6. Balajee, S. A.,, S. T. Tay,, B. A. Lasker,, S. F. Hurst,, and A. P. Rooney. 2007. Characterization of a novel gene for strain typing reveals substructuring of Aspergillus fumigatus across North America. Eukaryot. Cell 6: 1392 1399.
7. Bergmann, S.,, J. Schumann,, K. Scherlach,, C. Lange,, A. A. Brakhage,, and C. Hertweck. 2007. Genomics-driven discovery of PKS-NRPS hybrid metabolites from Aspergillus nidulans. Nat. Chem. Biol. 3: 213 217.
8. Bichara, M.,, J. Wagner,, and I. B. Lambert. 2006. Mechanisms of tandem repeat instability in bacteria. Mutat. Res. 598: 144 163.
9. Blyth, W.,, I. W. Grant,, E. S. Blackadder,, and M. Greenberg. 1977. Fungal antigens as a source of sensitization and respiratory disease in Scottish maltworkers. Clin. Allergy 7: 549 562.
10. Bok, J. W.,, D. Chung,, S. A. Balajee,, K. A. Marr,, D. Andes,, K. F. Nielsen,, J. C. Frisvad,, K. A. Kirby,, and N. P. Keller. 2006. GliZ, a transcriptional regulator of gliotoxin biosynthesis, contributes to Aspergillus fumigatus virulence. Infect. Immun. 74: 6761 6768.
11. Bok, J. W.,, and N. P. Keller. 2004. LaeA, a regulator of secondary metabolism in Aspergillus spp. Eukaryot. Cell 3: 527 535.
12. Bowen, S.,, C. Roberts,, and A. E. Wheals. 2005. Patterns of polymorphism and divergence in stress-related yeast proteins. Yeast 22: 659 668.
13. Brakhage, A. A. 2005. Systemic fungal infections caused by Aspergillus species: epidemiology, infection process and virulence determinants. Curr. Drug Targets 6: 875 886.
14. Brakhage, A. A.,, A. Andrianopoulos,, M. Kato,, S. Steidl,, M. A. Davis,, N. Tsukagoshi,, and M. J. Hynes. 1999. HAP-Like CCAAT-binding complexes in filamentous fungi: implications for biotechnology. Fungal Genet. Biol. 27: 243 252.
15. Brakhage, A. A.,, and K. Langfelder. 2002. Men acing mold: the molecular biology of Aspergillus fumigatus. Annu. Rev. Microbiol. 56: 433 455.
16. Brakhage, A. A.,, J. Schuemann,, S. Bergmann,, K. Scherlach,, V. Schroeckh,, and C. Hertweck. 2008. Activation of fungal silent gene clusters: a new avenue to drug discovery. Prog. Drug Res. 66: 3 12.
17. Brakhage, A. A.,, M. Thon,, P. Sprote,, D. H. Scharf,, Q. Al-Abdallah,, S. M. Wolke,, and P. Hortschansky. 2009. Aspects on evolution of fungal beta-lactam biosynthesis gene clusters and recruitment of trans-acting factors. Phytochemistry 70: 1801 1811.
18. Braumann, I.,, M. vandenBerg,, and F. Kempken. 2007. Transposons in biotechnologically relevant strains of Aspergillus niger and Penicillium chrysoge num. Fungal Genet. Biol. 44: 1399 1414.
19. Braumann, I.,, M. A. van den Berg,, and F. Kempken. 2008. Strain-specific retrotransposon-mediated recombination in commercially used Aspergillus niger strain. Mol. Genet. Genomics 280: 319 325.
20. Bucher, P. 1990. Weight matrix descriptions of four eukaryotic RNA polymerase II promoter elements derived from 502 unrelated promoter sequences. J. Mol. Biol. 212: 563 578.
21. Chazalet, V.,, J. P. Debeaupuis,, J. Sarfati,, J. Lortholary,, P. Ribaud,, P. Shah,, M. Cornet,, H. Vu Thien,, E. Gluckman,, G. Brucker,, and J. P. Latge. 1998. Molecular typing of environmental and patient isolates of Aspergillus fumigatus from various hospital settings. J. Clin. Microbiol. 36: 1494 1500.
22. Chiang, Y. M.,, K. H. Lee,, J. F. Sanchez,, N. P. Keller,, and C. C. Wang. 2009. Unlocking fungal cryptic natural products. Nat. Product Commun. 4: 1505 1510.
23. Clutterbuck, J. A.,, V. V. Kapitonov,, and J. Jurka,. 2008. Transposable elements and repeat induced point mutation in Aspergillus nidulans, Aspergillus fumigatus, and Aspergillus oryzae, p. 343 355. In S. A. Osmani, and G. H. Goldman (ed.), The Aspergilli: Genomics, Medical Aspects, Biotechnology, and Research Methods. CRC Press, Boca Raton, FL.
24. Cramer, R. A., Jr.,, M. P. Gamcsik,, R. M. Brook ing,, L. K. Najvar,, W. R. Kirkpatrick,, T. F. Patterson,, C. J. Balibar,, J. R. Graybill,, J. R. Perfect,, S. N. Abraham,, and W. J. Steinbach. 2006. Disruption of a nonribosomal peptide synthetase in Aspergillus fumigatus eliminates gliotoxin production. Eukaryot. Cell 5: 972 980.
25. Daboussi, M. J.,, and P. Capy. 2003. Transposable elements in filamentous fungi. Annu. Rev. Microbiol. 57: 275 299.
26. da Silva Ferreira, M. E.,, T. Heinekamp,, A. Hartl,, A. A. Brakhage,, C. P. Semighini,, S. D. Harris,, M. Savoldi,, P. F. de Gouvea,, M. H. de Souza Goldman,, and G. H. Goldman. 2007. Functional characterization of the Aspergillus fumigatus calcineurin. Fungal Genet. Biol. 44: 219 230.
27. Dieringer, D.,, and C. Schlotterer. 2003. Two distinct modes of microsatellite mutation processes: evidence from the complete genomic sequences of nine species. Genome Res. 13: 2242 2251.
28. Ellegren, H. 2004. Microsatellites: simple sequences with complex evolution. Nat. Rev. Genet. 5: 435 445.
29. Fedorova, N. D.,, N. Khaldi,, V. S. Joardar,, R. Maiti,, P. Amedeo,, M. J. Anderson,, J. Crabtree,, J. C. Silva,, J. H. Badger,, A. Albarraq,, S. Angiuoli,, H. Bussey,, P. Bowyer,, P. J. Cotty,, P. S. Dyer,, A. Egan,, K. Galens,, C. M. Fraser-Liggett,, B. J. Haas,, J. M. Inman,, R. Kent,, S. Lemieux,, I. Malavazi,, J. Orvis,, T. Roemer,, C. M. Ronning,, J. P. Sundaram,, G. Sutton,, G. Turner,, J. C. Venter,, O. R. White,, B. R. Whitty,, P. Youngman,, K. H. Wolfe,, G. H. Goldman,, J. R. Wortman,, B. Jiang,, D. W. Denning,, and W. C. Nierman. 2008a. Genomic islands in the pathogenic filamentous fungus Aspergillus fumigatus. PLoS Genet. 4: e1000046.
30. Fedorova, N. D.,, W. C. Nierman,, G. Turner,, V. Joardar,, R. Maiti,, M. J. Anderson,, D. W. Denning,, and J. R. Wortman,. 2008b. A comparative view of the genome of Aspergillus fumigatus, p. 25 42. In S. A. Osmani, and G. H. Goldman (ed.), The Aspergilli: Genomics, Medical Aspects, Biotechnology, and Research Methods. CRC Press, Boca Raton, FL..
31. Fidalgo, M.,, R. R. Barrales,, J. I. Ibeas,, and J. Jimenez. 2006. Adaptive evolution by mutations in the FLO11 gene. Proc. Natl. Acad. Sci. USA 103: 11228 11233.
32. Fondon, J. W., III,, and H. R. Garner. 2004. Molecular origins of rapid and continuous morphological evolution. Proc. Natl. Acad. Sci. USA 101: 18058 18063.
33. Galagan, J. E.,, S. E. Calvo,, C. Cuomo,, L. J. Ma,, J. R. Wortman,, S. Batzoglou,, S. I. Lee,, M. Basturkmen,, C. C. Spevak,, J. Clutterbuck,, V. Kapitonov,, J. Jurka,, C. Scazzocchio,, M. Farman,, J. Butler,, S. Purcell,, S. Harris,, G. H. Braus,, O. Draht,, S. Busch,, C. D’Enfert,, C. Bouchier,, G. H. Goldman,, D. Bell-Pedersen,, S. Griffiths-Jones,, J. H. Doonan,, J. Yu,, K. Vienken,, A. Pain,, M. Freitag,, E. U. Selker,, D. B. Archer,, M. A. Penalva,, B. R. Oakley,, M. Momany,, T. Tanaka,, T. Kumagai,, K. Asai,, M. Machida,, W. C. Nierman,, D. W. Denning,, M. Caddick,, M. Hynes,, M. Paoletti,, R. Fischer,, B. Miller,, P. Dyer,, M. S. Sachs,, S. A. Osmani,, and B. W. Birren. 2005. Sequencing of Aspergillus nidulans and comparative analysis with A. fumigatus and A. oryzae. Nature 438: 1105 1115.
34. Gardiner, D. M.,, and B. J. Howlett. 2005. Bioin formatic and expression analysis of the putative gliotoxin biosynthetic gene cluster of Aspergillus fumigatus. FEMS Microbiol. Lett. 248: 241 248.
35. Gibbons, J. G.,, and A. Rokas. 2009. Comparative and functional characterization of intragenic tandem repeats in 10 Aspergillus genomes. Mol. Biol. Evol. 26: 591 602.
36. Glayzer, D. C.,, I. N. Roberts,, D. B. Archer,, and R. P. Oliver. 1995. The isolation of Ant1, a transposable element from Aspergillus niger. Mol. Gen. Genet. 249: 432 438.
37. Goodley, J. M.,, Y. M. Clayton,, and R. J. Hay. 1994. Environmental sampling for aspergilli during building construction on a hospital site. J. Hosp. Infect. 26: 27 35.
38. Hey, P.,, G. Robson,, M. Birch,, and M. Bromley. 2008. Characterisation of Aft1 a Fot1/Pogo type transposon of Aspergillus fumigatus. Fungal Genet. Biol. 45: 117 126.
39. Hohl, T. M.,, and M. Feldmesser. 2007. Aspergillus fumigatus: principles of pathogenesis and host defense. Eukaryot. Cell 6: 1953 1963.
40. Hospenthal, D. R.,, K. J. Kwon-Chung,, and J. E. Bennett. 1998. Concentrations of airborne Aspergillus compared to the incidence of invasive aspergillosis: lack of correlation. Med. Mycol. 36: 165 168.
41. Jahn, B.,, F. Boukhallouk,, J. Lotz,, K. Langfelder,, G. Wanner,, and A. A. Brakhage. 2000. Interaction of human phagocytes with pigmentless Aspergillus conidia. Infect. Immun. 68: 3736 3739.
42. Kashi, Y.,, and D. G. King. 2006. Simple sequence repeats as advantageous mutators in evolution. Trends Genet. 22: 253 259.
43. Kosalec, I.,, and S. Pepeljnjak. 2005. Mycotoxigenicity of clinical and environmental Aspergillus fumigatus and A. flavus isolates. Acta Pharm. 55: 365 375.
44. Kupfahl, C.,, T. Heinekamp,, G. Geginat,, T. Ruppert,, A. Hartl,, H. Hof,, and A. A. Brakhage. 2006. Deletion of the gliP gene of Aspergillus fumigatus results in loss of gliotoxin production but has no effect on virulence of the fungus in a low-dose mouse infection model. Mol. Microbiol. 62: 292 302.
45. Kupfahl, C.,, A. Michalka,, C. Lass-Florl,, G. Fischer,, G. Haase,, T. Ruppert,, G. Geginat,, and H. Hof. 2008. Gliotoxin production by clinical and environmental Aspergillus fumigatus strains. Int. J. Med. Microbiol. 298: 319 327.
46. Langfelder, K.,, B. Jahn,, H. Gehringer,, A. Schmidt,, G. Wanner,, and A. A. Brakhage. 1998. Identification of a polyketide synthase gene (pksP) of Aspergillus fumigatus involved in conidial pigment biosynthesis and virulence. Med. Microbiol. Immunol. 187: 79 89.
47. Langfelder, K.,, B. Philippe,, B. Jahn,, J. P. Latge,, and A. A. Brakhage. 2001. Differential expression of the Aspergillus fumigatus pksP gene detected in vitro and in vivo with green fluorescent protein. Infect. Immun. 69: 6411 6418.
48. Langfelder, K.,, M. Streibel,, B. Jahn,, G. Haase,, and A. A. Brakhage. 2003. Biosynthesis of fungal melanins and their importance for human pathogenic fungi. Fungal Genet. Biol. 38: 143 158.
49. Latge, J. P. 1999. Aspergillus fumigatus and aspergillosis. Clin. Microbiol. Rev. 12: 310 350.
50. Lee, I.,, J. H. Oh,, E. K. Shwab,, T. R. Dagenais,, D. Andes,, and N. P. Keller. 2009. HdaA, a class 2 histone deacetylase of Aspergillus fumigatus, affects germination and secondary metabolite production. Fungal Genet. Biol. 46: 782 790.
51. Levdansky, E.,, J. Romano,, Y. Shadkchan,, H. Sharon,, K. J. Verstrepen,, G. R. Fink,, and N. Osherov. 2007. Coding tandem repeats generate diversity in Aspergillus fumigatus genes. Eukaryot. Cell 6: 1380 1391.
52. Levinson, G.,, and G. A. Gutman. 1987. Slipped-strand mispairing: a major mechanism for DNA sequence evolution. Mol. Biol. Evol. 4: 203 221.
53. Lewis, R. E.,, N. P. Wiederhold,, M. S. Lionakis,, R. A. Prince,, and D. P. Kontoyiannis. 2005. Frequency and species distribution of gliotoxin-producing Aspergillus isolates recovered from patients at a tertiary-care cancer center. J. Clin. Microbiol. 43: 6120 6122.
54. Li, Y. C.,, A. B. Korol,, T. Fahima,, and E. Nevo. 2004. Microsatellites within genes: structure, function, and evolution. Mol. Biol. Evol. 21: 991 1007.
55. Liebmann, B.,, S. Gattung,, B. Jahn,, and A. A. Brakhage. 2003. cAMP signaling in Aspergillus fumigatus is involved in the regulation of the virulence gene pksP and in defense against killing by macrophages. Mol. Genet. Genomics 269: 420 435.
56. Liebmann, B.,, M. Muller,, A. Braun,, and A. A. Brakhage. 2004. The cyclic AMP-dependent protein kinase A network regulates development and virulence in Aspergillus fumigatus. Infect. Immun. 72: 5193 5203.
57. Litzka, O.,, K. Then Bergh,, and A. A. Bra khage. 1996. The Aspergillus nidulans penicillin-biosynthesis gene aat (penDE) is controlled by a CCAAT-containing DNA element. Eur. J. Biochem. 238: 675 682.
58. Mabey, J. E.,, M. J. Anderson,, P. F. Giles,, C. J. Miller,, T. K. Attwood,, N. W. Paton,, E. Bornberg-Bauer,, G. D. Robson,, S. G. Oliver,, and D. W. Denning. 2004. CADRE: the Central Aspergillus Data REpository. Nucleic Acids Res. 32: D401 D405.
59. Machida, M.,, K. Asai,, M. Sano,, T. Tanaka,, T. Kumagai,, G. Terai,, K. Kusumoto,, T. Arima,, O. Akita,, Y. Kashiwagi,, K. Abe,, K. Gomi,, H. Horiuchi,, K. Kitamoto,, T. Kobayashi,, M. Takeuchi,, D. W. Denning,, J. E. Galagan,, W. C. Nierman,, J. Yu,, D. B. Archer,, J. W. Bennett,, D. Bhatnagar,, T. E. Cleveland,, N. D. Fedorova,, O. Gotoh,, H. Horikawa,, A. Hosoyama,, M. Ichinomiya,, R. Igarashi,, K. Iwashita,, P. R. Juvvadi,, M. Kato,, Y. Kato,, T. Kin,, A. Kokubun,, H. Maeda,, N. Maeyama,, J. Maruyama,, H. Nagasaki,, T. Nakajima,, K. Oda,, K. Okada,, I. Paulsen,, K. Sakamoto,, T. Sawano,, M. Taka hashi,, K. Takase,, Y. Terabayashi,, J. R. Wort man,, O. Yamada,, Y. Yamagata,, H. Anazawa,, Y. Hata,, Y. Koide,, T. Komori,, Y. Koyama,, T. Minetoki,, S. Suharnan,, A. Tanaka,, K. Isono,, S. Kuhara,, N. Ogasawara,, and H. Kikuchi. 2005. Genome sequencing and analysis of Aspergillus oryzae. Nature 438: 1157 1161.
60. McDonagh, A.,, N. D. Fedorova,, J. Crabtree,, Y. Yu,, S. Kim,, D. Chen,, O. Loss,, T. Cairns,, G. Goldman,, D. Armstrong-James,, K. Haynes,, H. Haas,, M. Schrettl,, G. May,, W. C. Nierman,, and E. Bignell. 2008. Sub-telomere directed gene expression during initiation of invasive aspergillosis. PLoS Pathog. 4: e1000154.
61. Michael, T. P.,, S. Park,, T. S. Kim,, J. Booth,, A. Byer,, Q. Sun,, J. Chory,, and K. Lee. 2007. Simple sequence repeats provide a substrate for phenotypic variation in the Neurospora crassa circadian clock. PloS One 2: e795.
62. Mirkin, S. M. 2007. Expandable DNA repeats and human disease. Nature 447: 932 940.
63. Monroy, F.,, and D. C. Sheppard. 2005. Taf1: a class II transposon of Aspergillus fumigatus. Fungal Genet. Biol. 42: 638 645.
64. Moxon, R.,, C. Bayliss,, and D. Hood. 2006. Bacterial contingency loci: the role of simple sequence DNA repeats in bacterial adaptation. Annu. Rev. Genet. 40: 307 333.
65. Neuveglise, C.,, J. Sarfati,, J. P. Latge,, and S. Paris. 1996. Afut1, a retrotransposon-like element from Aspergillus fumigatus. Nucleic Acids Res. 24: 1428 1434.
66. Nierman, W. C.,, A. Pain,, M. J. Anderson,, J. R. Wortman,, H. S. Kim,, J. Arroyo,, M. Berriman,, K. Abe,, D. B. Archer,, C. Bermejo,, J. Bennett,, P. Bowyer,, D. Chen,, M. Collins,, R. Coulsen,, R. Davies,, P. S. Dyer,, M. Farman,, N. Fedorova,, N. Fedorova,, T. V. Feldblyum,, R. Fischer,, N. Fosker,, A. Fraser,, J. L. Garcia,, M. J. Garcia,, A. Goble,, G. H. Goldman,, K. Gomi,, S. Griffith-Jones,, R. Gwilliam,, B. Haas,, H. Haas,, D. Harris,, H. Horiuchi,, J. Huang,, S. Humphray,, J. Jimenez,, N. Keller,, H. Khouri,, K. Kitamoto,, T. Kobayashi,, S. Konzack,, R. Kulkarni,, T. Kumagai,, A. Lafon,, J. P. Latge,, W. Li,, A. Lord,, C. Lu,, W. H. Majoros,, G. S. May,, B. L. Miller,, Y. Mohamoud,, M. Molina,, M. Monod,, I. Mouyna,, S. Mulligan,, L. Murphy,, S. O’Neil,, I. Paulsen,, M. A. Penalva,, M. Pertea,, C. Price,, B. L. Pritchard,, M. A. Quail,, E. Rabbinowitsch,, N. Rawlins,, M. A. Rajandream,, U. Reichard,, H. Renauld,, G. D. Robson,, S. Rodriguez de Cordoba,, J. M. Rodriguez-Pena,, C. M. Ronning,, S. Rutter,, S. L. Salzberg,, M. Sanchez,, J. C. Sanchez-Ferrero,, D. Saunders,, K. Seeger,, R. Squares,, S. Squares,, M. Takeuchi,, F. Tekaia,, G. Turner,, C. R. Vazquez de Aldana,, J. Weidman,, O. White,, J. Woodward,, J. H. Yu,, C. Fraser,, J. E. Galagan,, K. Asai,, M. Machida,, N. Hall,, B. Barrell,, and D. W. Denning. 2005. Genomic sequence of the pathogenic and allergenic filamentous fungus Aspergillus fumigatus. Nature 438: 1151 1156.
67. Nyyssonen, E.,, M. Amutan,, L. Enfield,, J. Stubbs,, and N. S. Dunn-Coleman. 1996. The transposable element Tan1 of Aspergillus niger var. awamori, a new member of the Fot1 family. Mol. Gen. Genet. 253: 50 56.
68. O’Gorman, C. M.,, H. T. Fuller,, and P. S. Dyer. 2009. Discovery of a sexual cycle in the opportunistic fungal pathogen Aspergillus fumigatus. Nature 457: 471 474.
69. Oh, S. H.,, G. Cheng,, J. A. Nuessen,, R. Jajko,, K. M. Yeater,, X. Zhao,, C. Pujol,, D. R. Soll,, and L. L. Hoyer. 2005. Functional specificity of Candida albicans Als3p proteins and clade specificity of ALS3 alleles discriminated by the number of copies of the tandem repeat sequence in the central domain. Microbiology 151: 673 681.
70. Paisley, D.,, G. D. Robson,, and D. W. Denning. 2005. Correlation between in vitro growth rate and in vivo virulence in Aspergillus fumigatus. Med. Mycol. 43: 397 401.
71. Paoletti, M.,, C. Rydholm,, E. U. Schwier,, M. J. Anderson,, G. Szakacs,, F. Lutzoni,, J. P. Debeaupuis,, J. P. Latge,, D. W. Denning,, and P. S. Dyer. 2005. Evidence for sexuality in the opportunistic fungal pathogen Aspergillus fumigatus. Curr. Biol. 15: 1242 1248.
72. Paoletti, M.,, F. A. Seymour,, M. J. Alcocer,, N. Kaur,, A. M. Calvo,, D. B. Archer,, and P. S. Dyer. 2007. Mating type and the genetic basis of self-fertility in the model fungus Aspergillus nidulans. Curr. Biol. 17: 1384 1389.
73. Paris, S.,, and J. P. Latge. 2001. Afut2, a new family of degenerate gypsy-like retrotransposon from Aspergillus fumigatus. Med. Mycol. 39: 195 198.
74. Patron, N. J.,, R. F. Waller,, A. J. Cozijnsen,, D. C. Straney,, D. M. Gardiner,, W. C. Nierman,, and B. J. Howlett. 2007. Origin and distribution of epipolythiodioxopiperazine (ETP) gene clusters in filamentous ascomycetes. BMC Evol. Biol. 7: 174.
75. Pearson, C. E.,, K. Nichol Edamura,, and J. D. Cleary. 2005. Repeat instability: mechanisms of dynamic mutations. Nat. Rev. 6: 729 742.
76. Pel, H. J.,, J. H. de Winde,, D. B. Archer,, P. S. Dyer,, G. Hofmann,, P. J. Schaap,, G. Turner,, R. P. de Vries,, R. Albang,, K. Albermann,, M. R. Andersen,, J. D. Bendtsen,, J. A. Benen,, M. van den Berg,, S. Breestraat,, M. X. Caddick,, R. Contreras,, M. Cornell,, P. M. Coutinho,, E. G. Danchin,, A. J. Debets,, P. Dekker,, P. W. van Dijck,, A. van Dijk,, L. Dijkhuizen,, A. J. Driessen,, C. d’Enfert,, S. Geysens,, C. Goosen,, G. S. Groot,, P. W. deGroot,, T. Guillemette,, B. Henrissat,, M. Herweijer,, J. P. van den Hombergh,, C. A. van den Hondel,, R. T. van der Heijden,, R. M. van der Kaaij,, F. M. Klis,, H. J. Kools,, C. P. Kubicek,, P. A. van Kuyk,, J. Lauber,, X. Lu,, M. J. van der Maarel,, R. Meulenberg,, H. Menke,, M. A. Mortimer,, J. Nielsen,, S. G. Oliver,, M. Olsthoorn,, K. Pal,, N. N. van Peij,, A. F. Ram,, U. Rinas,, J. A. Roubos,, C. M. Sagt,, M. Schmoll,, J. Sun,, D. Ussery,, J. Varga,, W. Vervecken,, P. J. van de Vondervoort,, H. Wedler,, H. A. Wosten,, A. P. Zeng,, A. J. van Ooyen,, J. Visser,, and H. Stam. 2007. Genome sequencing and analysis of the versatile cell factory Aspergillus niger CBS 513.88. Nat. Biotechnol. 25: 221 231.
77. Perrin, R. M.,, N. D. Fedorova,, J. W. Bok,, R. A. Cramer,, J. R. Wortman,, H. S. Kim,, W. C. Nierman,, and N. P. Keller. 2007. Transcriptional regulation of chemical diversity in Aspergillis fumigatus by LaeA. PLoS Pathog. 3: e50.
78. Peterson, S. W. 2008. Phylogenetic analysis of Aspergillus species using DNA sequences from four loci. Mycologia 100: 205 226.
79. Reeves, E. P.,, C. G. Messina,, S. Doyle,, and K. Kavanagh. 2004. Correlation between gliotoxin production and virulence of Aspergillus fumigatus in Galleria mellonella. Mycopathologia 158: 73 79.
80. Rhodes, J. C. 2006. Aspergillus fumigatus: growth and virulence. Med. Mycol. (Suppl.) 44: 77 81.
81. Rhodes, J. C.,, and A. A. Brakhage,. 2006. Molecular determinants of virulence in Aspergillus fumigatus, p. 333 345. In J. Heitman,, S. G. Filler,, J. E. Edwards,, and A. P. Mitchell (ed.), Molecular Principles of Fungal Pathogenesis. ASM Press, Washington, DC.
82. Rispail, N.,, D. M. Soanes,, C. Ant,, R. Czajkowski,, A. Grunler,, R. Huguet,, E. Perez-Nadales,, A. Poli,, E. Sartorel,, V. Valiante,, M. Yang,, R. Beffa,, A. A. Brakhage,, N. A. Gow,, R. Kahmann,, M. H. Lebrun,, H. Lenasi,, J. Perez-Martin,, N. J. Talbot,, J. Wendland,, and A. Di Pietro. 2009. Comparative genomics of MAP kinase and calcium-calcineurin signalling components in plant and human pathogenic fungi. Fungal Genet. Biol. 46: 287 298.
83. Rocha, E. P.,, I. Matic,, and F. Taddei. 2002. Over-representation of repeats in stress response genes: a strategy to increase versatility under stressful conditions? Nucleic Acids Res. 30: 1886 1894.
84. Ruepp, A.,, A. Zollner,, D. Maier,, K. Albermann,, J. Hani,, M. Mokrejs,, I. Tetko,, U. Guldener,, G. Mannhaupt,, M. Munsterkotter,, and H. W. Mewes. 2004. The FunCat, a functional annotation scheme for systematic classification of proteins from whole genomes. Nucleic Acids Res. 32: 5539 5545.
85. Rydholm, C.,, G. Szakacs,, and F. Lutzoni. 2006. Low genetic variation and no detectable population structure in Aspergillus fumigatus compared to closely related Neosartorya species. Eukaryot. Cell 5: 650 657.
86. Schlotterer, C.,, and D. Tautz. 1994. Chromosomal homogeneity of Drosophila ribosomal DNA arrays suggests intrachromosomal exchanges drive con certed evolution. Curr. Biol. 4: 777 783.
87. Schroeckh, V.,, K. Scherlach,, H. W. Nutzmann,, E. Shelest,, W. Schmidt-Heck,, J. Schuemann,, K. Martin,, C. Hertweck,, and A. A. Brakhage. 2009. Intimate bacterial-fungal interaction triggers biosynthesis of archetypal polyketides in Aspergillus nidulans. Proc. Natl. Acad. Sci. USA 106: 14558 14563.
88. Spikes, S.,, R. Xu,, C. K. Nguyen,, G. Chamilos,, D. P. Kontoyiannis,, R. H. Jacobson,, D. E. Ejzykowicz,, L. Y. Chiang,, S. G. Filler,, and G. S. May. 2008. Gliotoxin production in Aspergillus fumigatus contributes to host-specific differences in virulence. J. Infect. Dis. 197: 479 486.
89. Steinbach, W. J.,, R. A. Cramer, Jr.,, B. Z. Perfect,, Y. G. Asfaw,, T. C. Sauer,, L. K. Najvar,, W. R. Kirk patrick,, T. F. Patterson,, D. K. Benjamin, Jr.,, J. Heitman,, and J. R. Perfect. 2006. Calcineurin controls growth, morphology, and pathogenicity in Aspergillus fumigatus. Eukaryot. Cell 5: 1091 1103.
90. Sugui, J. A.,, J. Pardo,, Y. C. Chang,, K. A. Zarember,, G. Nardone,, E. M. Galvez,, A. Mullbacher,, J. I. Gallin,, M. M. Simon,, and K. J. Kwon-Chung. 2007. Gliotoxin is a virulence factor of Aspergillus fumigatus: gliP deletion attenuates virulence in mice immunosuppressed with hydrocortisone. Eukaryot. Cell 6: 1562 1569.
91. Sutherland, G. R.,, and R. I. Richards. 1995. Simple tandem DNA repeats and human genetic disease. Proc. Natl. Acad. Sci. USA 92: 3636 3641.
92. Tekaia, F.,, and J. P. Latge. 2005. Aspergillus fumigatus: saprophyte or pathogen? Curr. Opin. Microbiol. 8: 385 392.
93. Then Bergh, K.,, and A. A. Brakhage. 1998. Regulation of the Aspergillus nidulans penicillin biosynthesis gene acvA (pcbAB) by amino acids: implication for involvement of transcription factor PACC. Appl. Environ. Microbiol. 64: 843 849.
94. Valiante, V.,, T. Heinekamp,, R. Jain,, A. Hartl,, and A. A. Brakhage. 2008. The mitogen-activated protein kinase MpkA of Aspergillus fumigatus regulates cell wall signaling and oxidative stress response. Fungal Genet. Biol. 45: 618 627.
95. Valiante, V.,, R. Jain,, T. Heinekamp,, and A. A. Bra khage. 2009. The MpkA MAP kinase module regulates cell wall integrity signaling and pyomelanin formation in Aspergillus fumigatus. Fungal Genet. Biol. 46: 909 918.
96. Venter, J. C.,, M. D. Adams,, E. W. Myers,, P. W. Li,, R. J. Mural,, G. G. Sutton,, H. O. Smith,, M. Yandell,, C. A. Evans,, R. A. Holt,, J. D. Gocayne,, P. Amanatides,, R. M. Ballew,, D. H. Huson,, J. R. Wortman,, Q. Zhang,, C. D. Kodira,, X. H. Zheng,, L. Chen,, M. Skupski,, G. Subramanian,, P. D. Thomas,, J. Zhang,, G. L. Gabor Miklos,, C. Nelson,, S. Broder,, A. G. Clark,, J. Nadeau,, V. A. McKusick,, N. Zinder,, A. J. Levine,, R. J. Roberts,, M. Simon,, C. Slayman,, M. Hunkapiller,, R. Bolanos,, A. Delcher,, I. Dew,, D. Fasulo,, M. Flanigan,, L. Florea,, A. Halpern,, S. Hannenhalli,, S. Kravitz,, S. Levy,, C. Mobarry,, K. Reinert,, K. Remington,, J. Abu-Threideh,, E. Beasley,, K. Biddick,, V. Bonazzi,, R. Brandon,, M. Cargill,, I. Chandramouliswaran,, R. Charlab,, K. Chaturvedi,, Z. Deng,, V. Di Francesco,, P. Dunn,, K. Eilbeck,, C. Evangelista,, A. E. Gabrielian,, W. Gan,, W. Ge,, F. Gong,, Z. Gu,, P. Guan,, T. J. Heiman,, M. E. Higgins,, R. R. Ji,, Z. Ke,, K. A. Ketchum,, Z. Lai,, Y. Lei,, Z. Li,, J. Li,, Y. Liang,, X. Lin,, F. Lu,, G. V. Merkulov,, N. Milshina,, H. M. Moore,, A. K. Naik,, V. A. Narayan,, B. Neelam,, D. Nusskern,, D. B. Rusch,, S. Salzberg,, W. Shao,, B. Shue,, J. Sun,, Z. Wang,, A. Wang,, X. Wang,, J. Wang,, M. Wei,, R. Wides,, C. Xiao,, C. Yan, et al. 2001. The sequence of the human genome. Science 291: 1304 1351.
97. Verstrepen, K. J.,, A. Jansen,, F. Lewitter,, and G. R. Fink. 2005. Intragenic tandem repeats generate functional variability. Nat. Genet. 37: 986 990.
98. Verstrepen, K. J.,, T. B. Reynolds,, and G. R. Fink. 2004. Origins of variation in the fungal cell surface. Nat. Rev. Microbiol. 2: 533 540.
99. Waring, P.,, R. Eichner,, U. Tiwari-Palni,, and A. Mullbacher. 1987. Gliotoxin E: a new biologically active epipolythiodioxopiperazine from Penicillium terlikowskii. Aust. J. Chem. 40: 991 997.


Generic image for table

List of genome features of different aspergill

Citation: Heinekamp T, Brakhage A. 2012. Genome Plasticity of Species, p 326-342. In Hacker J, Dobrindt U, Kurth R (ed), Genome Plasticity and Infectious Diseases. ASM Press, Washington, DC. doi: 10.1128/9781555817213.ch19

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error